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Background: The associations between ambient temperature and

influenza-like illness (ILI) have been investigated in previous studies. However,

they have inconsistent results. The purpose of this study was to estimate the

e�ect of ambient temperature on ILI in Shandong Province, China.

Methods: Weekly ILI surveillance and meteorological data over 2014–2017

of the Shandong Province were collected from the Shandong Center

for Disease Control and Prevention and the China Meteorological Data

Service Center, respectively. A distributed lag non-linear model was adopted

to estimate the city-specific temperature–ILI relationships, which were

used to pool the regional-level and provincial-level estimates through a

multivariate meta-analysis.

Results: There were 911,743 ILI cases reported in the study area between

2014 and 2017. The risk of ILI increased with decreasing weekly ambient

temperature at the provincial level, and the e�ect was statistically significant

when the temperature was <-1.5◦C (RR = 1.24, 95% CI: 1.00–1.54). We found

that the relationship between temperature and ILI showed an L-shaped curve

at the regional level, except for Southern Shandong (S-shaped). The risk of

ILI was influenced by cold, with significant lags from 2.5 to 3 weeks, and no

significant e�ect of heat on ILI was found.

Conclusion: Our findings confirm that low temperatures significantly

increased the risk of ILI in the study area. In addition, the cold e�ect of ambient

temperature may cause more risk of ILI than the hot e�ect. The findings have

significant implications for developing strategies to control ILI and respond to

climate change.
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1. Introduction

At present, the impact of human activities aggravates

climatic and environmental changes and the global climate

anomaly is becoming more and more obvious. Climate change

has become one of the biggest health threats of the twenty-first

century (1). A changing climate has drawn wide concerns and

caused significant impacts on public health. There may be an

increase in mortality and morbidity from influenza-like illness

(ILI) due to climatic factors, especially ambient temperature

(2–5). ILI is an acute respiratory syndrome with fever and at

least one respiratory symptom (cough and/or sore throat) (6).

While influenza viruses are the main cause of ILI cases (7, 8),

other common causes of ILI include rhinoviruses, respiratory

syncytial virus, adenovirus, parainfluenza viruses, and some

bacterial infections (8). The annual epidemics of influenza cause

3–5 million cases of severe illness and about 0.29–0.65 million

respiratory deaths worldwide, which is a global public concern

(9). Evaluating the risk factors for trends of ILI is important for

preventing and treating influenza.

Ambient temperature plays an important role in the spread

of ILI. Winter and spring are known to be the peak influenza

seasons in temperate regions, as well as the season of influenza

recurrence (10). Some studies found that the meteorological

effects on host susceptibility (11) and viral survival (12) and the

influence of social contact on ILI transmission (13) encourage

the spread of ILI or influenza. In recent years, extensive

environmental epidemiology studies have been conducted to

quantify the relationship between ambient temperature and

ILI/influenza (6, 14–20). There is, however, a discrepancy among

the results of the association between ambient temperature and

ILI/influenza. For example, one study in the Jiangsu Province

of China showed that the association between temperature

and the incidence of ILI presented an approximate “M” shape

on the province-wide scale (6). While the association between

temperature and influenza showed an approximate “S” shape

in Wuhan (14), it showed an “L” shape in Guangzhou (15),

and an “N” shape among 30 cities in China (20). In addition,

most previous studies were focused on the association between

ambient temperature and influenza, but few studies have been

focused on the association between ambient temperature and ILI

(3, 6, 21), especially in a multicity setting at the provincial level

through multivariate meta-analysis. China needs to consider

the heterogeneity of ambient temperature and ILI associations

among different regions or provinces. A multicity study

using the distributed lag modeling strategy with multivariate

meta-analysis is a possibly better choice to gain a deeper

understanding of ambient temperature on the risk of ILI and

support region-specific interventions.

In this study, a distributed lag non-linear model (DLNM)

was used to assess the effect of ambient temperature on

ILI in specific cities in Shandong Province, China. In

addition, a two-stage analysis was conducted to fit the overall

effect, heat effect, and cold effect of ambient temperature

on ILI in 17 cities of the Shandong Province from 2014

to 2017.

2. Materials and methods

2.1. Study area

Shandong Province is located on the east coast of China.

It includes 16 prefecture-level cities, with a total land area

of 157,900 km2 and a permanent resident population of

101.5 million at the end of 2021. It belongs to the warm

temperate monsoon climate zone, characterized by clear-cut

seasonal changes with an annual average temperature of

11–14◦C. Laiwu, a prefecture-level city before its incorporation

into Jinan, was studied during our study period of 2014–

2017 despite its abolishment in 2018. The 17 cities were

divided into four regions based on their geographical

location and the level of economic development: Central

Shandong (Jinan, Taian, Laiwu, Zibo, and Weifang), Jiaodong

Peninsula (Qingdao, Yantai, and Weihai), North Shandong

(Liaocheng, Dezhou, Binzhou, and Dongying), and South

Shandong (Heze, Jining, Zaozhuang, Linyi, and Rizhao).

The geographical location of the study area is shown in

Supplementary Figure 1.

2.2. Data collection

The weekly ILI data from January 2014 to April 2017 were

obtained from the China Influenza Surveillance Information

System (CISIS). In our study, patients were considered to have

ILI if they had acute respiratory infection with fever and at

least one respiratory symptom (cough and/or sore throat),

according to the technical guidelines for national influenza

surveillance. In China, ILI cases are automatically recognized

by the hospital information system (HIS) and reported weekly

through CISIS by the sentinel hospitals. Information on ILI data

included sentinel hospitals, weekly confirmed cases of ILI, ages

of ILI patients, and weekly total visiting number of outpatients

and emergencies. All data from each sentinel hospital were

summarized by Excel as time series and after cleaning the

data, the final weekly incidence data for each prefecture-level

city was obtained to calculate the weekly visits for incidences

of ILI.

Daily meteorological data from 2014 to 2017 were obtained

from the China Meteorological Data Service Center (http://

data.cma.cn/). The meteorological variables included daily

average ambient temperature, daily average relative humidity,

daily average wind speed, and daily precipitation. A total of

21 meteorological stations including Ling county (37◦20
′

N,

116◦34
′

E), Huimin county (37◦29
′

N, 117◦32
′

E), Zhangqiu
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(36◦41
′

N, 117◦33
′

E), Kenli (37◦36
′

N, 118◦32
′

E), Changdao

(37◦56
′

N, 120◦43
′

E), Longkou (37◦37
′

N, 120◦19
′

E), Fushan

(37◦30
′

N, 121◦15
′

E), Chengshantou (37◦24
′

N, 122◦41
′

E), Shen

county (36◦14
′

N, 115◦38
′

E), Jinan (36◦36
′

N, 117◦03
′

E), Yiyuan

(36◦11
′

N, 118◦09
′

E), Pingdu (36◦47
′

N, 120◦00
′

E), Weifang

(36◦45
′

N, 119◦11
′

E), Qingdao (36◦04
′

N, 120◦20
′

E), Haiyang

(36◦46
′

N, 121◦11
′

E), Dingtao (35◦06
′

N, 115◦33
′

E), Yanzhou

(35◦34
′

N, 116◦51
′

E), Fei county (35◦15
′

N, 117◦57
′

E), Ju

county (35◦35
′

N, 118◦50
′

E), Rizhao (35◦26
′

N, 119◦32
′

E), and

Xuzhou (34◦28
′

N, 117◦15
′

E) were used for our study. If a

prefecture-level city has several meteorological stations, the

average values of these meteorological stations were taken

as the meteorological data of the prefecture-level city. Based

on the principle of the closest distance and latitude, the

missing meteorological data of Laiwu City, Zaozhuang City,

and Taian City were filled by the averages of the weekly

meteorological data of the neighboring stations Jinan and

Yiyuan, Xuzhou, and Jinan and Yanzhou, respectively (22, 23).

We obtained the air pollution data from a public weather

website (http://www.tianqihoubao.com/). The air pollution data

included particulate matter <2.5µm in aerodynamic diameter

(PM2.5), sulfur dioxide (SO2), and nitrogen dioxide (NO2).

Weekly mean ambient temperatures, relative humidity, wind

speed, PM2.5, SO2, and NO2 were obtained by calculating

the average daily of these variables for a week. However,

precipitation was the cumulative value of 7 days from Monday

to Sunday.

2.3. Study design and statistical analysis

A two-stage analytical method (24) was used to analyze

the effects of ambient temperature on ILI. In the first stage,

the DLNM with quasi-Poisson distribution was applied to each

prefecture-level city’s data to obtain city-specific association

estimates between ambient temperature and ILI. The DLNM

can describe the complex non-linear and delayed relationship

of temperature and ILI by a cross-basis function, which

defines the traditional exposure–response relationship and

the additional lag–response relationship, respectively (25).

We used a natural cubic spline function with 7 degrees

of freedom (df) per year to control the long-term trend

and seasonality of ILI incidence (23, 26, 27). Several studies

have found that relative humidity (28), wind speed (29),

precipitation (30), PM2.5 (31), SO2 (32), and NO2 (33) were

associated with ILI or influenza, and these factors were usually

linked with the replication and sustained transmission of

pathogens in the environment. Therefore, we used natural

cubic splines with 3 df in DLNM for relative humidity,

wind speed, precipitation, PM2.5, SO2, and NO2 to adjust

for potential confounding based on previous literature (14,

23, 34, 35). To investigate the whole lag structure of the

ambient temperature effect, the maximum lag was set at 3

weeks due to ILI incubation and duration (36). Autocorrelation

function (ACF) and partial autocorrelation function (PACF)

were used on the residuals (errors) from the model to check

for the existence of autocorrelation. The model was described

as follows:

Log
[

E(Yt)
]

= α + βtempt,l + ns
(

time, 7∗3
)

+ ns
(

humt , 3
)

+ ns
(

windt , 3
)

+ ns (raint , 3) + ns (PM2.5t , 3)

+ ns (NO2t , 3) + ns(SO2t , 3)

where Yt was the incidence of ILI in the week of study t (t =

1, 2, . . . , 169) in each prefecture city. α was the overall intercept.

tempt,l was the cross-matrices obtained by applying a basis

function for ambient temperature and time through DLNM.

We determined 4 df for both the response and lag dimensions

of ambient temperature (34, 37–39). β was the coefficient of

matrices. The notation ns(.) represented a natural cubic spline

function. The median temperature of each prefecture-level

city of the corresponding region was defined as the reference

(22, 34) when calculating the overall cumulative relative risk

(cRR). We used 5 and 95% of the weekly mean ambient

temperature as extreme cold (P5) and extreme hot temperature

(P95) (40).

In the second stage, we used a multivariate meta-analysis

with a random-effects model to pool the estimates of city-

specific exposure–response associations for overall cumulative,

resulting in a best linear unbiased prediction (BLUP) between

overall ambient temperature and ILI (41). The estimates can

be assessed more accurately because the BLUP method is a

sweet spot in the trade-off between city-specific associations and

second-stage pooled estimates (42). We also combined the city-

specific lag–response associations at extreme temperatures (P5
and P95) and obtained a BLUP between extreme temperature

(P5 and P95) and ILI at the regional and provincial levels (43).

The multivariate extension of Cochran’s Q-test and I2 statistic

was adopted to measure the residual heterogeneity (44, 45).

In addition, stratification analyses by age were conducted to

identify the potentially vulnerable groups.

To test the stability of the main findings, sensitivity

analyses were conducted by changing df for time trend

(6–8), df for weekly mean ambient temperature (3–6), df

for the confounders (2–6), adjusting for the confounders

changing different effect models (fixed-effect or random-

effect) for cold and hot effects of ambient temperature and

changing the average metrics and selection of stations which

were used to replace the missing data in Taian, Laiwu,

and Zaozhuang.

The analysis and modeling were all carried out with

the R software (version 4.0.4, R Foundation for Statistical

Computing) using the “dlnm” package to construct the

DLNMs and the “mvmeta” package to perform the multivariate

meta-analysis. A P ≤ 0.05 was considered to indicate

statistical significance.
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TABLE 1 Weekly incidence of influenza-like illness (%) in each city of Shandong, China during 2014–2017.

Cities Mean ± SD Minimum P25 Median P75 Maximum

Central Shandong

Jinan 4.61± 3.92 1.00 1.62 2.45 7.64 15.31

Taian 2.21± 0.71 1.03 1.71 2.12 2.51 5.76

Laiwu 2.98± 1.08 1.23 2.17 2.84 3.49 6.81

Zibo 2.63± 0.77 1.30 2.11 2.52 3.18 5.14

Weifang 2.94± 1.06 1.59 2.26 2.66 3.17 6.85

Jiaodong Peninsula

Qingdao 12.42± 11.36 1.98 3.81 6.24 20.09 47.58

Yantai 2.61± 0.98 0.47 2.05 2.43 3.07 5.69

Weihai 0.87± 0.56 0.33 0.45 0.66 1.12 3.39

North Shandong

Liaocheng 2.14± 1.24 0.79 1.28 1.78 2.35 6.26

Dezhou 4.92± 1.18 3.18 3.97 4.62 5.82 8.27

Binzhou 2.81± 0.74 1.53 2.27 2.66 3.22 5.34

Dongying 3.87± 0.77 2.43 3.37 3.76 4.21 7.60

South Shandong

Heze 2.38± 0.66 1.15 1.94 2.34 2.81 4.15

Jining 1.20± 0.81 0.49 0.65 0.77 1.58 4.68

Zaozhuang 2.92± 1.07 1.31 2.03 2.56 3.89 6.60

Linyi 3.22± 1.59 1.33 1.82 2.33 5.02 6.15

Rizhao 1.37± 0.53 0.36 0.95 1.30 1.73 2.69

P25 , the 25th percentile; P75 , the 75th percentile; SD, standard deviation.

3. Results

3.1. Characteristics of ILI, meteorological
data, and air pollution data

The weekly incidences of ILI in 17 cities of Shandong

Province during the study period are shown in Table 1. Sentinel

hospitals for influenza surveillance reported 911,743 ILI cases

(3.36%) during the study period and there were 27,117,379

hospital outpatients and emergency care visits. The highest

median of weekly incidence of ILI was in Qingdao (6.24%),

followed by Dezhou (4.62%), and the lowest median of weekly

incidence of ILI was in Weihai (0.66%). In Shandong Province,

there was a significant seasonality for ILI (Figure 1). The

activity of ILI increased from autumn and peaked during

winter and spring (from December to March of the following

year) despite the large variations exhibited in the weekly

peak intensity across the years, especially in the regions of

Central Shandong and Jiaodong Peninsula. The highest weekly

incidence of ILI occurred during the 11th week in 2017 (7.42%)

in total.

Supplementary Table 1 shows a summary of the descriptive

statistics of the weekly meteorological data and air pollutant

data of each city. The median of the weekly average ambient

temperature during 2014–2017 in Shandong Province was

14.99◦C (range: −8.30–31.69◦C). The medians of the weekly

average relative humidity, average wind speed, cumulative

precipitation, PM2.5, NO2, and SO2 were 65.71% (range:

27.79–97.29%), 2.06 m/s (range: 0.77–8.90 m/s), 1.80mm

(range: 0–229.8mm), 67.29 µg/m3 (range: 11.57–332.29

µg/m3), 37.79 µg/m3 (range: 7.29–91.14 µg/m3), and

39.43 µg/m3 (range: 7.29–91.14 µg/m3), respectively (data

not shown).

3.2. The specific-city analysis of ambient
temperature and ILI

Figure 2 displays the city-specific exposure–response

curves of the cumulative effects of ambient temperature on

ILI from the DLNM models at the first stage. Although no

significant cumulative effect of ambient temperature on ILI
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FIGURE 1

Region-specific and total weekly incidences of ILI in Shandong Province from 2014 to 2017.

was found in Laiwu (Figure 2C), Zibo (Figure 2D), Weifang

(Figure 2E), Qingdao (Figure 2F), Liaocheng (Figure 2I),

Dezhou (Figure 2J), Binzhou (Figure 2K), Jining (Figure 2M),

Zaozhuang (Figure 2N), Linyi (Figure 2O), and Rizhao

(Figure 2P), the exposure–response curves showed a non-linear

association between ambient temperature and ILI. However,

the risk of ILI increased during cold ambient temperatures,

especially below 0◦C in Jinan (Figure 2A), Yantai (Figure 2G),

Weihai (Figure 2H), and Dongying (Figure 2L). Although

no cumulative effect of high ambient temperature on ILI

was found in most cities, a high temperature was found to

increase the risk of ILI in Taian (Figure 2B). In contrast, high

ambient temperature (from 27◦C) was found to decrease the

risk of ILI in Heze (Figure 2Q). The three-dimensional (3D)

plots show a visualized exposure–lag–response relationship

between ambient temperature and the risk of ILI in each city

(Supplementary Figure 2).

3.3. The region-specific analysis of
ambient temperature and ILI

The region-specific exposure–response curves of cumulative

effects of ambient temperature on ILI for the four regions

are demonstrated in Figure 3. The region-specific analyses

suggested a non-linear relationship between weekly mean

ambient temperature and ILI: an approximate “L”-shaped

relationship for North Shandong (Figure 3A), Central

Shandong (Figure 3B), and Jiaodong Peninsula (Figure 3D),

while an approximate “S”-shaped relationship for South

Shandong (Figure 3C). The risk of ILI was significantly

increased in association with cold ambient temperatures in

Central Shandong and Jiaodong Peninsula regions (Figures 3B,

D). When the weekly mean ambient temperature was below

−4◦C, the pooled effect became statistically significant

in Central Shandong (RR = 1.50, 95% CI: 1.00–2.25).

While in Jiaodong Peninsula, the effect of exposure to an

ambient temperature below 1.9◦C became significant (RR

= 1.69, 95% CI: 1.00–2.86). However, the risk of ILI was

not significantly associated with the weekly mean ambient

temperature in the pooled analysis in North and South

Shandong (Figures 3A, C).

The cold and hot effects of ambient temperature on ILI

are displayed in Table 2. In Jiaodong Peninsula, statistical

significances of the cold effects were found lagging at weeks

1 (RR = 1.28, 95% CI: 1.01–1.62) and 3 (RR = 1.30, 95%

CI: 1.06–1.60). In Central and North Shandong, the cold

effects of ambient temperature significantly lagged at weeks

3 (RR = 1.15, 95% CI: 1.00–1.32) and 0 (RR = 0.86, 95%

CI: 0.75–0.98), respectively. Instead, there was no association

between lagging at different weeks and the cold effects of
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FIGURE 2

The city-specific exposure–response curves of the cumulative e�ects of weekly mean ambient temperature on ILI. ILI, influenza-like-illness; RR,

relative risk. (A) Jinan, (B) Taian, (C) Laiwu, (D) Zibo, (E) Weifang, (F) Qingdao, (G) Yantai, (H) Weihai, (I) Liaocheng, (J) Dezhou, (K) Binzhou, (L)

Dongying, (M) Jining, (N) Zaozhuang, (O) Linyi, (P) Rizhao, and (Q) Heze.
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FIGURE 3

The region-specific pooled estimates of weekly mean ambient temperature on ILI in the four regions of Shandong Province. ILI,

influenza-like-illness; RR, relative risk. (A) North Shandong, (B) Central Shandong, (C) South Shandong, and (D) Jiaodong Peninsula.

ambient temperature in South Shandong. For the hot effect

of ambient temperature on ILI, the relationship between

extremely high temperature and ILI was not significant in all

four regions.

In addition, the heterogeneity of the random-effect

meta-analysis of each region in the second stage is

shown in Supplementary Table 2. The heterogeneity

among the regions of Central Shandong (I2 = 64.39%)

and North Shandong (I2 = 74.87%) was significant.

There was no significant heterogeneity among the

regions of Jiaodong Peninsula (I2 = 13.33%) and South

Shandong (I2 = 17.73%).

3.4. The overall pooled analysis of
ambient temperature and ILI

Figure 4 shows the overall pooled association between

weekly mean ambient temperature and ILI for the 17 cities

in Shandong Province. The relationship between ambient

temperature and ILI presented an approximately slow “L” shape

at the provincial level. The significant heterogeneity between

the city-specific relationships was observed with an I2 of

57.59% (Q-test: P < 0.01, Supplementary Table 2). A gradual

decrease in the risk of ILI with increasing ambient temperature

was observed, and the effect was statistically significant when
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TABLE 2 The cold and hot e�ects with reference to temperature of 50th on influenza-like illness in Shandong, China.

Lag Central Shandong Jiaodong Peninsula North Shandong South Shandong

RR 95% CI RR 95% CI RR 95% CI RR 95% CI

Cold e�ect (P5)

Lag 0 1.01 0.88–1.17 1.01 0.76–1.34 0.86 0.75–0.98∗ 1.05 0.88–1.24

Lag 1 1.04 0.89–1.22 1.28 1.01–1.62∗ 1.02 0.82–1.26 0.96 0.86–1.08

Lag 2 1.07 0.89–1.29 1.25 0.90–1.72 1.12 0.94–1.33 0.97 0.86–1.10

Lag 3 1.15 1.00–1.32∗ 1.30 1.06–1.60∗ 1.14 0.93–1.39 0.98 0.88–1.08

Hot e�ect (P95)

Lag 0 0.97 0.77–1.20 0.83 0.58–1.18 0.91 0.78–1.07 1.05 0.93–1.20

Lag 1 1.03 0.91–1.17 1.01 0.76–1.36 0.97 0.83–1.12 0.89 0.79–1.01

Lag 2 1.05 0.92–1.19 1.08 0.81–1.45 0.96 0.84–1.10 0.93 0.81–1.08

Lag 3 1.01 0.84–1.21 1.00 0.75–1.35 1.00 0.87–1.16 1.01 0.89–1.14

∗P < 0.05. CI, confidence interval; RR, relative risk.

FIGURE 4

The overall pooled estimates between weekly mean ambient

temperature and ILI for the 17 cities in Shandong Province. ILI,

influenza-like-illness; RR, relative risk.

the temperatures were <-1.5◦C (RR = 1.24, 95% CI: 1.00–

1.54). In addition, the stratification analyses suggested that

the effects of low temperature on ILI presented a statistical

significance in the 5–14, 15–24, and 25–59 year age groups

(Supplementary Figures 3B–D), while no significant cumulative

effect of low temperature on ILI was found in the 0–4 and ≥60

year age groups (Supplementary Figures 3A, E).

We also analyzed the pooled of specific lag-response curves

of cold effect (−0.93 ◦C) and hot effect (27.16 ◦C) at provincial

level, which are represented in Figure 5. The risk of ILI seemed

an increasing trend for cold effect and showed statistical

significance from 2.5 to 3 weeks. However, the hot effect

of ambient temperature was not be statistically significant at

different lag weeks.

3.5. Sensitivity analysis

The robustness of our pooled effects was tested

using sensitivity analyses. The results of the association

between ambient temperature and ILI were similar when

changing the df for time trend and ambient temperature

(Supplementary Figure 4), changing the df for confounders

and adjusting for the confounders (Supplementary Figure 5),

and changing different effect models (Supplementary Figure 6).

The cumulative effect estimates from the sensitivity analyses

of Taian, Laiwu, and Zaozhuang showed stable results when

changing the average metrics and the selection of stations which

were used to replace the missing data (Supplementary Figure 7).

Supplementary Figures 8, 9 show there were no obvious

autocorrelations from each city-specific DLNM model. We

observed that residuals for the DLNMmodels followed a normal

distribution (Supplementary Figure 10).

4. Discussion

In this study, first, we quantitatively elucidate the association

between ambient temperature and ILI at the city, regional, and

provincial levels in Shandong Province, China. Based on the

results of the study after controlling for potential confounders,

it was found that lower ambient temperature was statistically

significantly associated with a higher risk of ILI at the provincial

level and identified the effect of cold on the risk of ILI in

the study area. Climate change is currently considered to be

one of the major threats to public health (1). In the future,
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FIGURE 5

The pooled estimates of specific lag–response curves of cold e�ect (A) and hot e�ect (B) on ILI at the provincial level. ILI, influenza-like-illness;

RR, relative risk.

extreme weather events may occur more frequently caused

by climate change (46). With the increasing frequency of

extreme temperature events, ILI outbreaks may happen during

the occurrence of extremely low temperatures in the future,

which can impose a severe burden on the healthcare system.

In addition, management and prevention interventions should

be made for ILI when low temperature occurs. Officials would

benefit from knowing how ambient temperature affects ILI to

optimize the allocation of healthcare resources in consideration

of extreme weather as a factor.

Our results indicate that ILI activity presents a seasonal

trend with a peak during winter and spring, which suits the view

that the epidemic season fastens in winter and spring in China’s

northern areas (47). The seasonality of ILI may be associated

with environmental conditions (e.g., ambient temperature) that

can affect the immune system and facilitate the transmission of

the pathogen. Although the weekly incidence of ILI changed

from city to city, high incidences of ILI were observed in the

Jiaodong Peninsula and Central Shandong since 2016, especially

in Qingdao and Jinan. The reason for the high incidence of ILI

in Qingdao and Jinan cannot be identified in our study. It may

be because Qingdao and Jinan have become active surveillance

sites for ILI under the CISIS since 2016.

This study has identified that low ambient temperature is

significantly associated with ILI at the provincial level. The low

temperature, in agreement with previous studies, is the risk

factor for ILI (3, 6, 21). Different hypotheses have been suggested

to explain the phenomenon that low temperature leads to more

ILI cases, including influenza. A study by Eccles showed that

cold air inhalation chills the nasal epithelium and weakens

the immune system against respiratory influenza infection (48).

Vitamin D is recognized as the sunshine vitamin which can

prevent respiratory infection by elevating antimicrobial peptide

levels (AMPs). This effect may be considered to alter the normal

immunity horizontal through vitamin D, which is directly

associated with daylight (11, 49, 50). The phenomenon conforms

to the result that people have observed: the common cold and

influenza are most frequently observed in winter and spring,

while vitamin D levels are lowest during these two seasons.

Furthermore, some studies also showed that both cold and dry

air has proven to be very beneficial for viral survival (51, 52).

Cold may extend viral particle survival and people tend to stay

indoors with crowding, which resulted in increased exposure.

Crowding has been postulated as a risk factor in diseases that

are caused by bacteria and viruses, including influenza (52).

Meanwhile, the pathogens causing ILI have more than one

species of viruses, which can increase the possibility of infection

of the susceptible population through person-to-person contact

and/or airborne transmission.

The results suggest that low ambient temperatures

significantly increase the risk of ILI in the Jiaodong Peninsula

and Central Shandong at the regional level, while no such

effect was observed in other regions. The reason may be

that, in addition to the effect of low temperatures, ILI could

be influenced by other factors such as low relative humidity

(53, 54) and high wind speed (29). The lower relative humidity

in Central Shandong and higher wind speed in the Jiaodong

Peninsula align with this view. Similar results are also observed
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at the city level. The data from the laboratory guinea pig as

a model host indicate that low relative humidity and low

temperature are favorable for virus survival and aerosol

transmission (12, 51). Another study showed that the risk of ILI

was increased by low air temperature, low absolute humidity,

and high wind speed (29). Wind speed is also a contributing

factor for virus dispersal (55). In addition, there was a certain

lag effect of cold on ILI in Central Shandong and the Jiaodong

Peninsula. We considered that indoor crowding during cold

weather, seasonal fluctuations in host immune responses, and

environmental factors were responsible for the lag effect of cold.

However, our study indicates that high temperatures had no

significant effect on the risk of ILI at the regional and provincial

levels, including the hot effect. A study conducted in Guilin of

China showed that there was no significant association between

thermal effect and influenza (15), which is consistent with our

study. Some studies showed that elevated temperature had a

negative correlation with risk the influenza (17, 36, 56). This

is probably because higher temperatures (20–30◦C) may have

prevented the aerosol transmission, contact, and short-distance

spread of influenza (57). However, an Australian study showed

that a higher risk of infection was caused by high temperatures

(>28◦C) (58). The direct or indirect relationship could be

confirmed between the increased use of air conditioning in

summer and the peak of influenza in summer (59). People

may stay in an air conditioning environment under high

temperatures, both cooler and drier conditions, leading to an

influenza epidemic. However, controversy in this view, using air

conditioning would lower the indoor absolute humidity through

the condensation, which may trap virus-bearing aerosols within

the unit itself (52).

In addition, there was significant heterogeneity among

the city-specific relationships when obtaining the overall

cumulative exposure–response relationship at the regional

(Central Shandong and North Shandong) and provincial levels.

The heterogeneity may come from diverse ecological and

geographical characteristics. The differences in geographical

characteristics could have contributed to city-specific

temperature–ILI relationships. For example, the wind speed

is higher in winter in coastal cities than those in inland cities.

Due to the high wind speed, airborne aerosols travel further,

which may contribute to the transmission of ILI/influenza

pathogens (37).

There are some limitations to this study, which should

be acknowledged. First, the relationship between ambient

temperature and ILI was analyzed at a city-specific level,

which may result in an ecological fallacy. In particular, for

meteorological data, we used ambient temperature from the

observation stations to reflect individual exposure. Due to the

missing meteorological data, the meteorological data of three

cities from the neighboring stations or the average of the

neighboring stations were used for the calculations. These might

be some of the main causes of the ecological fallacy because the

temperature was not an individual exposure. Second, our data

on the ILI are in weeks, which only estimates the weekly lag

effects, when investigating the exposure–response relationship,

which is not as accurate as the estimation of the daily lag

effect. Third, some confounding factors like different pathogens

of ILI, health-seeking behaviors, immune levels, vaccination,

and availability of health services have not been considered

to control. Fourth, we failed to analyze the effect of ambient

temperature on ILI from 2017 to 2022, which might be slightly

different from 2014 to 2017, because the Shandong Center for

Disease Control and Prevention only shared with us the data

from 2014 to 2017. Finally, the underreporting bias is inevitable,

because patients often avoid medical help immediately, which

leads to an underestimation of the reported cases during the cold

winter days.

5. Conclusion

Our study presents the first comprehensive assessment of

the relationship between ambient temperature and ILI in China

using a two-stage analytical method at the provincial level. Our

findings support that low temperatures can increase the risk of

ILI. In addition, the cold effect of ambient temperature on ILI

is consistently stronger than that of the hot effect. Meanwhile,

our findings provide useful information for instituting early

warning systems for ILI and developing strategies to respond to

climate change.
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