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uterus and prostate from
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examinations
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Computed tomography (CT) scans are one of the most common radiation

imaging modalities, and CT scans are rising steadily worldwide. CT has the

potential to enhance radiography practice, but it also has the risk of drastically

increasing patient doses. One CT procedure for the abdomen pelvis (AP) area

can expose a patient’s prostate or uterus to a substantial radiation dose, leading

to concerns about radiation-induced cancer. This study aimed to estimate

organ doses of the uterus and prostate and evaluate the lifetime attributable

risk (LAR) of cancer incidence andmortality resulting fromAPCT examinations.

This retrospective study included 665 patients, of which 380 (57%) were female,

and 285 (43%) were male. Data were collected from the picture archiving

and communication system for AP CT procedures and exposure parameter

data. Organ doses for the uterus and prostate were calculated using National

Cancer Institute CT (NCICT) software. Based on the risk models proposed by

the BEIR VII report, the calculated organ doseswere used to estimate the LARof

prostate and uterus cancer incidence and mortality due to radiation exposure

from AP CT procedures. The mean e�ective dose resulting from AP CT for

females and males was 5.76 ± 3.22 (range: 1.13–12.71 mSv) and 4.37 ± 1.66

mSv (range: 1.36–8.07 mSv), respectively. The mean organ dose to the uterus

was 10.86 ± 6.09 mGy (range: 2.13–24.06 mGy). The mean organ dose to the

prostate was 7.00± 2.66 mGy (range: 2.18–12.94 mGy). The LAR of uterus and

prostate cancer incidence was 1.75 ± 1.19 cases and 2.24 ± 1.06 cases per

100,000 persons, respectively. The LAR of cancer mortality rates from uterus

and prostate cancers were 0.36 ± 0.22 and 0.48 ± 0.18 cases per 100,000

persons, respectively. The LAR of prostate and uterus cancer occurrence and

mortality from radiation doses with AP CT procedures was low but not trivial.

Therefore, e�orts should bemade to lower patient doses while retaining image
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quality. Although the minimization of the patient’s radiation dose must guide

clinical practice, the estimated slight increase in risk could aid in easing fears

regarding well-justified AP CT procedures.

KEYWORDS

ionizing radiation, cancer incidence, cancer mortality, lifetime attributable risk,

computed tomography, uterus, prostate

1. Introduction

Computed tomography (CT) is a cross-sectional radiation

imaging modality that significantly impacts medical diagnosis

(1). This modality uses multiple energies and intensities

to generate detailed two-dimensional and three-dimensional

images and volumetric images of different body parts (2, 3).

In recent years, the use of CT has increased considerably, with

roughly 70 million CT procedures conducted annually in the

USA (4, 5). In other countries, such as the Netherlands, the

number of CT procedures doubled from around 580 thousand

in 2002 to about 1.16 million in 2010 (1). Organ doses from

conventional X-ray procedures are considerably smaller than

those associated with CT procedures (6). Accordingly, CT

procedures are the main contributors to the collective dose from

all medical radiation procedures (7, 8). Although CT procedures

make up only 5% of all X-ray exams, they contribute 40–67%

of the overall medical dose [9] and are predicted to increase by

around 10–15% yearly (9). Epidemiological studies have linked

low levels of exposure to ionizing radiation in medical imaging

procedures to the development of cancer and radiation-related

diseases (10, 11).

Low-dose radiation risk is controversial, with claims that

low-dose risks are overestimated (12) or underestimated (13, 14)

using linear extrapolation from moderate-dose exposed groups.

The linear no-threshold (LNT) model of ionizing radiation–

induced cancer assumes that every increment of radiation dose,

no matter how small, constitutes an increased cancer risk for

humans. The assumption underlying the LNTmodel, frequently

adopted by expert advisory bodies (15), that the risk at low doses

is nearly linear with dose is a question of whether a low-dose risk

exists. Although there is some radiobiological support for LNT

based on DNA damage considerations, it is acknowledged to be

an estimate made for practicality in the context of radiological

protection. In fact, a substantial body of evidence suggests that

there is considerable evidence of cancer risk at low doses (16, 17).

The survivors of the atomic bombings in Hiroshima and

Nagasaki are one of the most important sources of information

on radiation risks. Long-term survivors of the Hiroshima and

Nagasaki atomic bombs, who were exposed to radiation doses,

have been shown to have an increased risk of cancer (18–21). In

a follow-up from 1958 to 2009, recent studies investigated the

incidence of prostate and uterine cancer in a cohort of atomic

bomb survivors from the Life Span Study, which included 62,534

women and 41,544 men. A study demonstrated a substantial

linear dose response for prostate cancer, with an estimated excess

relative risk (ERR) per Gy of 0.57 (22). The study concluded

that “the observed dose response strengthens the evidence of

a radiation effect on the risk of prostate cancer incidence in

the atomic bomb survivors” (22). In addition, an increased risk

of prostate cancer has been found after X-ray treatment for

ankylosing spondylitis (23) and in a subset of nuclear workers

who were internally exposed to various radionuclides (24). The

study of female atomic bomb survivors found a significant

association between radiation dose and risk of uterine cancer

(ERR/Gy of 0.73), especially for exposure occurring in mid-

puberty, but not for either early childhood or adult exposures

(25). Increased corpus cancer risk has been reported in several

studies of high-dose radiotherapy patients (26–28) and in one

study of radiation workers (29).

In abdominal pelvic (AP) CT, the prostate and uterus are

exposed to direct radiation, which can pose health risks to

patients. Even though the radiation risk to any given patient may

be low, the growing number of persons exposed and the rising

radiation dose per procedure could lead to a significant number

of cancer incidents directly related to radiation exposure from

CT. It is crucial to understand how much radiation is supplied

to patients during CT procedures to properly balance the

probability of harm and the potential benefits. This is especially

important because the threshold for using CT has been lowered

and is now being used more frequently on healthy individuals

in whom the risk of potential CT-induced carcinogenesis may

outweigh its diagnostic usefulness. Therefore, this study aimed

to estimate organ doses of the uterus and prostate and evaluate

the lifetime attributable risk (LAR) of cancer incidence and

mortality resulting from AP CT examinations.

2. Materials and methods

2.1. Study design

This retrospective study was conducted over 1 year at

two general hospitals in Jazan, Saudi Arabia. The radiology

departments included in this study were equipped with

Siemens Somatom 64 CT scanners and GE Lightspeed

16 CT scanners. This study was approved by the ethics
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TABLE 1 Mean values ± SD of CTDIvol, DLP, and scan length for AP CT examinations.

Gender Age groups N (%) CTDIvol (mGy) DLP (mGy.cm) Scan length (cm)

Female 18–35 125 13.37± 7.2 611.32± 368.38 44.64± 13.17

36–55 140 13.61± 8.12 537.07± 359.49 39.08± 11.73

>55 115 17.67± 8.93 799.3± 497.16 41.92± 10.38

Overall 380 (57) 14.76± 8.21 640.86± 417.69 41.77± 11.92

Male 17–35 80 10.93± 5.57 531.13± 310.31 47.52± 14.93

36–55 120 13.72± 4.51 669± 246.84 50.04± 12.96

>55 85 12.17± 3.28 657.64± 336.27 52.35± 19.28

Overall 285 (43) 12.51± 4.73 623.29± 288.98 49.75± 14.89

TABLE 2 Mean values ± SD of e�ective dose and organ dose to the

uterus and prostate from AP CT examinations.

Age
groups

17–35 36–55 >55 Overall

Female

Uterus dose

(mGy)

9.79±

5.21

9.99±

6.05

13.07±

6.68

10.86± 6.09

(2.13–24.06)

Effective dose

(mSv)

5.19±

2.75

5.31±

3.21

6.93± 3.53 5.76± 3.22

(1.13–12.71)

Male

Prostate dose

(mGy)

6.11±

3.11

7.65±

2.55

6.83± 1.89 7.00± 2.66

(2.18–12.94)

Effective dose

(mSv)

3.82±

1.94

4.78±

1.59

4.26± 1.18 4.37± 1.66

(1.36–8.07)

committee of Jazan University in Jazan, Saudi Arabia (approval

number: REC/44/788).

2.2. Study population and data collection

The study population was comprised of adult patients.

Patient demographic data, including age and gender, were

collected. Data were collected from the picture archiving and

communication system (PACS). The collected data included the

AP CT and exposure parameter data [CT dose index (CTDIvol)

and dose-length product (DLP), and scan length]. Incomplete

examinations, such as those missing one or more acquisitions,

were excluded from the analysis.

2.3. CT dosimetry

The National Cancer Institute CT (NCICT) dosimetry tool

was used to calculate the organ doses of the prostate and uterus.

The NCICT dosimetry tool is a massive library of precomputed

FIGURE 1

Distribution of organ doses to the uterus and prostate from AP

CT examinations.

dose factors for various computational phantoms linked with

Monte Carlo radiation transport methodologies (30). The dose

factors (milligray/milligray) were calculated while considering

various phantom sizes, which are the organ-absorbed dose

(millgrays) normalized to the CTDIvol (millgrays) of the

reference scanner. The absolute organ doses were estimated

by multiplying the dose factors by the reported CTDIvol

(milligrays) for each CT scanner of interest (milligrays). Lee et al.

(30) reported on the intricate methods employed in organ dose

calculations. The effective dose resulting from AP CT scans was

also obtained using the NCICT.

2.4. Radiation risk assessment

By extrapolating from the risk estimated at high doses,

LNT model has been the standard risk assessment utilized by
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FIGURE 2

LAR of prostate and uterus cancer incidence for female and

male patients.

FIGURE 3

The LAR of prostate and uterus cancer mortality for female and

male patients.

the radiation protection community to determine the health

effects associated with low doses (15, 31, 32). The risk models

proposed by the BEIR VII (2006) report describe a technique

to approximate the LAR of cancer based on the amount of a

single radiation dose and a patient’s age (32). LAR is defined as

an additional cancer risk above and beyond baseline cancer risk.

The age- and sex-specific LAR of the uterus and prostate cancer

incidence and mortality for organ doses were calculated using

BEIR VII risk estimates.

2.5. Statistical analysis

Statistical analysis was performed using the Statistical

Package for the Social Sciences (SPSS version 20, IBM, Somers,

NY, USA). Descriptive statistics of the continuous data were

presented asmean± SD. Inferential statistical tests, independent

samples t-tests and one-way analysis of variance (ANOVA),

were performed to determine if gender and age groups are

significantly different from each other on CTDIvol, DLP, scan

length, effective and organ doses, with p < 0.05 considered

statistically significant.

3. Results

3.1. Demographic and CT acquisition
parameters

As illustrated in Table 1, the study included 665 CT

procedures for adult patients with 380 (57%) females [mean age,

43.58 ± 17.74 years; range, 18–82 years], and 285 (43%) males

[mean age, 42.79 ± 15.69 years; range, 18–80 years]). The AP

CT were distributed among age groups as 31% for 18–35 years,

39% for 36–55 years, and 30% for >55 years. The mean DLP

and CTDIvol values were higher for females compared to male

patients, with no statistically significant differences. The mean

scan length for male patients (49.75 ± 14.89 cm) was higher

than for females (41.77± 11.92 cm), with statistically significant

differences (p= 0.001).

3.2. E�ective and organ dose estimations

As shown in Table 2, the mean effective doses resulting

from AP CT for females and males were 5.76 ± 3.22

(range: 1.13–12.71 mSv) and 4.37 ± 1.66 mSv (range: 1.36–

8.07 mSv), respectively. Mean organ doses for older age

groups were higher than younger age groups, with statistically

significant differences (p < 0.001). The mean organ dose

to the uterus was 10.86 ± 6.09 mGy (range: 2.13–24.06

mGy). The mean organ dose to the prostate was 7.00 ± 2.66

mGy (range: 2.18–12.94 mGy). The effective and organ doses

were higher for female patients than for male patients, with

statistically significant differences (p = 0.005). The distribution

of organ doses for female and male patients is illustrated in

Figure 1.

3.3. Individual radiation risk assessment

The LAR of uterus and prostate cancer incidence was

1.75 ± 1.19 cases and 2.24 ± 1.06 cases per 100,000 persons,

respectively (Figure 2). The LAR of cancer mortality from

uterus and prostate cancers were 0.36 ± 0.22 and 0.48 ± 0.18

cases per 100,000 persons, respectively (Figure 3). The values

of LAR of prostate and uterus cancer occurrence from AP

CT as a function of age and gender were higher in male

patients than in females, with a consistent decline with age

at exposure (Figure 4). When examining the values of LAR
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FIGURE 4

LAR values of prostate and uterus cancer incidence from AP CT

as a function of age and gender.

FIGURE 5

LAR values of prostate and uterus cancer mortality from AP CT

as a function of age and gender.

of prostate and uterine cancer mortality as a function of age

and gender, it was shown that male and female patients both

had a minor decline in LAR with increasing age at exposure

(Figure 5).

4. Discussion

CT scans are one of the most common radiation imaging

modalities, and CT scans are rising steadily worldwide. CT

scans are constantly increasing worldwide with the potential

to improve the practice of radiography, but they also have the

potential to increase the patient dose. A single CT scan of the

abdomen pelvis (AP) can expose a patient’s prostate or uterus

to a substantial radiation dose, leading to rising concerns about

radiation-induced cancer. However, medical staff may not have

adequate knowledge of the risks of ionizing radiation used in

these procedures. The risk of cancer incidence and mortality

from ionizing radiation is appropriately expressed in terms of

LAR values. Generally, radiation doses as low as reasonably

achievable and consistent with acceptable image quality remain

the most significant strategies for diminishing this potential risk.

This study evaluated organ doses of the uterus and prostate

and the LAR of cancer incidence and mortality resulting from

AP CT.

The mean scan length for male patients was higher than

for females, with statistically significant differences (p < 0.001).

These results are consistent with the statistical studies showing

that Saudi males’ body height is relatively higher than that

of Saudi females (33, 34). The results show that the mean

value of effective dose (female: 5.76 ± 3.22 mSv vs. male: 4.37

± 1.66 mSv) and organ dose (female: 10.86 ± 6.09 mGy vs.

male: 7.00 ± 2.66 mGy) and DLP (female: 640.86 ± 417.69

mGy.cm vs. male: 623.29 ± 288.98 mGy.cm) were higher for

females than for males. This is primarily because the DLP

values were higher for females than for male patients. Patrick

et al. investigated multiple body composition parameters to

determine the strongest predictor of effective doses among

patients. Their study found that total adipose tissue volume was

significantly higher in females compared to male patients, and

adipose tissue volume was the strongest predictor of DLP (35).

Studies among the Saudi population have reported that Saudi

females have higher body weight and cross-sectional area than

males (36, 37). In comparison with other studies, the effective

dose and organ doses to the prostate and uterus from AP CT in

our study were lower than previously reported in other studies:

13 mSv (38) and 13.6 (39) for effective doses, and organ doses to

the uterus of 10.4 mGy and the prostate of 10 mGy (40).

The LAR values of cancer incidence and mortality from

AP CT were obtained for the prostate (2.24 and 0.48 cases

per 100,000 persons) and the uterus (1.75 ± 1.19 cases and

0.36 ± 0.22 cases per 100,000 persons), indicating that males

are at higher risk than females. The LAR of uterus cancer

incidence and mortality as a function of age showed a steadily

declining risk with age at exposure (Figures 4, 5). The LAR

of prostate cancer incidence decreased with age at exposure.

However, unlike for females in this study, the LAR of cancer

mortality for prostate cancer showed a slightly decreasing trend

with age at exposure for male patients (Figure 5). This is because

the LAR of cancer mortality for the prostate remains within

7 (±2) cases from age 30 to 80 years, and the organ doses

of the prostate dose were higher for older age groups in this

study. Prostate cancer is among the most common cancers in

males, with high morbidity and mortality in Saudi Arabia, with

more prevalence in the age group of 50–70 years (41). The

increased prostate organ doses and the natural prevalence of

prostate cancer for older groups require special attention for

male patients in Saudi Arabia.

Radiation has a stochastic effect that can cause cancer;

no threshold value or dose can cause it (42). Calculating risk
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does not mean identifying a risk unique to each patient (43).

Nonetheless, the LAR estimate offers a standard for patients,

radiation oncologists, and other medical personnel. As a result,

this study’s findings may help develop a database for calculating

LARs related to CT scans of the pelvis.

Specific dose reduction strategies for reducing patient

radiation dose from CT examination, such as tube current (mA)

modulation, iterative reconstruction techniques, staff awareness,

and the use of advanced imaging technologies, are found

in the literature. Consequently, radiation protection during

CT examination is essential, regardless of the radiation dose

received (44–47).

This study has some limitations. First, there are differences

between the Saudi population’s baseline cancer incidence levels

and mortality rates and those listed in the BEIR VII study (32).

Second, the LAR of cancer occurrence from X-ray ranged from

80–140 kVp, possibly distinct from that of high-energy gamma

rays that the BEIR VII database represents a majority based on

these high-energy rays (48).

5. Conclusions

Using the risk models proposed by the BEIR VII report,

the LAR of prostate and uterus cancer incidence and

mortality due to radiation exposure from AP CT procedures

were low, but not trivial. Moreover, risk associated with

prostate cancer from radiation exposure along with the high

natural prevalence of prostate cancer among older people

necessitate special attention. Therefore, efforts should be made

to reduce patient doses while maintaining image quality.

Although the minimization of the patient’s radiation dose

must guide clinical practice, the estimated small increase in

risk could aid in easing fears regarding well-justified AP CT

procedures. To reduce the patients’ LARs, different treatment

planning CT protocols should be optimized to reduce the

radiation dose.
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