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Importance: Governments have introduced non-pharmaceutical interventions (NPIs) in

response to the pandemic outbreak of Coronavirus disease (COVID-19). While NPIs aim

at preventing fatalities related to COVID-19, the previous literature on their efficacy has

focused on infections and on data of the first half of 2020. Still, findings of early NPI

studies may be subject to underreporting and missing timeliness of reporting of cases.

Moreover, the low variation in treatment timing during the first wave makes identification

of robust treatment effects difficult.

Objective: We enhance the literature on the effectiveness of NPIs with respect to the

period, the number of countries, and the analytical approach.

Design, Setting, and Participants: To circumvent problems of reporting and treatment

variation, we analyse data on daily confirmed COVID-19-related deaths per capita from

Our World in Data, and on 10 different NPIs from the Oxford COVID-19 Government

Response Tracker (OxCGRT) for 169 countries from 1st July 2020 to 1st September

2021. To identify the causal effects of introducing NPIs on COVID-19-related fatalities,

we apply the generalized synthetic control (GSC) method to each NPI, while controlling

for the remaining NPIs, weather conditions, vaccinations, and NPI-residualized COVID-19

cases. This mitigates the influence of selection into treatment and allows to model flexible

post-treatment trajectories.

Results: We do not find substantial and consistent COVID-19-related fatality-reducing

effects of any NPI under investigation. We see a tentative change in the trend of

COVID-19-related deaths around 30 days after strict stay-at-home rules and to a slighter

extent after workplace closings have been implemented. As a proof of concept, our

model is able to identify a fatality-reducing effect of COVID-19 vaccinations. Furthermore,

our results are robust with respect to various crucial sensitivity checks.

Conclusion: Our results demonstrate that many implemented NPIs may not have

exerted a significant COVID-19-related fatality-reducing effect. However, NPIs might have

contributed to mitigate COVID-19-related fatalities by preventing exponential growth in

deaths. Moreover, vaccinations were effective in reducing COVID-19-related deaths.
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HIGHLIGHTS

- We enhance the existing literature on the effect of non-
pharmaceutical interventions (NPIs) on COVID-19-related
deaths with respect to the period (1), the number of countries
(2), and the analytical approach (3).

- (1) We analyze data on COVID-19-related deaths per capita
from Our World in Data, and on 10 different NPIs from
the Oxford COVID-19 Government Response Tracker of
169 countries from 1st July 2020 to 1st September 2021
to attenuate identification problems stemming from low
variation in treatment (timing) and data quality.

- (2) Compared to other studies, we use data of more countries
(n= 169) covering 98% of the world population.

- (3) We apply the Generalized Synthetic Control (GSC)
method to mitigate the influence of selection into treatment
and to model flexible post-treatment trajectories.

- Applying the GSC method, we do not find substantial and
consistent COVID-19-related fatality-reducing effects of any
NPI under investigation.

- Using the same approach, we find however a
significant and substantial fatality-reducing effect of
COVID-19 vaccinations.

- The results of our study provide further guidance
to judge the effectiveness of NPIs for reducing
COVID-19-related fatalities.

INTRODUCTION

Governments have introduced non-pharmaceutical
interventions (NPIs) in response to the pandemic outbreak
of Coronavirus disease (COVID-19) since early 2020 (see
Supplementary Figures 1, 2). NPIs include traditional
epidemiological instruments like public information campaigns,
testing strategies, as well as contact tracing, and the isolation
of infected and vulnerable people. Moreover, obligations to
wear a face mask have been introduced. A large share of
countries has implemented various lockdown-related NPIs.
These include the closure of schools, workplaces and public
transport, restrictions on public events and gatherings, and
more stringent measures like stay-at-home requirements,
as well as restrictions on domestic and international
movement (1).

While the potential benefits of stringent NPIs are
straightforward (mitigate COVID-19-related fatalities and
maltreatment of other diseases due to health system overload),
they are likely to be jeopardized by potentially severe or even
“prohibitive” (2) economic, social, and public health-related
negative externalities associated with the implementation of
these NPIs (3–8). Hence, evaluation of the proportionality of
NPIs heavily hinges on consistent empirical evidence of their
efficacy in the ongoing pandemic (9).

Ever since, a valuable body of empirical NPI-studies has
emerged to judge the efficacy of various measures (see
Supplementary Table 1 in the Supplementary Material Part E
for an overview). However, several potential limitations of the
previous literature impede the judgment of the NPIs’ efficacy.
First, NPIs ultimately aim at avoiding fatalities related to

COVID-19, e.g., by preventing the health system to collapse.
However, earlier studies on their efficacy have primarily
focused on infections. Only ten of the 37 studies listed in
Supplementary Table 1 investigate the effect of NPIs on COVID-
19-related deaths (10–19). Although studies on infections
provide important insights on how NPIs affect the disease
dynamics, they cannot adequately evaluate the main aim of
avoiding fatalities. Furthermore, underreporting of infections
may be more pronounced than for fatalities. Hence, it is favorable
to use data on fatalities (20). Second, former investigations based
on data of the first half of 2020 may be subject to underreporting
andmissing timeliness of reporting during the first viral outbreak
(14, 17). Third, the identification of robust treatment effects
of NPIs is difficult based on the first wave because of the low
variation in treatment type and treatment timing across countries
in early 2020 (17, 21) (see Supplementary Figures 3–15).

Against this backdrop and given the heterogeneity in
data used, methods applied, and NPIs, time spans and
countries/territories analyzed, the results of early NPI studies
vary considerably. Early causal analyses on daily COVID-19-
related fatalities accounting for population size and the temporal
delay of treatment impacts find substantial mitigating effects
for the initial “lockdown” (12, 14), school closure (10, 13,
18, 19), workplace closure (18, 19), cancellation of public
events (18), stay-at-home orders (16), travel restrictions (15),
and mask obligations (11, 15). However, all these studies
are based on data of the first wave. Only one study (17)
investigates fatalities after the first half of 2020 (August 2020
to January 2021). Based on a hierarchical Bayesian transmission
model applied to 7 countries/114 subnational entities, the study
(17) identifies substantial mitigating effects for school closure,
workplace closure, and firm restrictions on gatherings (see
Supplementary Table 1).

We enhance the existing literature on the effect of NPIs
on COVID-19-related deaths with respect to the period,
the number of countries, and the analytical method. First,
we analyse data starting from the second half of 2020 (1st
July 2020 to 1st September 2021) to circumvent problems
of reporting and treatment variation. Variation in treatment
timing is sufficiently high between countries in this time
span (Supplementary Figures 3–12). Second, compared
to other studies (17), we use data of more countries
(N = 169) covering 98% of the world population. Third,
to estimate the average treatment effect on the treated
(ATT), we apply the Generalized Synthetic Control (GSC)
method (22). The GSC approach is a combination of the
synthetic control approach (23–25) and traditional difference-
in-differences (DiD) methods (26). This attenuates the
influence of selection into treatment while modeling flexible
post-treatment trajectories.

MATERIALS AND METHODS

Data
We combine different data sources on the country level
(N = 169 countries). First, we derive daily information on
confirmed COVID-19 deaths per capita from Our World in
Data (27). Second, we add daily information on various NPIs
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and governmental stringency from the Oxford COVID-19
Government Response Tracker (OxCGRT) (1). Our main
outcome measure is the daily number of newly confirmed deaths
attributed to COVID-19 per million inhabitants. We coded all
days as missing on which a country reported a negative number
of deaths, which happened in a few instances when countries
corrected earlier numbers.

From OxCGRT (1) we use the following 10 NPIs: school
closing, workplace closing, closure of public transport, stay at
home rules, restriction of internal movement, restrictions on
international travel, protection of the elderly, testing policy,
contact tracing, andmask obligations. OxCGRT codes a country’s
stringency in each of these domains with different categories.
For our main analyses we recoded all NPIs as binary indicators,
taking the value one (implemented) if a country is in the highest
available category of each measure on a given day, and zero
otherwise. Supplementary Figures 3–12 depict the stringency
sequences for each NPI.

Analytical Strategy
Unobserved differences between countries and temporal
shocks likely influence the number of COVID-19 related cases
and deaths. Hence, a natural choice would be a difference-
in-differences (DiD) like estimator (28), solely relying on
within country and period variances for identification
(28, 29). However, conventional within-estimators face
several methodological challenges when aiming at identifying
the impact of NPIs on COVID-19 related fatalities, such
as selection on pre-treatment trends or treatment effect
heterogeneity (26, 30–32).

We tackle this problem by applying a Generalized Synthetic
Control (GSC) method (22). The intuitive idea behind the
conventional Synthetic Control method is to construct a
synthetic control unit for a single treated unit by re-weighting
observations from the pool of control-units (23–25). Among
other characteristics, the re-weighting is based on the pre-
treatment pathway of the outcome. The method thus compares
the treatment unit to a weighted control-pool which, on average,
has a similar pre-treatment outcome trajectory. Moreover,
by predicting the counterfactual outcome for the treated
observations, heterogeneous treatment effects over time are
flexibly identified.

The traditional Synthetic Control approach applies only to
the case of one treated unit. Yet, the GSC method (22) provides
a framework which generalizes the synthetic control method to
multiple treated units by using factor augmented models. We
start with the general model

Yit = δitDit + Xitβ + Lit + εit , (1)

where Yit is the dependent variable (fatalities per capita), Xit

are time-varying controls, and εit the idiosyncratic error. Dit

is a binary treatment indicator, and δit denotes the treatment

effect for each unit and time-period, with δit being the average
treatment effect on the treated (ATT). Lit subsumes unobserved

factors approximating the outcome trend. The original GSC

method based on interactive fixed effects models directly

estimates L = 3F, with 3 being an N × r matrix of unknown

factor loadings (unit-specific intercepts), and F an r × T matrix

of unobserved common factors (time-varying coefficients) (22).
This however requires the number of factors r to be specified
correctly, for instance by using cross-validation methods.

In contrast to interactive fixed effects models, the matrix
completion method (33) does not estimate 3 and F, but directly
estimates L̂ based on nuclear norm regularization. Intuitively,
L̂ is derived by minimizing the sum of squared differences
between Yit and Lit (plus non-regularized unit and time fixed
effects) based on pre-treatment observations while adding a
penalty term λ ||L||—similar to the Least Absolute Shrinkage and
Selection Operator (LASSO) estimator. The matrix completion
method in GSC is used to estimate the ATT in the following

way (22, 34). First, β̂ and L̂ are estimated based on the pool of
control units, where λ is determined by cross-validation (33).
Here, we use 20 possible λ values and 10-fold cross-validation.
Second, the counterfactual outcome for the treated units is
estimated by Ŷ it(D = 0) = Xitβ̂ + L̂it . Third, based on the
predicted counterfactual outcome, we can then estimate the ATT
δ̂it =Yit(D= 1) – Ŷ it(D= 0). For inferential statistics, we provide
confidence intervals based on non-parametric bootstraps of 1,000
runs clustered at the country level (see below). For estimation, we
use the R package gsynth v.1.1.9 (22).

One limitation of GSC in our case is that the method is
designed for settings of staggered treatment adoption. Countries

can, however, transition from treatment (having an NPI
implemented) to control (relaxing the NPI), and going back to

treatment (see Supplement B for treatment sequences). Thus,
we divide our data into country-period splits, where a country

is treated as a new unit with each transition from treatment to
control. A single country can, for instance, act as treated unit

in early periods and as control unit in later periods. This also

ensures that we do not conflate our temporal treatment effect of
implementation with relaxations of NPIs.

To analyse the effectiveness of each single NPIi with i ǫ

{1, ..., 10}, we simultaneously control for the stringency index
in all other NPIs: Indexj, j 6= i. We follow the OxCGRT
methodology for normalized sub-index scores by defining

Indexj = 100
vj−0.5(max{Fj−fj})

Nvj
, where vj is the current category

of the measure, Nvj the maximum category (highest stringency),
fj a binary flag indicating whether a measure is geographically
targeted (0) or general (1), and Fj indicates if measure j has a flag
or not (e.g., international travel restrictions are always general).

We control for the cumulative number of vaccinations
per capita (27), as vaccinations likely affect both—the
implementation of NPIs and the number of fatalities. Because
COVID-19 transmissions (35–37) as well as COVID-19
related morbidity (38) might be correlated with seasonal
weather conditions, we also control for the monthly average
temperature and temperature squared, cloud cover, specific
humidity, and precipitation. These data were derived from
the ERA5 reanalysis data based on Copernicus Climate
observations (39).

Moreover, we control for temporal lags of residualized
COVID-19 cases. Besides the COVID-19 deaths, also the cases
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are likely to impose a strong effect on the likelihood of
implementing NPIs. However, naively controlling for cases
would lead to an overcontrol-bias, as NPIs reduce deaths not
only directly but also through a reduction in infections. We thus
follow a regression-with-residuals approach (40, 41), making
COVID-19 cases orthogonal to past NPI implementations.
More specifically, we first regress cases on various time-
lags of NPIs within countries and time-periods: Casesit =∑10

k=1

∑35
l=7 NPI

k
it−l

+ αi + ξt for all K NPIs and L temporal
lags, where αi and ξt are country and time fixed effects.
Subsequently, we derive the residuals of this first-stage regression.
This leaves us with the residualized COVID-19 cases which

are independent of NPI implementations within the past 7–35
days. In our main analysis, we control for the residualized 7-
day backwards rolling average of residualized COVID-19 cases
at five different temporal lags: t – 7, t – 14, t – 21, t – 28,
and t – 35, including second and third order polynomials.
The high number of lags in the first and second stage intends
to relax a-priori assumptions on the temporal dependency
between COVID-19 cases, deaths, and NPIs. Controlling for
the residualized number of COVID-19 cases notably reduces
the pre-treatment differences in control and treatment group
(see Supplementary Figure 16 for results without controlling for
residualized cases).

FIGURE 1 | The effect of NPIs on COVID-19 deaths. Generalized synthetic control estimator based on daily data. Black solid lines represent the average treatment

effects on the treated (ATTs). Ribbons represent 95% non-parametric confidence intervals based on 1,000 bootstrap runs. Dotted lines are the null lines. Dashed lines

represent linear predictions based on the 35 days before the intervention. Controls: 9 remaining NPIs as stringency index, temperature, temperature2, cloud cover,

precipitation, humidity, total vaccinations, 7-day backwards rolling average of NPI-residualized COVID-19 cases at t – 7, t – 14, t – 21, t – 28, and t – 35.
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RESULTS

Relying on the analytical approach above, we observe that none
of the strictly implemented NPIs under investigation had a
substantial and consistent effect on COVID-19-attributed deaths
over time (see Figure 1). None of the post-treatment trajectories
differs significantly from the null-line. Even when comparing
the post-treatment trajectories to the linear extrapolation of the
35-days pre-treatment period (dashed line), only strict stay-at-
home requirements produce borderline-significant differences.
We only observe a tentative change in the trend of COVID-
19-related deaths starting around 30 days after strict stay-at-
home rules have been introduced, but this does not exert a
statistically significant effect. Similarly, we observe a tentative
change in the trend of COVID-19-related fatalities 30 days
after workplaces have been closed. However, the effects are
not statistically different from zero. If we take this as evidence
for a mitigating effect depends on whether we only consider
reductions in the total of COVID-19-related deaths as mitigation
or whether we also consider the option of preventing exponential
growth in COVID-19-related deaths—an assumption we cannot
test adequately based on the available data (see also Discussion).

We conducted a number of robustness checks (see
Supplementary Material C). First, we carried out a proof-
of-concept analysis to demonstrate that our model is able to
detect a substantial and statistically significant ATT based on
the data at hand: For this purpose, we investigated the effect of
a pharmaceutical intervention (PI) instead of NPIs on fatalities.
More specifically, we analyzed the impact of vaccinations against
COVID-19 (27) on COVID-19-related deaths per 1 miocapita.
Vaccination intervention is coded as treatment if the share of
disseminated vaccine doses per capita exceeds 80%. Additionally,
themodel controls for all 10 NPIs under investigation (stringency
index) and the controls listed above. As Figure 2 demonstrates,
our model identifies a consistent and statistically significant
mitigating effect of vaccination on COVID-19 fatalities from
around day 45 to day 110 after treatment. This effect is also
of substantial magnitude: for a country of 60 mio inhabitants,
we estimate that vaccinations prevented around 90 death per
day from 45 days onwards after reaching the threshold of 80
vaccinations per 100 inhabitants.

Second, we were concerned that spatial spillovers could affect
our main results (42). Thus, we additionally controlled for NPI
implementations in neighboring countries. The results indicate
that spatial spillovers do not alter the results substantially
on the national level (see Supplementary Figure 17). Third,
we coded the highest two categories as intervention. Results
(Supplementary Figure 18) do not indicate meaningful
influences on fatalities, with the one exception of school
closings. Note however that this result is rather unstable,
as we lack a sufficient number of control units. Fourth, the
results remain stable when controlling for the number of other
interventions implemented instead of a stringency index (see
Supplementary Figure 19). Fifth, we tested if results differ when
using first-wave data only. Results with data before September
2020 (Supplementary Figure 20) deviate from our main findings
only with regard to restrictions on internal movement. With first

FIGURE 2 | The effect of vaccinations (vaccine doses per inhabitant ≥80 %)

on COVID-19 deaths. Generalized synthetic control estimator based on daily

data. The black solid line represents the average treatment effect on the

treated (ATT). Ribbons represent 95% non-parametric confidence intervals

based on 1,000 bootstrap runs. The dotted line is the null line. The dashed line

represents the linear prediction based on the 35 days before the intervention.

Controls: 10 NPIs as stringency index, temperature, temperature2, cloud

cover, precipitation, humidity, 7-day backwards rolling average of

NPI-residualized COVID-19 cases at t – 7, t – 14, t – 21, t – 28, and t – 35.

wave data, we observe a downturn in fatalities after restrictions
on internal movement. However, the ATT is estimated with large
insecurity. Sixth, we checked if our results depend on treatment
timing. It is reasonable to assume that the implementation of
NPIs in an early phase of the viral outbreak is more effective
(19, 43). We therefore re-estimated our models separately for
early and late adopters. We calculated the 7-day backwards
rolling average of fatalities at treatment intervention and defined
units below (above) the overall median as early (late) adopters.
For early adopters (Supplementary Figure 21) the stay-at-
home effect disappears, while it is stronger for late adopters
(Supplementary Figure 22). This gives rise to the notion that
stay-at-home rules have been implemented as a last resort to
respond to a steep increase in cases. For all other NPIs the results
are substantially similar.

DISCUSSION

Based on the applied GSC approach, we do not find substantial
COVID-19-related fatality-reducing effects of the ten NPIs under
investigation. We see a tentative change in the trend of COVID-
19-related deaths starting around 30 days after stay-at-home rules
have been introduced, and a slighter turn after workplace closing.

Our results do not corroborate the findings of former studies
with less countries relying on first wave data, and following
different, mostly DiD type analytical approaches on school
closures (10, 13, 17–19), workplace closures (17–19), stay at home
orders (16, 18), restrictions on international travel (15), andmask
obligations (11, 15). These differences may also emerge from
underreporting and missing timeliness of reporting of fatalities
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during the first viral outbreak (14, 17). Yet, our results mirror
the findings of a recent study (32) following a conceptually
similar analytical strategy to attenuate estimation bias stemming
from self-selection into treatment while investigating the effect
of 46 US state-level shelter-in-place orders on COVID-19 cases.
In contrast to a DiD type approach, the study (32) finds
no significant impacts of shelter-in-place orders on COVID-
19 cases.

LIMITATIONS

Nonetheless, our estimates might be subject to several issues.
First, differences in population-wide compliance to NPIs might
serve as an explanation for our findings (44, 45). This is
more likely for mask obligations, contact tracing, testing
policies, protecting elderly, and domestic travel restrictions. For
instance, the tentative downwards trend after internal movement
restrictions during the first wave (Supplementary Figure 20)
may indicate higher compliance during this period compared
to later periods. However, compliance rates are unlikely to
serve as substantial explanation for the absence of mitigating
effects of school and workplace closings, the closure of public
transport, and restrictions on international travel. Second, our
statistical approach complicates the investigation of simultaneous
NPI implementations (46, 47). Comparing selected combinations
of two simultaneous NPIs to countries without any of the
two, however we do not find any consistent significant effect
(Supplementary Figure 23).

Third, while the applied GSC approach attenuates the
potential bias of self-selection into NPI implementation (pre-
treatment), it cannot rule out the possibility of a potential post-
treatment exponential growth in fatalities on our estimates. In
other words, we might assume that these countries implementing
the measures would otherwise have had an exponential growth in
fatalities, and implementing these measures kept them relatively
close to pre-treatment levels. Based on the available data,
however, we cannot test this assumption.

Hence, our finding of statistically insignificant effects does
not necessarily contradict the notion that the implementation
of NPIs might have contributed to mitigate COVID-19-related
fatalities by preventing exponential growth (rather than a decline
in total COVID-19-related deaths).

Furthermore, data quality and local context might influence
our results: There might still be misreporting of COVID-
19-related deaths in non-hospitalized fatalities (20). The
local context associated with the specific implementation
of NPIs (e.g., school closure) might influence our results,
as the relatively broad categories of OxCGRT might not
capture variation in implementation, e.g., across subnational
territories (21).

Nevertheless, we demonstrate that high vaccination rates
against COVID-19 help to reduce fatalities while controlling for
the implementation of 10 NPIs. This highlights the importance
of PIs to combat the ongoing COVID-19 pandemic. However,
the effectivity of vaccines hinges on continuous collaborative
efforts to adapt COVID-19 vaccines given the spread of new

variants (48) and on an increase in vaccination rates (49).
The differential effectivity of NPIs and PIs might be related
to the pronounced age gradient in COVID-19 related fatalities
and associated multi-morbidities (50). This might especially
explain why we find effects of workplace closing, public
transport closing and contact tracing on COVID-19 cases
(Supplementary Figure 24), but do not see significant effects on
COVID-19 fatalities.

Altogether, the present study enhances the literature on
the effectiveness of NPIs with respect to the period, the
number of countries, and the analytical approach. However,
some limitations associated with data quality and availability
as well as the analytical strategy remain to be addressed by
future research. Hence, we cannot test if the NPIs might
have prevented a potential exponential growth in COVID-19
fatalities in those countries who selected into treatment. Still,
the results of our study add new insights on the public health
effects of NPIs and can thus help to guide future responses to
pandemic outbreaks.
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