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Background: Predicting the future UK COVID-19 epidemic provides a baseline

of a vaccine-only mitigation policy from which to judge the e�ects of

additional public health interventions. A previous 12-month prediction of the

size of the epidemic to October 2022 underestimated its sequelae by a fifth.

This analysis seeks to explain the reasons for the underestimation before

o�ering new long-term predictions.

Methods: A Dynamic Causal Model was used to identify changes in COVID-19

transmissibility and the public’s behavioral response in the 12-months to

October 2022. The model was then used to predict the future trends in

infections, long-COVID, hospital admissions and deaths over 12-months to

October 2023.

Findings: The model estimated that the secondary attack rate increased from

0.4 to 0.5, the latent period shortened from 2.7 to 2.6 and the incubation

period shortened from 2.0 to 1.95 days between October 2021 and October

2022. During this time themodel also estimated that antibody immunity waned

from 177 to 160 days and T-cell immunity from 205 to 180 days. This increase

in transmissibility was associated with a reduction in pathogenicity with the

proportion of infections developing acute respiratory distress syndrome falling

for 6–2% in the same twelve-month period. Despite the wave of infections,

the public response was to increase the tendency to expose themselves to

a high-risk environment (e.g., leaving home) each day from 33–58% in the

same period.

The predictions for October 2023 indicate a wave of infections three

times larger this coming year than last year with significant health and

economic consequences such as 120,000 additional COVID-19 related deaths,

800,000 additional hospital admissions and 3.5 million people su�ering

acute-post-COVID-19 syndrome lasting more than 12 weeks.

Interpretation: The increase in transmissibility together with the public’s

response provide plausible explanations for why the model underestimated

the 12-month predictions to October 2022. The 2023 projection could

well-underestimate the predicted substantial next wave of COVID-19

infection. Vaccination alone will not control the epidemic. The UK COVID-19
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epidemic is not over. The results call for investment in precautionary public

health interventions.

KEYWORDS

Dynamic Causal Model, COVID-19 mitigation measures, acute-post-COVID-19,

hospital admissions, mortality incidence

Research in context

Evidence before this study

PubMed and Google searches failed to find any publication

analyzing the COVID-19 pandemic using a Dynamic Causal

Model except the one developed at UCL. PubMed and Google

searches failed to find projections of 12 months or more of the

epidemic in the UK. The three research units (IHME, ICL, and

Youyang Gu) which publish regular updates of the COVID-19

epidemic besides the DCM project from UCL project forward a

maximum of 120 days.

Added value of this study

A three-month projection is insufficient to assess the full

burden of anticipated disease due to the epidemic for which a

full year projection is needed. This study does this and assesses

the validity of a previous 12-month projection carried out a year

ago. The research illustrates the methods and a sample of the

many outputs generated by the model.

Implications of all the available evidence

DCM offers a new way of trying to understand an epidemic

caused by an infection such as the changes in transmissibility.

The results indicate that the virus is going to persist and cause

much morbidity and mortality over the next 12 months.

Background

In October 2022, the predictions carried out 12 months

earlier using a Dynamic Causal Model were assessed and found

to underestimate the waves of newCOVID-19 infections by 43%,

deaths by 20%, tests by 24%, hospital admissions by 31% and

long COVID-19 by 21% (1). The underestimation of predictions

can be plausibly explained by the arrival of the Omicron variants

and the changes in public health policies in the UK (2–4).

Dynamic Causal Modeling (DCM) besides predicting health

outcomes can also estimate changing characteristics of the

epidemic, such as the properties of viral transmission, immunity

induced by vaccine or infection, and the propensity to

leave home and increase the risk of catching the infection.

Do these predictions corroborate the assumption that the

underestimations were due to new variants and the changes in

the use of non-pharmaceutical interventions.

This paper is a sequel to the previous paper predicting

12-months to October 2022. It sets out to assess the underlying

properties of the epidemic during that period. It also seeks to

predict what will happen in the 12 months to October 2023

assuming the current properties of the epidemic remain as they

are in October 2022.

Methods

Dynamic Causal Models

The Dynamic Causal Model (DCM) used in this research

has been continually updated with data as the epidemic

has unfolded. It is designed to allow modification of model

parameters, such as transmissibility of the virus, changes

in social distancing, and vaccine coverage—to accommodate

changes in population dynamics and virus behavior. A recent

model (1st October 2022) was used to explore the effect of

increased ease of transmission of the Omicron variants and the

likely seasonal effect of the coming winter. The potential benefit

of a successful Find, Test, Trace, Isolate and Support scheme was

also incorporated into the model.

General features of DCMs

Standard SEIR models tend to offer quantitative

epidemiological forecasts that rest upon fitting curves to

the recent trajectory of various epidemiological data; e.g.,

(5, 6). Some researchers have augmented SEIR models

by incorporating population-based behavior data such as

Google mobility to measure adherence to non-pharmaceutical

interventions. These changes of behavior are modeled to affect

transmission characteristics through changing contact rates

(7). Other researchers have used state space modeling like

ours (8–10), but not with the added features of the Dynamic

Causal Model which include a form of agent-based behavioral

modeling. In other words, the conventional SEIR model is

absorbed into a larger state-space model that accounts for

changes in behavior and testing. As such, Dynamic Causal

Modeling can predict mitigated outcomes and quantify the
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uncertainty associated with those outcomes. It considers what

is most likely to happen, based upon a generative model that

best explains all the data available. This mandates a model of

socio-behavioral responses that mitigate viral transmission,

such as social distancing, lockdown, testing and tracing, etc.

Specific features of this DCM model

The model is fully described as a supplement to this

article. There is a weekly dashboard which provides up-to-date

estimates and projections (11). The software is freely available

and can be run using datasets from other countries (12–16).

How does this DCM model deal with the effect of

sociobehavioural responses on contact rates and ensuing viral

spread? In the model contact rates depend upon location (i.e.,

being at home vs. being at work), where movement between

locations depends upon prevalence (i.e., the probability of

leaving home for work reduces monotonically with prevalence).

This construction means that we assume people infer the

prevalence of infection at any given time and adjust their

behavior accordingly. We do not model the mechanisms of this

inference but simply parameterize the sensitivity of behavioral

responses to prevalence (i.e., the probability of being in an

infected or infectious state). This assumes that people assimilate

the evidence for prevalence (from media reports, dashboards,

incidence of infection among family and friends, et cetera)

and—averaged over the entire population—converge on an

unbiased estimate (17). Please see Supplementary material for

the functional form of this prevalence-dependent effect. This

functional form emerged via Bayesian model comparison,

in which we compared models that conditioned behavioral

responses on combinations of latent states (e.g., prevalence,

incidence, hospitalization, fatality rates, et cetera) and plausible

non-linear functions.

The model includes all the standard SEIR (susceptible,

exposed, infected, removed) features of the commonly used

models of infectious disease but in addition incorporates the

interactions between the different variables. For example, people

are more likely to stay at home if prevalence is high or if they

have not been immunized. These dependencies are estimated

and only retained if they improve the ability of the model to

account for the data. Having optimized the model and model

parameters, one can then proceed with scenario modeling to

evaluate the effect of interventions such as the influence of

an enhanced Find, Test, Trace, Isolate and Support system on

the epidemic.

Standard SEIR models depend on the choice of parameters,

some of which are unknown empirically and must be

guessed. Dynamic Causal Modeling is, by comparison, relatively

assumption free. However, one must specify prior ranges for

parameters (just like for SEIR models) but the DCM adjusts the

parameters to fit the data in the most efficient and parsimonious

way possible. Not only does the model provide estimates and

projections of variables such as the death rate, the effective

reproductive number, incidence, and prevalence but it also

estimates transmissibility, susceptibility, latent resistance, herd

immunity, expected social distancing behavior, and vaccine

effectiveness. For example, the model includes three parameters

in respect of population immunity; one is the loss in antibody-

related immunity in days induced by COVID-19 infection

or vaccine, another is the loss of T-cell immunity in days

induced by COVID-19 infection and the third is the proportion

of the population that is naturally immune to the infection

(Supplementary Figure S2).While the first two change with time

(as vaccines and the virus change) the natural resistance is

assumed to remain constant.

Data sources and assumptions

The latest data from the UK Health Security Agency

(UKHSA) (18) and the COVID-19 Infection Survey of the Office

of National Statistics (19) were used, together with the Google

Mobility Report (20). The Oxford stringency index was used as

a measure of the changing use of national non-pharmaceutical

interventions (3). IHME provided an up to date estimate of

national incidence (21). For the predictions to October 2023, it

is assumed that mitigation efforts in schools and workplaces will

not take place, that lockdown will not be re-imposed, and that

no new more virulent variant will arrive.

Findings

Finding plausible reasons for
underestimating the wave of infections
between October 2021 and October
2022

The size of the underestimation

The projected total number of new COVID-19 cases was

underestimated by 43% (1). In-person testing at test sites and

free lateral flow device tests became no longer available on

1st April 2022. While it was predicted that 26% of cases

would be confirmed by a PCR test, in the event only 21%

were so confirmed. The total number of tests carried out was

only overestimated by 24% which can be explained by the

discontinuation of free LFD tests. Deaths were underestimated

by 20%. Hospital admissions were underestimated by 31%. Long

COVID-19 was underestimated by 21%.

Changing characteristics of the variants in
circulation

The transmission strength and other epidemiological

variables in Figure 1 are estimates that best explain the
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FIGURE 1

Changing estimates of transmission and immune profiles in relation to the emergence of new variants and changes in response to public health

policies: UK February 2020 to October 2022. Note: Transmission strength is measured as the secondary attack rate with prior value of 0.2 (i.e., an

infected person infects 1 in 5 contacts), which rises with the newer variants to 0.5 (i.e., one infection infects 1 in 2 contacts); antibody immunity

which falls with newer variants is measured in days of waning.
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surveillance and hospital data. This figure shows the systematic

changes in key epidemiological parameters, such as transmission

strength and incubation period. Some show slow systematic

trends over time, while others—such as the propensity to “leave

home” that summarizes sociobehavioural responses— fluctuate

markedly with the emergence of new variants. Crucially, the

model did not “know about” the variants (shaded regions) and

yet their effects are clearly manifest in terms of sociobehavioural

responses to fluctuations in transmissibility and prevalence.

Transmission has become more likely as measured by the

secondary attack rate which has increased from 0.2 in March

2020 (i.e., an infected person infects 1 in 5 contacts) to 0.4 on 1st

October 2021 to 0.5 (i.e., one infection infects 1 in 2 contacts)

in October 2022. The speed of infection has also increased with

(i) the latent period shortening (between the day infected and

the day infectious) from 2.8 at the start of the epidemic to 2.7

by October 2021 to 2.6 in October 2022, and (ii) the incubation

period shortening from 2.05 in March 2020 to 2.0 in October

2021 to 1.95 in October 2022.

Immunity has waned throughout the epidemic. Antibody

immunity induced by COVID-19 infection and vaccines has

waned from 197 in March 2020 to 177 in October 2021 to 160

days in October 2022. T-cell immunity has also waned from

236 in March 2020 to 205 in October 2021 to 180 days in

October 2022.

The pathogenicity of the variants has also changed since the

Wuhan variant. The proportion of infections developing acute

respiratory distress syndrome has fallen from 18% in April 2020

to 6% in October 2021 to 2% in October 2022.

Changing public health responses

Testing for COVID-19 has become uncommon in the UK.

The probability of 35- to 69-year-olds being PCR positive within

28 days of COVID-19 infection has dropped from 0.033 at the

peak in December 2021 to 0.003 in October 2022. The public

response to the dropping of public health interventions despite

the wave of infections has been an increase in the population

leaving home each day—a measure of placing oneself in a

high-risk environment—from 4% during the first lockdown in

April 2020 to 33% in October 2021 to 58% in October 2022. The

trend is a mirror image of the stringency index.

Having quantified the predictive validity of long-term

forecasts between October 2021 to October 2022 using known

outcomes, we now turn to predictions over the forthcoming year

from October 2022 to October 2023 and take the opportunity to

consider predictions under different public health measures.

Model predictions to October 2023

The posterior predictions produced by the model assume

that certain parameters—such as the properties of the

latest variants, the vaccine coverage and the use of non-

pharmaceutical interventions—remain as before. They provide

a counterfactual to compare with the effect of future variants

and non-pharmaceutical interventions.

The ensuing predictions illustrate the depth and persistence

of the future epidemic in the UK in terms of morbidity and

mortality, transmission characteristics, testing capacity, hospital

utilization, and disruption due to acute and chronic symptoms

over the next 12 months if the government continues to

withhold public health infection control measures (Figure 2).

A large wave (purple line) of COVID-19 is expected over

the winter months peaking on 24th February next year with new

infections affecting 1.9% of the population. This will produce an

increase in hospital admissions but because of a low infection

fatality rate little increase in critical care beds and fewer deaths

than might have been expected. Mobility will remain above 90%

of the pre-epidemic level. A modest improvement in the Find,

Test, Trace, Isolate and Support (yellow and orange lines) would

dramatically reduce new cases and their sequelae.

Long term consequences

The model can calculate the cumulative effect of the

epidemic on case numbers, deaths, tests, hospital admissions and

long COVID (Table 1).

A 3 fold increase in the number of new cases in the next 12

months is predicted. This has the effect of increasing COVID-19

deaths by 120,000 in the coming year which is half the number

of deaths which have been caused by COVID-19 so far. The new

wave of COVID-19 is likely to add 800,000 hospital admissions

and for the number of people suffering acute-post-COVID-19

syndrome to reach 4.7 million.

Interpretation

The transmission strength and other epidemiological

variables in Figure 1 are estimates that best explain surveillance

and hospital data. The alignment between changes in these

estimates and the emergence of new variants lends them a

predictive and construct validity. In this sense, the emergence

of new variants could plausibly be predicted from fluctuations

in estimated transmission strength and subsequent socio-

behavioral responses (i.e., the probability of leaving home in

the last panel). The trend of these parameters chosen by the

model to best fit the data helps to explain the underestimations

of the projections produced by the model in October 2021. The

results are a reminder that the model can only predict what is

likely to happen, looking forward 12 months, if key features of

the epidemic remain unchanged or change in a systematic and

predictable way.
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FIGURE 2

The UK epidemic curve from February 2020 to October 2023—incidence, deaths, the e�ective reproductive ratio, the infection fatality ratio,

hospital admissions and mobility. Note: Each figure o�ers three projections: purple if the test & trace system remains as now (24% e�ective),

yellow if the test & trace improves e�ectiveness to 40%, orange to 60% on 1st October 2022. CIs, 90% credible intervals.

The Dynamic Causal Model can produce a counter-factual

to compare with alternative policy options. The ability to predict

what will happen if public health responses remain the same is

particularly useful if the predictions seem to be reasonable as

found in last year’s projections. They allow one to get a feel for

the scale of the ensuing epidemic. In this case a very large wave

of new infections is predicted for the period to October 2023 and

while severe illness and death are not so common with Omicron

variants as Delta, the numbers add up to a substantial toll. The

scale of the potential long COVID epidemic is difficult to grasp.

Together with illness due to the acute infection the new wave is

likely to have a serious effect on the economy in terms of sickness

absence and long-term debility.

A competent Find, Test, Trace, Isolate and Support

would reduce considerably the size of the projected wave

and its sequelae. A vaccine alone policy will be insufficient.

Additional mitigation would relieve the economy. Lockdowns

and additional critical care beds are not required.
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TABLE 1 The cumulative e�ect of COVID-19 to October 2023 projected by the DCM on 1st October 2022 for UK.

Cumulative totals from 1st February
2020 to

1st October
2022

07-Oct-22 1st Oct 2023

Scenario assuming FTTIS is 25%
e�ective

Actual Data source DCM
estimates

DCM
projection

Estimated incidence 105,678,303 IHME 177,323,347 485,603,813

Confirmed cases by PCR 22,241,311 UK COVID-19 dashboard 23,178,802 53,409,837

Deaths within 28 days of a positive PCR test 177,977 UK COVID-19 dashboard 209,474 330,957

Tests (both PCR and LFD) 514,605,757 UK COVID-19 dashboard 549,139,089 821,181,901

Hospital admissions 993,657 UK COVID-19 dashboard 1,019,852 1,867,580

Acute-post-COVID-19 Syndrome ≥12 weeks 1,725,968 ONS Infection survey 1,725,968 4,726,602

The precautionary principle, a major feature of many

respected public health policies, is provoked by these findings.

If the size of the predicted wave was small and insignificant

there would be no need to initiate and prepare for more active

interventions. But the risks of doing nothing, with hospitals

running at full capacity, and having no proper Find, Test, Trace,

Isolate and Support system in place and ready to be expanded

rapidly are substantial. A new variant with more pathogenic

features is a real possibility. An exhausted NHS exacerbated by

sickness absence is likely.

The main limitation of the study is that few epidemiologists

have used Dynamic Causal Models and sought to replicate

our methods and results. The model and methodology are

freely available and ready to be verified. A technical limitation

of this application of Dynamic Causal Modeling is that the

estimates are predicated on a single model. This means that the

uncertainty—inherent in long-term projections—only reflects

uncertainties about the parameters of the model. However, there

would be additional uncertainty about the (structure of the)

model per se, had we considered several models. An exhaustive

search of all plausible models is beyond the reach of our

(academic) resources. However, in principle, the very structure

and assumptions of the model could be explored using Bayesian

model comparison, should this approach to epidemiological

modeling be adopted more widely. At this early stage in their use

in understanding infectious epidemics Dynamic Causal Models

can be considered as alternative and additional to standard and

well-understood SEIR models.

In conclusion, the 12-month projection in 2021

underestimated the scale of the subsequent wave of infections.

The 2023 projection could well-underestimate the size of the

next wave of COVID-19 infection which we predict will be

extensive. Far from thinking that the COVID-19 epidemic

is over, the cautious approach might be to apply mitigation

measures now, plan for a new and more virulent variant and

prepare the population for what might well be a difficult

situation in 2023.
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