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Non-pharmaceutical interventions (NPIs) play a central role in infectious

disease outbreak response and control. Their usefulness cannot be overstated,

especially during the early phases of a new epidemic when vaccines and

e�ective treatments are not available yet. These interventions can be very

e�ective in curtailing the spread of infectious diseases when adequately

implemented and su�ciently adopted by the public. However, NPIs can be

very disruptive, and the socioeconomic and cultural hardships that come

with their implementation interfere with both the ability and willingness of

a�ected populations to adopt such interventions. This can lead to reduced

and unsteady adherence to NPIs, making disease control more challenging to

achieve. Deciphering this complex interaction between disease dynamics, NPI

stringency, and NPI adoption would play a critical role in informing disease

control strategies. In this work, we formulate a general-purpose model that

integrates government-imposed control measures and public adherence into

a deterministic compartmental epidemic model and study its properties. By

combining imitation dynamics and the health belief model to encode the

unsteady nature of NPI adherence, we investigate how temporal variations in

NPI adherence levels a�ect the dynamics and control of infectious diseases.

Among the results, we note the occurrence of multiple epidemic waves as

a result of temporal variations in NPI adherence and a trade-o� between

the stringency of control measures and adherence. Additionally, our results

suggest that interventions that aim at increasing public adherence to NPIs

are more beneficial than implementing more stringent measures. Our findings

highlight the necessity of taking the socioeconomic and cultural realities of

a�ected populations into account when devising public health interventions.
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1. Introduction

An important aspect of the control of infectious diseases

is the use of non-pharmaceutical interventions (NPIs) such as

social distancing, mask-wearing, school closures, mass gathering

bans, and lockdowns that aim to change key aspects of

human behavior to reduce transmission rates. Their usefulness

cannot be overstated, especially during the early phases of a

new epidemic when vaccines are not available yet. The still

ongoing COVID-19 pandemic has underscored the value of

these interventions even beyond the early phases of an epidemic.

Various studies have shown, for instance, the necessity of

keeping NPIs in place during the vaccine rollout in 2021, a

year after the start of the pandemic (1, 2). The literature on

the usefulness of NPIs and their effects on the transmission

dynamics of COVID-19 is vast (3–9).

However, as the COVID-19 pandemic has shown, disease

control measures can come with unprecedented damages to

economies and overall well-being that usually interfere with the

willingness and capabilities of the public to adopt recommended

health behaviors. This can lead to reduced and unsteady

adherence to NPIs, making disease control more challenging to

achieve. Additionally, the COVID-19 pandemic has highlighted

the fact that faced with the same public health threat, countries

will implement interventions of varied stringency and the level

of public adherence to these interventions will vary widely

between regions and over time (10–15). This has consequences

on the effectiveness of NPIs over time. In particular, the study

by Ge et al. (16) has highlighted the fluctuating nature of NPI

performance over time at different geographical scales. These

observations are not particular to the COVID-19 pandemic. The

works by Matthews Pillemer et al. (17) and Wang et al. (18)

showed, for instance, that similar patterns had been observed

during the 2002-03 SARS outbreak in four different regions

around the world and the 2013 H7N9 outbreak in China,

respectively.

Many studies have investigated the predictors of adherence

to NPIs during public health emergencies and causes of

variations in adherence levels over time, especially during the

COVID-19 pandemic (13, 17, 19–22). The most commonly

identified factors that affect compliance with NPIs are risk

perception, trust or lack of trust in public health authorities,

misinformation, economic hardship, and the sociocultural

realities of affected populations. NPI adherence patterns can

significantly impact the effectiveness of disease control strategies

and interact largely with disease dynamics over time. Factors like

risk perception and perceived economic hardship due to NPI

adherence are subject to temporal change as the disease unfolds

resulting in a complex interaction between disease dynamics, the

stringency of NPIs, and NPI adherence.

Untangling the feedback loop between human behavior and

the spread of infectious diseases has caught the attention of

many over the last two decades due to its importance for

epidemic preparedness and control and this has led to what is

now called behavioral epidemiology of infectious diseases (23–26).

Though the pre-COVID-19 literature is vast, we have not come

across many studies related to modeling the interplay between

NPI stringency, NPI adherence, and the dynamics of infectious

diseases. Much progress has been made since the beginning

of the COVID-19 pandemic, however. The studies by Acuña-

Zegarra et al. (27) and Iyaniwura et al. (28) both investigated

the impact of adherence to NPIs on the dynamics of COVID-

19 using an SEIR-like model. In particular, they both divide

the population into 2 groups: individuals who adhere to all the

NPIs are put in one group, and those who do not adhere in

the other group. To capture the time-varying nature of NPI

adherence, the two models allow flows between the 2 groups,

though the model by Acuña-Zegarra et al. (27) incorporates only

the movement from the adherents to the non-adherents group.

However, though their modeling framework allows highlighting

the effect of NPI adherence on disease dynamics, it is agnostic

on the drivers of changes in NPI adherence status. Additionally,

since most individuals only partially adhere to NPIs, it does not

seem sensible to divide the population into adherents and non-

adherents. Finally, their models do not capture the interaction

between NPI intensity and NPI adherence, nor do they allow to

answer the question of how disease dynamics interact with either

of the two.

Other modeling studies on NPIs focused on assessing the

effectiveness of NPIs or their usefulness in specific contexts (29–

31). Though these models have played a major role in shedding

light on the need for sustained adherence to NPIs during the

COVID-19 pandemic, the authors studied the effect of NPI

adherence on disease dynamics by simulating the models under

different fixed NPI adherence scenarios, and thus failing to

account for the impacts of temporal variations in NPI adherence

on disease dynamics.

In this study, we aim to fill in this gap. We modify the

classical deterministic Susceptible-Exposed-Infected-Recovered

(SEIR) model to capture both the effect of disease control

measures and the feedback loop between NPI adherence and

disease dynamics. We use the model to investigate the effect of

temporal variations in NPI adherence levels on the spread of

infectious diseases. We use imitation dynamics and build upon

the health belief model to encode the dynamics of the public level

of adherence to NPIs.We do not take into account the intricacies

of specific diseases such as the spread of different variants or

strains and the availability of vaccines for sake of generality.

The approach we use for modeling temporal variations in NPI

adherence is similar to the one adopted in Jentsch et al. (32).

The rest of this paper is organized as follows. In Section

2 we present the mathematical model used in this study.

Section 3 contains our results. In particular, we derive an

expression for the basic reproduction number (R0) and study
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the stability properties of the equilibrium solutions of the model.

Furthermore, we perform a scenario analysis to investigate the

effect of both the stringency of NPIs and temporal variations in

the level of adherence on the disease dynamics. Lastly, in Section

4 we provide a discussion of our results.

2. Methods

2.1. Baseline model

We use a deterministic SEIR model that divides the population

into four distinct compartments based on the respective disease

state of individuals. The Susceptible (S) compartment contains

individuals who can but have not yet been infected by the

disease. Individuals in the Exposed (E) have been infected by

the disease but cannot spread it, whereas those in the Infected

(I) compartment can transmit the disease. The Recovered (R)

compartment contains individuals who have recovered from the

disease. Our model takes into account births and both natural

and disease-induced deaths. For simplicity, we do not take

reinfections into account. That is, we assume that individuals

who recover from the disease become immune over the course

of the epidemic. This is the case for diseases like measles,

for example. This leads to the following system of differential

equations:

dS

dt
= π −

(

λ(t)+ µ
)

S, (1a)

dE

dt
= λ(t)S− (κ + µ)E, (1b)

dI

dt
= κE− (γ + δ + µ)I, (1c)

dR

dt
= γ I − µR, (1d)

with nonnegative initial conditions S(0) = S0,E(0) = E0, I(0) =

I0,R(0) = R0, and x(0) = x(0). The disease state variables S,E, I,

and R represent fractions of the population in the corresponding

compartment, and model parameters are as described in Table 1

below.

In the classical SEIR model, non-pharmaceutical

interventions are not explicitly taken into consideration,

thus the force of infection, λ(t), is given by

λ(t) = β0I(t), (2)

where β0 is the effective contact rate or transmission rate in the

absence of control measures and I(t) is the prevalence rate of the

disease in the population at time t, i.e., the ratio of the number

of infected individuals to the total population count.

TABLE 1 Description of state variables and model parameters.

Variables Description

S Fraction of susceptible individuals

E Fraction of exposed individuals

I Fraction of infectious individuals (prevalence rate)

R Fraction of recovered individuals

x Level of adherence to recommended control measures

Parameters Description

π Birth/recruitment rate

β0 Effective contact rate in the absence of disease control measures

µ Natural death rate

1/κ Mean latent period

γ Recovery rate of infected individuals

δ Disease-induced per capita death rate

α Disease control strength

ri Overall perceived susceptibility

m Overall perceived severity of the disease

rc Overall perceived frustration with control measures

k Overall sensitivity to changes in disease prevalence

ω rim/rc

K k/rc

2.2. Incorporating control measures

To incorporate the effect of NPIs, we assume that the

stringency of interventions is proportional to the prevalence rate

of the disease and that they are geared toward reducing the

transmission rate of the disease. Hence, we use a prevalence-

dependent contact rate and modify the force of infection in

Equation (2) to obtain:

λ(t) =
β0I(t)

1+ αI(t)
, (3)

where α is a positive, constant parameter that measures the

stringency of government policy responses to curb the epidemic.

A probably more insightful way of thinking about the parameter

α is that the fraction 1/α defines the prevalence rate that has

to be reached within the population for the policymakers to

implement NPIs that aim to reduce the transmission rate by

half. Hence, high values of α mean that decision-makers have

a stringent policy approach in responding to the epidemic

whereas lower values correspond to instances of a more hands-

off policy approach. It is worth noting that the use of prevalence-

dependent contact rates tomodel behavioral responses to disease

outbreaks as in Equation (3) can be traced back to the work of

Capasso and Serio (33) and was used by Gros et al. (34) to model

short-term control strategies for the SARS-CoV-2 virus.
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An important limitation of the force of infection in Equation

(3) is that it implicitly assumes that individuals’ compliance with

disease control measures is constant over time. However, as

shown earlier, this is not realistic in many instances.

2.3. Modeling the dynamics of NPI
adherence level

To model temporal variations in adherence levels to NPIs,

we introduce an additional variable, x(t), that measures the level

of adherence to disease control measures at time t. We modify

the force of infection in Equation (3) to obtain:

λ(t) =
β0I

1+ αIx(t)
. (4)

We assume that x(t) is an average over the population.

Building upon the health belief model (35) and using imitation

dynamics, as in the work by Bauch (36) on vaccinating behavior,

we model the dynamics of the adherence level by

dx

dt
= kx(1− x)(−rc + rimI), (5)

where rc represents the perceived frustration with NPIs due

to the socioeconomic, cultural, and emotional damages and

inconveniences associated with NPI adoption; ri and m

represent the perceived susceptibility to the disease and the

perceived severity of the disease, respectively; and kmeasures the

public responsiveness to changes in disease prevalence. Defining

K = k/rc and ω = rim/rc as in Bauch (36), we then rewrite

Equation (5) as:

dx

dt
= Kx(1− x)(−1+ ωI), (6)

where I =
1

ω
is a threshold prevalence rate below which the

adherence level would be decreasing. Hence, the two threshold

prevalence rates I = 1/α and I = 1/ω are loose measures of

tolerance for the disease at the decision-makers level and public

level, respectively.

3. Results

In this section, we derive a mathematical expression for

the basic reproduction number, R0, and study the stability

properties of both disease-free and endemic equilibrium

solutions in Section 3.1. In particular, we show that the model

has two disease-free equilibria, of which one is always unstable

and the other is globally asymptotically stable whenR0 < 1 and

unstable otherwise. WhenR0 > 1, the model has three endemic

equilibrium solutions that exchange stability as R0 is varied.

These analytical results are followed by extensive numerical

simulations in Section 3.2.

3.1. Equilibria and basic reproduction
number

Our model has two disease-free equilibria given by

E1 = (S1,E1, I1,R1, x1) =

(

π

µ
, 0, 0, 0, 0

)

, (7)

and

E2 = (S2,E2, I2,R2, x2) =

(

π

µ
, 0, 0, 0, 1

)

, (8)

corresponding to the case where there is no disease and no

adherence to NPIs for E1, and the situation where the disease

is absent but the population fully complies with prevention

measures E2.

The basic reproduction number,R0, for this model is given

by

R0 =
β0κπ

χµ
, (9)

with χ = (κ + µ)(γ + δ + µ).

The disease-free equilibrium point E1 is globally

asymptotically stable when R0 < 1 and unstable when

R0 > 1, whereas E2 is always unstable (proof in Section 1 of the

Supplementary material). This encapsulates the fact that when

there is no disease, individuals have no incentive to adhere

to NPIs, especially because the cost of adopting preventive

measures, no matter how small it might be, would still be higher

than the perceived risk of acquiring the disease when the disease

is absent.

Additionally, the model has rich dynamics with three

endemic equilibria given by

(a) E3 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
χ

βκ
,

E∗ =
µ(γ + δ + µ)

κβ
(R0 − 1),

I∗ =
µ

β
(R0 − 1) ,

R∗ =
γ

β
(R0 − 1) ,

x∗ = 0,

(10)

exists whenR0 > 1.
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(b) E4 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
1

µ

(

π −
χ

κω

)

=
π

R0

(

R0 −
β

µω

)

,

E∗ =
γ + δ + µ

κω
,

I∗ =
1

ω
,

R∗ =
γ

µω
,

x∗ =
1

α

[

R0 −

(

1+
β

µω

)]

,

(11)

exists when

R0 > 1+
β

µω
, (12)

and

(c) E5 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
απκ + χ

κ(β + αµ)
,

E∗ =
µ(γ + δ + µ)

κ(β + αµ)
(R0 − 1),

I∗ =
µ

β + αµ
(R0 − 1),

R∗ =
γ

β + αµ
(R0 − 1),

x∗ = 1,

(13)

exists wheneverR0 > 1.

Theorem 1 (Stability of E3). The endemic equilibrium point E3

is locally asymptotically stable when

1 < R0 < 1+
β

µω
, (14)

and unstable otherwise.

Theorem 2 (Stability of E5). The endemic equilibrium point E5

is locally asymptotically stable when

R0 > 1+
β

µω
+

α

ω
(15) and R0 >

1

µ

(

χ

ξ0
− 1

)

,(16)

where χ = (γ + δ + µ)(κ + µ) and ξ0 = γ + δ + κ + 2µ.

Moreover, if we assume the latency period is at least 1 day so

that κ ≤ 1, then (Equation 15) subsumes (Equation 16). The

endemic equilibrium E5 is unstable whenR0 < 1+
β

µω +
α
ω .

Theorem 1 shows that for diseases that eventually spread

within a population, the higher ω is, the more likely the public

will keep some level of adherence to NPIs when the disease

becomes endemic. On the other hand, Theorem 2 shows that the

TABLE 2 Parameter values used in simulations.

Parameter Figures 1–5 Figure 6

π 0.000002 0.0017

µ 0.000002 0.0017

β0 1.1 0.6

κ 1/6 0.2

γ 0.125 0.2

δ 0.001 0.004

K 0.4 0.3

likelihood of having full adherence to NPIs during the endemic

stage is both proportional to ω and inversely proportional to

the stringency of control measures, α. This highlights a trade-

off between NPI stringency and adherence. (Proofs can be found

in Section 2 of the Supplementary material).

3.2. Scenario analysis

We simulate the modified SEIR model given by Equations

(1), (3), and (6) in different scenarios to better understand the

effect of temporal variations in NPI adherence levels on disease

dynamics. We keep all the epidemiological parameters fixed and

vary only the values of α, the stringency of control measures, and

ω, with 1/ω measuring the tolerance of the disease in the public.

Parameter values used in simulations are given in Table 2.

3.2.1. Baseline scenario

First, we consider the hypothetical situation where the NPI

adherence level is fixed over time, i.e., x(t) = x. When x = 0 or

α = 0, the model reduces to the classical SEIR model without

the effect of disease control interventions. It is easy to see that

when the adherence level is constant over time, one can write

x(t) = 1 without any loss of generality. We investigate the

dynamics of the disease when the adherence level is fixed at

x = 1 for different values of α. Figure 1 shows that increasing

the stringency of NPIs can result in a substantial decrease in

the prevalence at the peak of the epidemic. It is important to

note that the model predicts that the epidemic curve can be

flattened for high values of α, and the ultimate conclusion would

be that the higher the stringency of NPIs, the better. However,

this might not hold when temporal variations in NPI adherence

are considered, as we show below.

3.2.2. Time-varying adherence level

3.2.2.1. Fixed NPI stringency

First, we fix the stringency of NPIs to α = 100 and

investigate the effect of varying ω. Figure 2 shows that if ω =
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FIGURE 1

E�ect of increasing NPI stringency when the adherence level to

NPIs is constant over time. It is clear that under this assumption,

substantial increases in NPI stringency result in a considerable

decrease in the prevalence at the peak of the epidemic.

FIGURE 2

E�ect of increasing ω at fixed α = 100. This figure shows that

when the level of public tolerance for the disease is high, the

prevalence at the peak of the epidemic can be much higher

than what might be expected under the fixed NPI adherence

level assumption.

100, i.e., the risk perceived by the public exceeds the barriers to

NPI adherence only when disease prevalence is at least 1%, then

the peak prevalence of the epidemic would exceed 20%, whereas

it was lower than 10% even for mildly stringent NPIs (α = 50)

when the NPI adherence level was assumed constant throughout

the epidemic. However, if the public perceives amuch higher risk

from the disease (ω ≥ 6,000), the level of adherence to control

measures would be much higher and the peak prevalence can

be reduced to around 6%, which is much closer to what was

observed in Figure 1. It is noteworthy that even under perfect

adherence to NPIs, the prevalence at peak cannot be further

reduced without increasing the stringency of control measures.

3.2.2.2. Fixed public tolerance for the disease

We observed that under the fixed adherence assumption,

i.e., x(t) = 1 for all t, a substantial increase in NPI stringency

would result in a substantial decrease in the peak prevalence

for relatively low values of α. However, this might not be the

case when the NPI adherence level, x(t), is time-varying. To

see what might happen in this case, we fix ω = 100 and

simulate the model for different values of α. Figure 3 shows that

increasing the NPI stringency, α, does not result in a substantial

decrease in the peak prevalence when the public tolerance for

the disease is not sufficiently low. This is in contrast with

what is observed in Figure 1 when the NPI adherence level is

constant over time. Moreover, for considerably high values of

α, the level of adherence to NPIs fluctuates over time due to

trade-offs between NPI stringency and adherence, leading to the

occurrence of multiple epidemic waves. This seemingly counter-

intuitive observation might be justified by the quite high public

tolerance of the disease when ω = 100 as the NPI adherence

level increases only when the disease prevalence is at least 1%.

This might happen either because the perceived risk for the

disease is low or because the perceived frustration with NPIs is

much higher than the perceived risk. This shows that not much

can be achieved by imposing very stringent control measures if

the capacity and willingness of the public to adopt suchmeasures

are not increased.

3.2.2.3. Striking the right balance between NPI

stringency and adherence

To understand what might happen when NPI stringency is

high but not too high, we fix NPI stringency at α = 500 and

simulate the model for different values of ω. Figures 4A, B show

that for small values of ω, multiple epidemic waves can occur

due to the trade-offs between NPI stringency and adherence.

However, as ω is increased, the effectiveness of NPIs increases

and the epidemic curve can be flattened (see Figure 4C). It is

important to note that the peak prevalence for the flattened

epidemic curve (ω = 6,000) is around 1.4%, which is much

lower compared to the 31.1% when ω = 50 and lower than the

1.7% prevalence peak for the second wave when ω = 100. This

suggests that disease control can be much more effective with

reasonably stringent NPIs if the willingness and capacity of the

public to adopt such measures is increased.

3.2.2.4. What matters most: Increasing NPI stringency

or adherence?

We compare the relative reduction in the prevalence at

the first peak when α is increased at fixed ω and when ω is

increased at fixed α. Figure 5 shows that increasing ω, and thus

the adherence level to NPIs, results in a much more substantial

reduction in the peak prevalence than increasingNPI stringency,

α, at fixed ω.
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FIGURE 3

E�ect of increasing the stringency of NPIs, α, when the level of adherence to NPIs is time-varying and ω = 100 is fixed. This shows that if the

public tolerance for the disease is not su�ciently low, increasing NPI stringency results only in a marginal decrease in the peak prevalence and

can induce the occurrence of multiple epidemic waves. This is in contrast with what is observed in Figure 1 when the NPI adherence level is

constant over time. (A) The prevalence rate of the disease. (B) Time-varying adherence level to NPIs.

FIGURE 4

E�ect of increasing ω at fixed medium-level NPI stringency (α = 500). (A, B) Show that multiple epidemic waves can occur when ω is not high

enough. Both the number of secondary waves and the prevalence at each secondary peak depend on the stringency of NPIs, α, and the public

tolerance for the disease, 1/ω. (C) Shows that the epidemic curve can be flattened for considerably high values of ω.

3.2.2.5. Equilibrium solutions

Lastly, we simulate the modified SEIR model with a different

set of parameter values to investigate the behavior of the system

at equilibrium. In particular, we fix the NPI stringency at α =

2000 and use ω as the bifurcation parameter. Figure 6 shows

that when ω is low, the NPI adherence level decays to zero as
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FIGURE 5

(A) Reduction in the peak prevalence when α is increased at fixed ω contrasted with the reduction when ω is increased at fixed ω. (B) Increasing

ω, and thus the NPI adherence level, therefore, results in much higher marginal benefits than increasing the stringency of NPIs at fixed ω.

the disease becomes endemic. However, for larger values of ω,

observe either partial or full adherence to NPIs at the endemic

state depending on how large the value of ω is. Therefore, the

system undergoes two transcritical bifurcations as the value of

ω is varied. It is important to note that the exact values where

these exchanges of stability occur depend on the values of other

parameters. In the particular case of partial NPI adherence at

equilibrium, increasing the value of ω results in both a decrease

in the endemic prevalence rate and an increase in the NPI

adherence level at equilibrium. Additionally, increasing the NPI

stringency, α, at fixed ω can destabilize the system from full to

partial adherence and even no adherence to NPIs at equilibrium.

4. Discussion

Non-pharmaceutical interventions play a central role

in infectious disease outbreak response and control. These

interventions can be very effective in curtailing the spread

of infectious diseases when adequately implemented and

sufficiently adopted by the population. However, NPIs can be

very disruptive, and the socioeconomic and cultural challenges

associated with their implementation interfere with both the

ability and willingness of affected populations to adopt such

interventions (25). This can lead to not only geographical but

also temporal variations in adherence levels to NPIs during

disease outbreaks and impede the control of infectious diseases

(12). In this study, we investigated the interplay between NPI

stringency, temporal variations in NPI adherence levels, and

disease dynamics using mathematical modeling. We showed

that when the NPI adherence level is assumed constant over

time, a substantial increase in the stringency of NPIs would

result in a substantial decrease in the peak prevalence and

the epidemic curve can be flattened by imposing stringent

disease control measures. The ultimate conclusion, in this case,

is that the higher the stringency of NPIs, the more effective

disease control is. Though this agrees with the results by Gros

et al. (34), we showed that this conclusion might not hold

when temporal variations in NPI adherence levels are taken

into account. For time-varying adherence levels to NPIs, the

dynamics of the disease are no longer influenced only by the

stringency of control measures, but also by risk perception

and the perceived frustration associated with NPIs. Our results

suggest that when the public tolerance for the disease is relatively

high, which might occur when either the perceived risk is

low or the perceived frustration with NPIs is high, the level

of adherence to NPIs might fluctuate over time, consistent

with the results by Crane et al. (14). We showed that these

fluctuations in NPI adherence levels over time might induce

the occurrence of multiple epidemic waves, which is consistent

with the results by Ochab et al. (37) and Ngonghala et al.

(38). Furthermore, our results suggest a trade-off between NPI

stringency and adherence in the sense that the public would find

it more difficult to sustain high levels of NPI adherence when the

stringency level is high, which is again consistent with the results

by Acuña-Zegarra et al. (27). This conclusion is supported
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FIGURE 6

Behavior at equilibrium (endemic) for di�erent values of the ω. For low values of ω, public tolerance for the disease is high and the system

converges to a state where there is no adherence to NPIs during the endemic stage of the disease. For higher values of ω, however, NPI

adherence during the endemic stage can be either partial or total depending on how large the value of ω is. (A) Prevalence rates. (B) Adherence

levels.

both by our scenario analysis and analytical derivations of

the stability properties of the endemic equilibrium points of

our model.

Our model also suggests that interventions that aim

at increasing the adherence level to NPIs might be much

more valuable than increasing the overall NPI stringency. In

particular, we showed that an epidemic can be effectively

controlled even with not very stringent NPIs if the ability

and willingness of the public to adopt such interventions is

sufficiently increased. We, therefore, argue that for the effective

control of infectious disease outbreaks, public health authorities

should not only focus on implementing the right policies but

also, more importantly, on devising strategies to both increase

risk perception and decrease the frustration associated with

NPIs. This agrees with the conclusions by Avusuglo et al. (31).

Importantly, our results suggest that much consideration should

be given to the socioeconomic and cultural realities of affected

populations when devising public health policies for infectious

disease control.

Our work has important limitations that present

opportunities for future studies. First, our model has not

been calibrated to epidemic data. Also, we have kept the model

simple for generality. However, to reflect real viral epidemics,

it might be useful to take factors such as re-infections, vaccine

availability, and the spread of multiple variants of the same

virus into account. Furthermore, we assumed that the level of

frustration with NPIs is constant over time. This might not

be realistic. Accounting for temporal variations in frustration

levels associated with NPIs might yield more insight. Lastly,

we assumed that the implementation of NPIs was triggered

by the prevalence of the disease. However, there might be

cases where NPIs are implemented based on other factors such

as the availability of intensive care units or the number of

disease-induced deaths. It would be insightful to check whether
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the conclusions of this study are robust with respect to these

other modeling approaches.
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