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Numerous investigations of the spatiotemporal patterns of infectious disease

epidemics, their potential influences, and their driving mechanisms have

greatly contributed to e�ective interventions in the recent years of increasing

pandemic situations. However, systematic reviews of the spatiotemporal

patterns of communicable diseases are rare. Using bibliometric analysis,

combined with content analysis, this study aimed to summarize the number

of publications and trends, the spectrum of infectious diseases, major research

directions and data-methodological-theoretical characteristics, and academic

communities in this field. Based on 851 relevant publications from the Web of

Science core database, from January 1991 to September 2021, the study found

that the increasing number of publications and the changes in the disease

spectrum have been accompanied by serious outbreaks and pandemics over

the past 30 years. Owing to the current pandemic of new, infectious diseases

(e.g., COVID-19) and the ravages of old infectious diseases (e.g., dengue and

influenza), illustrated by the disease spectrum, the number of publications in

this field would continue to rise. Three logically rigorous research directions—

the detection of spatiotemporal patterns, identification of potential influencing

factors, and risk prediction and simulation—support the research paradigm

framework in this field. The role of human mobility in the transmission of

insect-borne infectious diseases (e.g., dengue) and scale e�ects must be

extensively studied in the future. Developed countries, such as the USA and

England, have stronger leadership in the field. Therefore, much more e�ort

must be made by developing countries, such as China, to improve their

contribution and role in international academic collaborations.
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1. Introduction

Infectious diseases (ID), a leading cause of morbidity

and mortality worldwide, place a huge burden on the world,

particularly in certain countries, regions, and territories, along

with increasingly changing climate conditions and globalization

(1, 2). It is important to understand the spatiotemporal patterns

through various mining methods, and the complex process of

disease transmission, its potential influences, and its driving

mechanisms. This would provide insightful guidance to health

authorities for making and implementing targeted interventions

for infectious diseases.

Previous studies have pointed out that the spatiotemporal

patterns of infectious disease prevalence are amacroscopic result

of the interaction between the virus/pathogens, vectors, and

hosts (3). Spatiotemporal patterns refer to the spatiotemporal

distribution characteristics of geographical objects, including

frequency (frequent paths, mainly for moving objects),

aggregation, periodicity (periodic and seasonal characteristics

of research objects), correlation (changes in research objects

over time), and co-location (frequent spatial proximity

between objects) (4, 5). Thus, mining infectious disease

spread and transmission patterns on various spatial scales and

temporal intervals would detect the diseases’ epidemiological

characteristics, explore their potential influences, clarify their

influence mechanisms, predict epidemic risks under various

conditions, based on the spread and transmission simulation,

and evaluate the feasibility or effectiveness of preventive and

control measures implemented by relevant health authorities

(5, 6). In other words, this paradigm covers nearly every aspect

of infectious diseases, except for the isolation or laboratory

testing of the pathogens, through which effective interventions

for various infectious diseases were achieved in the past decades

(5, 6).

Due to successful performance in other research fields,

a series of spatiotemporal analytical methods or models,

such as kernel density analysis, spatial-time scan statistics,

geo-detector, and random forest, have been appropriately

employed for mining the spatial and temporal patterns

of various communicable diseases (7–22). Meanwhile,

different data sources and acquisitions were required for

completing spatiotemporal pattern mining since the spread

and transmission were commonly caused by different viruses

or pathogens through specific vectors or direct human-to-

human transmission. They included gene sequence data for

infectious diseases from public databases, vector sentinel

monitoring data, and infectious disease cases data based

on streaming or reporting that covered pathogens, vectors,

hosts, and environmental suitability (pathogens’ survival and

transmissibility, vectors’ breeding, and hosts’ being infected) (3).

In addition, the rising utility of individual activity information,

derived from social media or other mobility data, provided

opportunities for clarifying the role of individuals in disease

transmission and assessing the risk of being infected (23). The

question remains, since the results and related conclusions

were achieved on a certain fine scale (i.e., relative microscopic

level), were the containment measures and interventions, based

on these microscopic findings, appropriately implemented at

mesoscale or macroscale? In addition, some other concerns

in this field include hot diseases and their spectrum and the

academic leadership of international collaborations network

among countries, institutes, or scholars, which have seldom

been focused on in previous literatures.

As efficient tools for reviewing literature, based on numerous

publications, bibliometrics and content analysis have been

widely applied in various fields to quantitatively explore the

number of publications and their variations, arrange the

concerned aspects and their timelines, and summarize the

progress or proper prospects (24–27). These could provide

useful clues and unique insights for scholars and health

authorities. For example, Su et al. (28) summarized the

disciplines involved, the main contributing countries, the

main research themes, and the shortcomings of the existing

research in the application of big data in carbon emissions

and environmental management research based on bibliometric

methods. Agnusdei and Coluccia (27) used bibliometrics and

content analysis to summarize the trends and prospects in

sustainable agri-food supply chain research, and four research

themes were identified and several research gaps were discussed.

Therefore, bibliometrics and content analysis were employed in

this study to investigate the counts of publications regarding

spatiotemporal patterns, dominant research directions of

mining these patterns, the spectrum of infectious diseases

concentrated upon in these studies, and the present scenario of

international leadership and academic collaboration networks

among countries.

2. Materials and methods

2.1. Sources of publications

Web of Science (WoS), themost frequently selected database

for bibliometric studies in public health, was used for data

retrieval in this study (25, 29, 30). The WoS is a comprehensive

academic resource information platform established by the

Institute for Scientific Information (ISI), one of the most

comprehensive and influential mainstream databases in the

world, including the Science Citation Index (SCI) database,

which contains more than 9,000 high-quality academic journals

in more than 170 disciplines, and the Social Sciences Citation

Index (SSCI) database, with more than 3,000 authoritative

academic journals in more than 50 social science disciplines.

It provides scholars worldwide with detailed information about

academic publications (29, 31).
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FIGURE 1

Research flowchart.

2.2. Framework of search strategy,
validation, and cleaning

This study finalized a broad and comprehensive search

strategy (Figure 1) after iterative testing to cover as many

publications as possible while minimizing the number of

irrelevant documents. Firstly, publications involving two themes

(I for infectious diseases-related and II for spatiotemporal

pattern-related) in the abstracts, titles, and keywords were

selected as the basic dataset. Secondly, some publications in

this dataset were then excluded while they factually emphasized

on other topics, even though infectious disease epidemics were

mentioned in their abstracts. For example, an article just referred

to infectious disease patterns in the abstract, but it focused on

the impacts of global warming on human society. A common

validation method was also used to examine the search results to

ensure that they met the scope of the research (25). The top 50

frequently cited publications in the search results were reviewed.

All the reviewed publications met this study’s scope of interest.

A total of 851 publications were obtained after validation and

deduplication, based on the above search strategy (the search was

executed on January 3, 2022).

2.3. CiteSpace analysis

Bibliometric analysis has played an increasingly important

role in the summary and outlook of several research fields

(25, 29). As one of the most widely used tools CiteSpace, is

known for its powerful literature co-citation analysis, which can

mine research hotspots and grasp the research direction based

on the references of the retrieved literature (32–35). The Log-

Likehood Rate (LLR) algorithm in CiteSpace 5.8 R3 software was

used for the co-citation analysis. It can cluster titles, abstracts,

and keywords of publications to analyze and summarize the

research themes in this study.

2.4. VOSviewer analysis

VOSviewer (36) is another frequently used bibliometric

tool, popular for its accurate, clear, and detailed statistics

and visualization functions. In this study, the software and

statistical tools provided by the WoS website were used to

conduct author keyword analysis, country cooperation network

analysis, research institution analysis, and author-cited analysis

to summarize and conclude the spectrum of infectious diseases,

including academic cooperation and leadership in the field to

analyze the current status of research in the field (Figure 1).

2.5. Content analysis

Although the research themes obtained by CiteSpace

analysis were more objective, they were divided by infectious

disease categories, rather than summarizing the macroscopic
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TABLE 1 Types of included publications.

Document types Numbers Percentage (%)

Research articles 807 92.4

Review articles 36 4.1

Proceedings papers 17 1.9

Editorial materials 7 0.8

Book chapters 2 0.2

Early access 1 0.1

Letters 1 0.1

Total 851 100

The results of this category classification are provided by WoS. Since the same document

may belong to two or more publication types at the same time, the sum of the numbers

in the second column is greater than the total number of research publications.

research (for the whole field) directions. Therefore, this study

grouped the obtained research themes into several research

directions based on the publication content under each theme.

This method of analysis, based on the specific content of various

types of research, is known to scholars as “content analysis” (37).

The method summarizes the common spatiotemporal scales,

data sources, and methods for each research direction and the

least developed (blind spots) themes in the literature (to be read

in light of the bibliometric results), allowing future research

direction recommendations (27).

3. Result

3.1. Descriptive information of selected
publications

As illustrated in Table 1, there were 851 publications derived

from the core WoS database, including research articles (807),

reviews (36), conference papers (17), and <10 miscellaneous

items (e.g., editorials, book chapters, letters, etc.). As of January

3, 2022, the retrieved publications were cited 34,214 times

(33,542 without self-citations) with an average of 40.2 citations

per item. The frequency of citations illustrates that they

possessed good representativeness.

At the same time, the number of included publications

presents an upward trend over the past 30 years (Figure 2).

Although there were three extreme years (2010, 2014, and

2017), the growth was divided into three periods based on

the annual number of publications, including slow (1991–

2003, <10 publications), fast (2004–2018, 10–50 publications),

and rapidly rising (2019–2021, more than 50 publications).

The significant phase’s characteristics and extreme points of

the annual publication amount curve may be driven by the

outbreaks and epidemics of multiple infectious diseases.

3.2. Spectrum of infectious diseases

The spectrum of infectious diseases studied in this field has

changed significantly over the last three decades (Figure 3). A

total of 13 typical infectious diseases were identified at the time

(occurrences ≥5) of investigation in the above 851 publications.

In particular, dengue (2004–2018, 2019–2021), COVID-19

(2019–2021), influenza (2004–2018, 2019–2021), AIDS (1990–

2003, 2003–2018), and malaria (2004–2018, 2019–2021) were of

major concern several times (more than five times in a single

phase; more than 10 times in total) in one or multiple phases.

Moreover, the prevalence of these diseases varied across the three

periods. Certain infectious diseases (e.g., dengue in the fast-

rising phase and COVID-19 in the rapid-rising phase) reached a

high number of relevant publications (occurrences ≥30) at one

stage, even though the previous stages were widely unnoticed

(occurrences <5). This may be related to the sudden pandemic.

While some infectious diseases, such as SARS, avian influenza,

cholera, plague, and hand, foot, and mouth disease, were widely

noted in the previous phases, related publications significantly

declined in the new phase (2019–2021). This may be because

the epidemics were effectively controlled. Nevertheless, common

infectious diseases, such as dengue, COVID-19, influenza, and

malaria, remain a widespread cause of concern in the latest stage

(2019–2021) and deserve to be studied in depth.

3.3. Major research directions of selected
publications

Nine research themes were identified in these publications

through CiteSpace 5.8 R3 software. Each theme was based

on distinctive data sources or applied research methods,

focusing on the scientific questions in the context of specific

diseases and their spatiotemporal patterns of prevalence

(Supplementary Table S1). Three research directions (RD) were

obtained according to their potential consistency in the

aforementioned themes by content analysis (Table 2):

1. RD_1) Detecting spatiotemporal patterns (themes 1, 4, 8,

and 11).

2. (RD_2) Exploring potential influencing factors of IDs’

spatiotemporal patterns (themes 0, 2, 4, 7, and 11).

3. (RD_3) Simulating and predicting epidemic risk and

evaluating prevention and control measures (themes 4, 5, 8,

9, and 11).

Common data sources, influencing factors, methods,

spatial scales, and other characteristics were sorted for each

research direction by content analysis (Table 3). There were

strong relationships between the three research directions.

After identifying the spatiotemporal patterns (RD_1) of

infectious disease epidemics based on various methods, such

as spatiotemporal scan, Moran’ I, time series analysis (e.g.,

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1089418
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lu and Ren 10.3389/fpubh.2022.1089418

FIGURE 2

Annual change in the number of publications and citations.

wavelet analysis), Getis-Ord Gi∗, and kernel density, the

influencing factors, including natural and social environments,

individual habits, and microscopic molecular factors, were

identified by correlation coefficients, logistic regression, various

regression models and so on (RD_2). Based on their inferred

mechanisms of action (influence processes), epidemic process

simulation, epidemic risk prediction, and assessment of the

effectiveness of prevention and control measures were done

based on the detected influencing factors in which models,

such as Bayesian models, compartment models (e.g., SEIR

model), network models, phylogenetic models, niche models

were employed (RD_3).

3.4. Academic cooperation

Three grades of activity were divided based on the number

of publications involved (NoPI) among the 10 countries with

the highest NoPI (Table 3). Three countries (USA, China, and

England) were in grade 1 (NoPI ≥ 100), four countries (France,

Australia, Brazil, and Canada) were in grade 2 (50 ≤ NoPI <

100), and three countries (Italy, Germany, and Spain) were in

grade 3 (30 ≤ NoPI < 50). The USA (338 participants, 253

leaders), China (180 participants, 177 leaders), and England

(104 participants, 57 leaders) were the most active countries,

both from the perspective of participants (as co-authors) and

leaders (first and second authors of the publication). Specifically,

98% of the publications with Chinese scholars as co-authors

had Chinese scholars as lead authors, indicating that Chinese

scholars played a major role in the studies.

The grade1 countries remained on the top with the highest

intensity of international cooperation. Of all the cooperative

relationships, the USA and England worked extremely closely

(36 collaborations), followed by China and the USA (32

collaborations). Thus, it is evident that relatively active countries

had a relatively high intensity of cooperation with other

countries (Figure 4). This could be one of the reasons why the

USA, China, and England were the three most active countries

in this field.

3.5. Academic leadership

Three grades of leadership were divided based on the h-

index of the publications (HoP) in the 10 countries with the

highest HoP (Table 4). In this, one country (USA) was in grade

1 (HoP ≥ 50), four countries (England, China, France, and

Canada) were in grade 2 (20 ≤ HoP < 50), and five countries

(Australia, Italy, Germany, Brazil, and Spain) were in grade 3

(10 ≤ HoP < 20). This indicated that the developed countries

had more academic leadership, although certain developing

countries, such as China and Brazil, produced a large number

of publications (Table 4).

Countries with high leadership had one or more relatively

active (high number of publications) institutions (Table 5). The

top 10 organizations listed in Table 5 were from the USA (4),

France (3), China (2), and England (1), which were the top four

countries in terms of leadership and the number of publications.

However, two institutions from China (CDC and CAS) had the
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FIGURE 3

Related publication counts of main infectious diseases by publication stage.

lowest leadership (h-index ≤ 14) among the ten most active

institutions, yet they had a high number of publications.

Countries with high academic leadership may have one

or more highly cited author(s) in the country. In addition

to WHO (232 cited) and Kulldorff (202 cited), the eight

high-impact authors were from England (four) and the

USA (four), the two countries with the highest leadership.

However, Chinese scholars, who had a high number of

publications (grade 1), did not make it to the list. These

authors were frequently cited (Table 6), probably because the

data, ideas and methods in their works discussed and solved

key problems. WHO, the most frequently cited organization,

provides important data for the field. It is the largest

international inter-governmental health organization that hosts

international epidemiological and health statistics operations,

develops international names for diseases, causes of death, and

public health implementation, and sets the standards for the

international norms for diagnostic methods. Methodologically,

Kulldorff ’s spatiotemporal scans and Anselin’s Local Moran’s I

were common in this field and were often applied to identify

dormant hotspots of the prevalence of infectious diseases.

Ideologically, these authoritative scholars have made important

explorations of RD_1 (e.g., Viboud, C, MADDEN, LV), RD_2

(e.g., ANDERSON, RM, Wesolowski, Amy), and RD_3 (e.g.,

Grenfell, BT, Ferguson, Neil M).

There were clear differences in the research focus of the

three countries (the USA, England, and China), despite having

the highest leadership and number of publications (Figure 5).

In general, studies by Chinese scholars have been biased toward

the statistics and description of the spatiotemporal prevalence

patterns of the infectious diseases (RD_1) and the analysis

of the influence of macro (various social and environmental
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TABLE 2 Research directions information.

Direction Main concerns

Data source Methods (∗) Spatiotemporal
scale

Main pattern

Detection (RD_1) Center for Disease Control

and Prevention, WHO,

Health commission, NHSO,

Public Health Science Data

Center, Statistical Yearbook,

Published articles/datasets,

Field trips and so on.

Space-time scan (72), Moran’

I (63), Time series method

(35), Spatiotemporal

clustering (21), Getis-Ord Gi*

(19), Probability distribution

models (17), K function (17),

Kernel density (13), Knox

(10), Standard deviation

ellipse (5)

Points, Administrative

divisions (commune, district,

city, province, country, etc.),

Grids

Patterns of population

distribution (age, gender,

occupation, etc.), aggregation,

periodicity. [e.g., the

prevalence of dengue

presented a multi-annual

cycle of around 2–3-years in

Vietnam due to climatic and

entomological changes (50).

The prevalence of tuberculosis

had a particular population

distribution pattern (51)].

Data source Methods (∗) Spatiotemporal
scale

Factors (+) Driving mechanism

Exploration (RD_2) WHO, World Bank, OSM,

NASA, Geospatial Data

Cloud, WMO, NOAA,

WorldPop, Published

articles/datasets, Famous

universities’ websites,

Environmental Monitoring

Report, Statistical Yearbook,

Diva GIS, IGBP, ClinVar,

Copy Number Variations in

Disease, Field trips

Correlation coefficients (30),

Logistic regression (25),

Generalized linear model (24),

Multiple linear regression (9),

Geographically weighted

regression (9), Poisson

regression (6), Geo-detector

(5), ANOVA (5), PCA (5)

Administrative divisions

(commune, district, city,

province, country, etc.), Grids

See next row Natural conditions mainly

influence pathogen

reproduction and survival,

vector breeding and activity;

socio-environmental factors

mainly influence host

(human) distribution and

probability of contact between

host and vector/pathogen;

personal habits mainly

influence host susceptibility;

genetic inheritance and

mutations mainly influence

pathogen infectivity, hazard

and host susceptibility, etc.

Methods (∗) Spatiotemporal
scale

Factors (+)

Prediction and simulation (RD_3, data source as above) Bayesian models (64),

Compartment models (46),

Network models (44),

Phylogenetic models (24),

Diffusion models (12), Linear

regression model (11),

Maximum entropy niche

model (9), Gravity model (6),

Agent-based spatio-temporal

model (5), Cellular automata

(5), Kriging interpolation (5),

Radiation mode (5)

Administrative divisions

(commune, district, city,

province, country, etc.), Grids

Climate (115), Population

(82), Human mobility (75),

Variation (34), Vegetation

(32), Heredity (31), Economy

(28), Exposure to the

infection (26), Land use (25),

Hydrology (24), Topography

(20), Urbanization (17),

Transport (16), Vaccines (12),

Medical level (9), Sunshine

(8), Personal habits (5), Wind

speed (5), Environmental

pollution (5)

“∗”Means the number of publications using the method in the retrieved publications. “+”Means the number of publications considering the factor as an important factor affecting the formation of spatiotemporal patterns of infectious disease prevalence

in the retrieved publications.
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TABLE 3 Top 10 number of publications and collaboration.

Grade of
activity

Countries Number as
co-authors (perc)

Number as lead
author (perc a,

perc b)

Cooperation
intensity

Top 3 countries with
the most cooperation
(Number)

Grade 1 USA 338 (39.72%) 253 (74.85%, 29.73%) 272 England (36), China (32), France

(18)

China 180 (21.15%) 177 (98.33%, 20.80%) 108 US (32), Australia (14), England

(13)

England 104 (12.22%) 57 (54.81%, 6.70%) 150 US (36), China (13), France (12)

Grade 2 France 85 (9.99%) 59 (69.41%, 6.93%) 95 US, England, Belgium

Australia 55 (6.46%) 37 (67.27%, 4.35%) 54 China, USA, England

Brazil 53 (6.23%) 42 (79.25%, 4.94%) 36 USA, France, Portugal

Canada 50 (5.88%) 35 (70.00%, 4.11%) 44 USA, China, England

Grade 3 Italy 36 (4.23%) 19 (52.78%, 2.23%) 42 USA, France, Switzerland

Germany 33 (3.88%) 22 (66.67%, 2.59%) 39 USA, England, France

Spain 30 (3.53%) 21 (70.00%, 2.47%) 35 USA, England, France

Lead author refers to the first or second author of the publication. Perc a refers to the number of publications in which the country is the lead author as a percentage of the number of

publications in which the country is the co-author. Perc b refers to the number of publications in which the country is the lead author as a percentage of all publications in the field.

Cooperation intensity refers to the number of collaborations with other countries.

FIGURE 4

Country cooperation network. The thicker the line the greater the number of times the two countries work together. The size of the circle

means the number of publications in the country.

factors) factors on the prevalence patterns of the infectious

diseases (RD_2; macro). However, scholars from the USA

and England have produced more publications that Chinese

scholars regarding the direction of the causes of infectious

disease epidemics at the micro-scale (virus/bacterial genetics

and mutation) (RD_2; micro) and the simulated dynamics of

infectious disease transmissions (RD_3).

4. Discussion

This study identified the number of publications and

citations, the spectrum of infectious diseases, major research

directions and data-methodological-theoretical characteristics,

academic collaborations, and leadership characteristics over

the past 30 years in the mining of spatiotemporal patterns
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TABLE 4 Top 10 countries with the most leadership.

Grade of leadership Countries Cited frequency Cited frequency per
publication

h-index

Grade 1 USA 21,581 63.85 60

Grade 2 England 9,663 92.91 39

China 8,385 46.58 27

France 3,232 38.02 26

Canada 2,015 40.3 20

Grade 3 Australia 1,338 24.33 19

Italy 1,810 50.28 16

Germany 1,246 37.76 16

Brazil 609 11.49 15

Spain 755 25.17 13

The h-index means that at most N publications have been cited at least N times each.

TABLE 5 Top 10 institutions with the most publications.

Ranking Institution name Country Publications
(percentage, %)

h-index

1 UDICE-French Research Universities France 44 (5.2) 19

2 University of California System USA 40 (4.7) 20

3 Center national de la recherche

scientifique (CNRS)

France 35 (4.1) 18

4 Chinese Center for Disease Control and

Prevention (CDC)

China 31 (3.6) 14

5 Chinese Academy of Sciences (CAS) China 30 (3.5) 13

6 University of London (UOL) England 27 (3.2) 17

7 National Institutes of Health (NIH) -

USA

USA 25 (2.9) 20

8 Institute of Research for Development

(IRD)

France 23 (2.7) 14

9 NIH Fogarty International Center (FIC) USA 23 (2.7) 19

10 Harvard University (Harvard) USA 22 (2.7) 16

The h-index means that at most N publications have been cited at least N times each.

of infectious disease prevalence. The findings provide useful

insights for advancing the detection of future spatiotemporal

patterns of infectious diseases, the analysis of the influencing

factors and driving mechanisms, academic cooperation, and

prevention and control synergy.

The ever-increasing number of publications is likely related

to a series of pandemics. The wide spread of SARS in 2003

(52) changed the field from a slow-rising phase to a fast-

rising phase. Three extreme points observed in the fast-rising

phase (2010, 2014, and 2017) corresponded with influenza (a

pandemic transmitted from Mexico) (53), worldwide outbreaks

of dengue (54), cholera epidemics of 2010 (55), unprecedented

Ebola epidemics in West Africa (56), the most serious outbreak

of dengue in China (57) in 2014, the cholera epidemic with

thousands of infections in Yemen (58), the plague inMadagascar

with more than 2,600 cases (59), and the 2017 influenza

prevalence in the Northern Hemisphere (largest prevalence in

the past decade) (59). The period of 2019-2021 (rapid rising

phase), for the current world, was marked by the ongoing

COVID-19 pandemic (60, 61), dengue fever epidemics in

the subtropical and tropical regions (38), and the influenza

pandemic worldwide (62). In summary, the characteristics of

the infectious disease spectrum and its changes were, to some

extent, strongly related to the pandemic or epidemic severity

of major infectious diseases. Therefore, as the spectrum of

infectious diseases illustrated (Figure 3), despite the remarkable

achievements made bymankind to fight infectious diseases, such

as SARS (63), cholera (64), plague (65), and avian influenza (66),
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TABLE 6 Top 10 high-impact authors.

Author Frequently
cited reasons

Frequency
of cited

Country

WHO (38–41) Authoritative

organizations, data

statistics

232 United

Nations

Kulldorff, M (42) Method 204 Sweden

ANDERSON, RM

(43)

Perspectives 106 England

Keeling, MJ (44) Perspectives 83 England

MADDEN, LV

(45)

Perspectives 78 USA

Grenfell, BT (46) Perspectives 74 England

Wesolowski, Amy Perspectives 74 USA

ANSELIN, L (47) Method 67 USA

Ferguson, Neil M

(48)

Perspectives 64 England

Viboud, C (49) Perspectives 64 USA

Cited frequency refers to the cited frequency of the authors in the 851

publications retrieved.

the number of publications are likely to continue to rise since

new infectious diseases (e.g., COVID-19) are emerging and pre-

existing diseases (e.g., dengue and influenza) remain rampant.

This study uncovered the paradigmatic features of research

in this field, including the logical nature of the three research

directions and data-methods-theories/ideas. In spatiotemporal

pattern detection (RD_1), wavelet analysis (67) was applied

because it could detect periodic patterns of infectious disease

epidemics and their changes over time. Spatiotemporal scanning

(68) was widely employed owing to its ability to simultaneously

detect specific clustering time intervals and spatial ranges. Co-

location pattern mining algorithms (69) detected urban sites

with a significant spatial correlation of infectious disease with

case locations at the point scale. This method holds promise,

however, there has been little research regarding it. RD_2

was used to identify the factors influencing the formation of

the spatiotemporal patterns detected in RD_1, where the geo-

detector (70) method, proposed in 2010, has become widely

employed to simultaneously consider factors individually and

interactively. With the improvement and perfection of machine

learning and deep learning methods, methodologies, such as

Bayesian models and Maxent (71), have often been applied

to predict future epidemic risks of infectious diseases (RD_3)

based on the influencing factors identified in RD_2. These can

overcome the multi-collinearity between independent variables

and prevent overfitting. In particular, they can detect the

contribution of each variable while predicting the risk, and could

become one of the dominant methods in this research direction.

As can be seen, the three research directions were logically

rigorous, which supported the framework of the research

paradigm. However, the theories and methods involved in each

direction are iterated and updated with time, indicating that the

field deserves and requires in-depth research.

The spread of infectious diseases has no national boundaries

and international cooperation is the only way and, the inevitable

result of, fighting infectious diseases (25, 72). Over the last

30 years, developed countries have had a higher intensity of

cross-country collaboration than developing countries, with

more publications, h-index (citation), well-known relevant

institutions, and scholars. These reflect stronger activity and

leadership, which could be related to the prevalence of

certain infectious diseases (52–56, 58, 59, 73). There has

been a long-term accumulation of scientific research on the

prevalence and control of infectious diseases in developed

countries and a higher strategic profile (21, 62, 74–83). It was

encouraging to note that China (a developing country) had

a promising future in terms of international impact with a

rapidly growing and leading level of intensity in international

cooperation, publications, and citations, although its leadership

was temporarily inferior to the USA and England. This could

be related to the risk of traditional infectious diseases with

long epidemiological history (84–88) and the increasing risk

of importation of epidemics with frequent foreign exchanges

(89) that requires China to make continued efforts in disease

surveillance, data acquisition and sharing platform construction,

and the development of universal methods or models (90, 91).

However, China has a shortfall in terms of research areas

of interest (only 13.5% of the publications focused on other

countries) and research focus (smaller numbers of micro-level

related research) compared to the USA and England. Thus,

developing countries, such as China, need to expand the breadth

and depth of their research to gain a broader, more in-depth, and

stronger role in these collaborations (92, 93).

Although remarkable progress has been achieved, several

points remain ill-considered and unresolved.

The spread, prevalence, and control of infectious diseases are

complex ecological-geographical processes and the scale of effect

(including time and space) is an important feature of this process

because of the scale dependence on geographical objects (94, 95).

Therefore, scale consistency is the primary issue that needs to

be carefully considered when translating research findings into

implementable measures. This has often been overlooked in

existing research, although researchers chose the appropriate

spatiotemporal scales before conducting a study. This study

considered the spatial scale consistency by using a regular grid as

a scale for conducting research by upscaling (fine-scale to coarse

scale) and making recommendations. Regular grids can avoid

the statistical and analytical issues that are likely to be caused

by the research units assigned by the administrative divisions

(districts, towns, streets, and villages) in relevant studies due

to irregular and changeable shapes (96). In particular, these

spatial grids have been gradually considered as the final units

where prevention and control measures can produce practical

effects in urban regions (89, 97). The appropriate grid scale
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FIGURE 5

Research regions and research directions in three top active countries. The length of the bars means the number of publications. The

percentage figure means the number of publications in the research directions or research area as a proportion of the total number of

publications in the country. The statistics were based on research areas and research directions in publications where the country was the lead

author (first or second author). Home country means the home country as the study area, while other country means other countries as the

study area. RD2_macro means studies that detected the influence of macro factors on the epidemiology of infectious diseases, while

RD2_micro means studies that detected the words and actions of micro factors on the epidemiology of infectious diseases.

can be chosen by comparing the ability (as reflected by some

indicators, such as Moran’s I) of a range of regular grids at

different scales to characterize the spatiotemporal characteristics

of infectious disease epidemics (51). However, if the resolution of

the raw data is limited (e.g., at the county scale), when translating

the findings into control measures at a finer scale (e.g., at the

township scale), it must be carefully investigated if the findings

had similar characteristics at a finer scale. It is important to note

that the more the scale of the study differed from the scale of the

proposed control measures, the results would be less credible.

Humanmobility plays an important role in the transmission

of infectious diseases (23, 98, 99), but most of these

studies have focused only on infectious diseases that can

be transmitted from human to human (e.g., COVID-19).

Infectious illnesses include human-to-human (direct), human-

vector (animal/insect)-human (indirect) types, etc. (1, 100).

Human-to-human infectious diseases spread more rapidly

and latently (e.g., COVID-19), in which human behavior

factors have attracted more attention because of their direct

impacts on the disease transmission and prevalence (23, 72,

101). In comparison, for human-vector (animal/insect)-human

infectious diseases, the vector factors rather than human

behavior factors were mainly concentrated in current studies

although human behavior factors may pose impacts on the

disease transmission and prevalence (102, 103). Actually, human

often possesses higher mobility (an aspect of human behavior)

than that of vectors (insects or animals), by which some

infectious diseases (e.g., dengue, malaria, etc.,) transmitted by

mosquitoes may be heavily affected by human behavior factors,

especially when he/she has been infected or is a pathogen

carrier (99, 104). The challenges of quantifying the impact of

human mobility on insect- vector diseases at a fine spatial

scale are related to the availability of data and the fusion of

data from multiple sources (human mobility and infectious

disease epidemics). With the advent of big data, data availability

can be expected related to population location heat maps,

bus/subway smart card swipe data, and taxi track data (105,

106). For fusing data from multiple sources, this study suggests

clustering, random forest, and deep learning (e.g., convolution

neural network) to convert human mobility data with fine time

granularity into patterns at the same temporal scale as the

incidence rate. Hence, the association between human mobility

patterns (category variables) and the prevalence of infectious

diseases can be detected at fine spatial scales using methods such

as geo-detectors. Thus, human mobility characteristics can be

further explained based on the point of interest (POI) and land

use types of different mobility patterns to infer the processes and

causes of infectious disease epidemics.

This study had certain limitations. The data were obtained

only from the WoS core database, which resulted in some
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relevant articles being excluded. In the future, the authors

could consider integrating data frommultiple databases, such as

Scopus and PubMed. In addition, we searched for publications

based on the existence of specific keywords in the title, abstract,

and keywords of the article and may have missed some relevant

publications. Additional information (e.g., conclusions) must be

combined to search the publications.

5. Conclusion

This study revealed that the epidemiological and control

situation of infectious diseases over the past 30 years has led

to an increase in the publication of spatiotemporal pattern

mining studies and a change in the spectrum of focused

diseases. Developed countries have stronger leadership than

developing countries in this field. Existing research, on the

whole, has followed the logic and paradigm of pattern-factors-

mechanisms. The authors suggest that international cooperation

must continue to advance and developing countries, such as

China, must strengthen their breadth and depth of research to

enhance their influence in the field. Scholars need to strengthen

the exploration of scale effects and human mobility in the

field. Thus, this study provides useful insights for scholars and

relevant health authorities to understand the progress of existing

research and the remaining gaps, and develop relevant research,

prevention, and control strategies.
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