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Introduction: Perioperative hemoglobin (Hb) levels can influence tissue

metabolism. For clinical physicians, precise Hb concentration greatly

contributes to intraoperative blood transfusion. The reduction in Hb during

an operation weakens blood’s oxygen-carrying capacity and poses threats

to multiple systems and organs of the whole body. Patients can die from

perioperative anemia. Thus, a timely and accurate non-invasive prediction for

patients’ Hb content is of enormous significance.

Method: In this study, targeted toward the palpebral conjunctiva images

in perioperative patients, a non-invasive model for predicting Hb levels

is constructed by means of deep neural semantic segmentation and a

convolutional network based on a priori causal knowledge, then an automatic

framework was proposed to predict the precise concentration value of Hb.

Specifically, according to a priori causal knowledge, the palpebral region was

positioned first, and patients’ Hb concentration was subjected to regression

prediction using a neural network. The model proposed in this study was

experimented on using actual medical datasets.

Results: The R2 of themodel proposed can reach 0.512, the explained variance

score can reach 0.535, and the mean absolute error is 1.521.

Discussion: In this study, we proposed to predict the accurate hemoglobin

concentration and finally constructed amodel using the deep learningmethod

to predict eyelid Hb of perioperative patients based on the a priori casual

knowledge.

KEYWORDS

non-invasive, prediction, causal knowledge, hemoglobin, segmentation

Introduction

Hemoglobin (Hb) is a protein mainly responsible for transporting oxygen in higher

organisms. Hb as a pivotal participant in multiple life activities of organisms is capable of

effectively delivering oxygen, transferring electrons, and promoting the decomposition of

hydrogen peroxide. In clinical practice, illnesses such as anemia, leukemia, and cardiac

diseases are usually associated with Hb disorders. For instance, anemia is a disease

syndrome involving multiple systems, which may be attributed to the reduction in

erythrocyte or Hb production, functional iron deficiency (e.g., sufficient iron stores or
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insufficient iron mobilization), and immune activation or

suppression of erythrocyte production. Anemia has an incidence

rate of about 25 percent worldwide (1), and notably increased

cases are found in economically disadvantaged areas and in

patients with malignant tumors. Mounting data have indicated

the significant correlations of the incidence and fatality

of perioperative complications in patients with anemia (2).

Early interventions on patients with anemia can avoid organ

dysfunction, improve nutritional status (3), correct anemia-

induced cerebral cell ischemia and edema (4–6), cause a lower

prosthesis-related infection rate after artificial replacement (7),

lead to an incidence rate of cardiopulmonary bypass-induced

renal damage (8), and reduce the occurrence of eclampsia and

preeclampsia during pregnancy (9). Consequently, Hb content

in human blood is considered as an important indicator to be

watched during perioperative period.

Palpebral conjunctiva is a mucous membrane with

superficial and rich capillaries not readily influenced by skin

color and temperature. The color of palpebral conjunctiva tends

to be gradually lighter with the reduction in Hb concentration

and erythrocytes. Given that the deep or light color of palpebral

conjunctiva reflects the anemic degree, a visual method is

commonly used to rapidly assess the anemia of patients, though

large differences exist among different evaluators (10, 11). The

colorimetric card method is recommended by WHO to directly

estimate Hb concentration after blood sample processing (12),

which is superior to the visual method in terms of accuracy,

but it is also limited due to invasive procedures and subjective

assessment. Non-invasive pulse Hb detection (SpHb) based on

a multi-wavelength spectrum provides real-time monitoring

of Hb changes (13), which has been applied in some medical

institutions. However, its detection accuracy is susceptible

to finger temperature and posture changes (14), and specific

instruments and expensive costs are needed. Thus, such a

method has not been popularized. In addition, numerous non-

invasive technologies and tools can indirectly determine the Hb

level in blood and the oxygen content in human tissues, such

as photoplethysmography (PPG) based on the oral mucosa and

conjunctival tissues (15), reflectance spectroscopy of finger and

palpebral conjunctiva (16), and fluorescence spectroscopy (17),

which are also reported in some studies of anemia prediction.

However, many products are usually not available as portable or

wearable devices, and their prices are unaffordable to some.

As artificial intelligence technology develops, image

recognition and analysis based on computer vision technology

have been widely applied in the medical field. Machine learning

with recognition and analysis of palpebral conjunctival images

has a higher accuracy than physicians’ visual method and

overcomes the shortcomings resulting from insufficient medical

staff as well as lack and backwardness of medical equipment.

Moreover, a blood transfusion is needed for anemic patients

in accordance with Hb levels, which should be monitored

frequently. Although Hb levels are usually detected in an

invasive manner, invasive procedures are not recommended for

specific populations such as infants, elderly people, pregnant

women, anemic patients, and those with sickle cell disease.

In addition, patients feel severe discomfort with frequent

blood sampling, and the cost is fairly expensive, especially

in areas with limited economic resources. Herein, exploring

non-invasive approaches and designing corresponding tools to

monitor the concentration of Hb are vital to reduce the cost to

patients. Additionally, classification research with normal or

anemia populations as research objects constitutes the majority

of existing studies on palpebral conjunctival Hb, which has a

small sample size and certain requirements for photography.

However, with respect to a non-invasive prediction for patients’

Hb during the perioperative period, the difficulties that need to

be overcome include low pixel of camera equipment, changeable

postures, insufficient exposure, and short photography duration

(due to being unable to focus on eyes precisely). Thus, based

on a priori causal knowledge, the present study adopted feature

engineering and deep neural network methods to construct a

model for predicting the specific value of palpebral conjunctival

Hb concentration to provide a novel approach for real-time

prediction of Hb in patients undergoing surgery through

palpebral conjunctiva.

The main contributions of this paper are: First,

we constructed an eyelid data set of surgical patients.

Secondly, we propose a two-stage non-invasive hemoglobin

concentration accurate prediction method based on deep

neural semantic segmentation, deep convolution neural

network and label distribution learning. Finally, we carried

out experimental verification on the constructed eyelid

data set.

The organizational structure of this paper is as follows: the

first section briefly introduces the significance of hemoglobin

prediction, and the second section introduces the related

work. The third section introduces the model and method

proposed in this paper; The fourth section introduces the

relevant experiments and conclusions, and finally the full text

is summarized.

Related work

Deep convolutional neural network (CNN) has achieved

great success in segmentation of medical images (MRI, CT,

X-ray, etc.) and auxiliary diagnosis due to its excellent

feature expression ability. Cernazanu-Glavan (18) proposed

a method for bone structure segmentation in X-ray images

using convolutional neural network. Giusti (19) proposed a fast

medical image scanning method based on maximum pooling

convolutional neural network. Literature (20, 21) proposed the

method of realizing automatic cell membrane segmentation

of electron microscopic image based on convolutional neural

network. Non-invasive hemoglobin prediction based on deep
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convolutional neural network has been studied in recent years.

The main work is to classify patients based on conjunctiva

images for anemia. In terms of the feature engineering method

based on palpebral conjunctival images, Shaun et al. (22)

extracted R and G channel color features of eyelid conjunctiva

and calculated erythema index (EI) to predict anemia, with

accuracy of 70 and 72%, higher than the evaluation of three

clinicians (60/57/64%), revealing strong correlations between

EI and Hb. Suner et al. (23) photographed eyes with a digital

camera of which palpebral conjunctiva was manually clipped,

and R, G, and B features in the RGB color space of photographs

were extracted through MATLAB software analysis, followed

by associating the results with Hb concentration. The findings

suggest the prediction accuracy, sensitivity, and specificity of 71,

69, and 72% respectively. Sevani (24) extracted RGB features

of images, calculated the centroid of R, G and B of eyelid

conjunctiva images based on k-means algorithm, and clustered

them for anemia classification study, involving 36 training

sets and 10 test sets, with an experimental accuracy of 90%.

Anggraeni et al. (25) constructed a prediction model with

a sample size of 20. The RGB spatial model features were

extracted and then fitted into a linear regression equation,

indicating an association of 92% between anemia and color

features. However, the sample size for deriving the model was

too small, and the generalization ability was weak. Tamir et al.

(26) studied 19 eyelid conjunctival photos, which were obtained

using their own Android application under appropriate lighting

conditions. The red and green intensity values in the spectrum

are compared by Sobel edge detection method. The results show

that the best average intensity threshold difference between

the two is 1.5, the average intensity difference between red

and green in patients with anemia is <1.5, while the average

intensity difference between red and green in patients without

anemia is more than 1.5. The accuracy of this method in

predicting anemia was 78.9%. Chen et al. (27) amended the

Kalman filter from the original linear penalty regression to

non-linear penalty regression, extracted the R component from

the RGB color model of 100 eyelid conjunctival images, and

set the HB threshold to 11 g/dl. The experiment confirmed

that the introduced Kalman filter can reduce the quantity of

suspicious anemia.

In the current research field, a head-mounted camera

connected to a mobile phone was first used by Vitoantonio

et al. (28) to achieve a light balance between photographs, which

was reported in a study with a cohort of 77 subjects (9 anemic

patients and 68 healthy people). This study was performed with

components a and b in a CIE color space and a component

G in RGB as features to be extracted and to support vector

machine (SVM) as a classifier. The results were indicative of

a moderate correlation (49%) between image color features

and an Hb value (49%), and the accuracy, specificity, and

sensitivity were 84.4, 82.4, and 100%, respectively in predicting

anemia. Subsequently, the camera equipment was improved into

a portable and low-cost macro camera by the same team. The

Hbmeter software was adopted to analyze photographs, and

the following data were set: Hb < 10.5 g/dL: highly suspected

anemia, 10.5 g/dL < Hb < 11.5 g/dL: suspected anemia, and

Hb > 11.5 g/dL: low probability of anemia. RGB and CIELab

features were extracted, a k neighbor classifier was fitted, and

the model performance was tested by 10-fold cross-validation.

The correlation index between component an in-color model,

and Hb was analyzed in the study; the results indicated that

the following inclusion of all samples (sample size of 113) and

the correlation index between a and Hb was 0.726. After the

conditions were defined (i.e., 28 < L < 82 and 16 < R = G = B

< 233), partial pixels (either too dark or too bright) were filtered

out, and the correlation index between a and Hb was 0.745.

Based on the deep learning method, the R. Muthalagu team (29)

selected mean color features in HIS space extracted from 127

eye pictures as the input layer to construct a three-layer artificial

neural network (ANN), which achieved a satisfactory result in

terms of predicting anemia (i.e., the sensitivity, specificity, and

accuracy were 77.27, 96.11, and 91.3% respectively). Compared

to the EI algorithm recommended by Collings et al. (sensitivity

74%, specificity 77%), the model performance has been notably

enhanced. In the team of Chen (27), a classification study with a

sample size of 100 was designed to evaluate the predictionmodel

using a fast algorithm based on Markov distance (minimum

distance classifier) and a robust algorithm based on SVM and

ANN. The former extracted the high-tone pixel features of

HIS and the intermediate pixel data features of RGB, while

the latter contained 18 features (involving vascular texture

feature), improved the HIS features in the fast algorithm, and

finally assessed the model through sensitivity, specificity, and

the Kappa index. The fast algorithm, SVM, and ANN had a

sensitivity of 62, 78, and 75% and a specificity of 90, 83, and 83%

respectively. Although SVM is better than ANN, the advantage

of ANN has not been exhibited due to small sample size. Jain

et al. (30), 99 original photographs were transformed into 3,103

photographs via enhancement technology, and favorable results

(i.e., accuracy 97%, sensitivity 99% and specificity 95%) were

obtained through extracting R and G components followed by

the introduction of the ANN algorithm in prediction stage.

This paper provides evidence to suggest that the data-driven

deep learning algorithm introduced is able to enhance model

performance prominently. However, although improvement

is achieved through enhancing 99 original photographs by

about 30 times, the training time is also increased, which can

easily cause over-fitting rather than real enhancement in the

generalization ability. In addition, a fully in-depth learning

model with a sample size of 300 investigated by Bryan et al.

(31) revealed that through introducing a 35-layer convolutional

neural network (CNN) algorithm in the region of interest (ROI)

detection stage, superimposing a seven-layer CNN algorithm in

the process of clipping palpebral conjunctival images, and finally

mapping features learned by computer of the function of neural

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1079389
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen et al. 10.3389/fpubh.2022.1079389

FIGURE 1

Architecture diagram of Hb concentration identification.

FIGURE 2

Cause-and-e�ect diagram of patient’s Hb concentration.

network regression with the cut-off value of Hb as 11 g/dL, an

optimal sensitivity (77%) was obtained, whereas the accuracy

and specificity were only 42 and 36% respectively. Considering

that the results of preliminary trials are not satisfactory, research

samples are still being collected, which aims to further enhance

calculation results by expanding sample sizes.

Eyelid region location based on prior
causal knowledge and mask RCNN

In this study, Y ǫ [6,18] was defined to represent the range of

Hb content in patients, and I was set as the discrete space of the

patient’s

Through the past researches, the challenges of hemoglobin

prediction include acquisition equipment, ways of image

extraction, algorithm selection and accurate prediction value.

And our study aims to propose a two-stage non-invasive

hemoglobin concentration accurate prediction method based on

deep learning algorithm. Then we implemented the verification

on the constructed eyelid data set to show the performance of

the model.

Models and methods

Targeted toward perioperative patients’ eye photographs

taken by the mobile device, this study proposed an automatic

framework to predict Hb concentration precisely (Figure 1). The

first was to locate the palpebral region network, that is, the

palpebral region was identified from an original eye photograph

through a deep neural network. Then Hb concentration was

subjected to a regression prediction based on a concentration

prediction neural network. The details are presented as follows.

palpebral image. As shown in Figure 2, the intervention on

the palpebral region in the image may influence the distribution

of the Hb value Y. Thus, the function C: I→ Y could be called

the causal feature or visual cause of image I.

C (I) =
{

Y Containing palpebral pixels

0 Else
(1)

Except for the palpebral region, there was no causality in

the other parts (i.e., eyes, eyelashes, pupils, or skin), and an

intervention on these pixels in the image had no impact on

the prediction of the Hb value. However, the existence of these

parts (eyes, eyelashes, pupils, and skin) was closely associated

with the Hb value of patients (due to the common cause, i.e.,

palpebra). The following function S: I→ Y was called as the false

correlation of Y in image I:

S (I) =
{

Y Containing pixels other than the palpebrae

0 Otherwise
(2)

Both palpebral and non-palpebral pixels (e.g., eyes,

eyelashes, pupils and skin) were predictors of the target variable

(the patient’s Hb value), but only one of them was the cause. For

this reason, there was a need to distinguish the related factors

(i.e., those with actual causality) of the target variable, so as to

identify the visual cause from images.

In this study, the palpebra in the image was a causal factor

predicting the Hb value of patients. The image implicated in

classification labels was observed in the standard classification

task of machine learning so the target variable could be predicted

through images directly. However, the prediction probability

of the image was not able to display the causality of the

image to the target variable Y. Furthermore, Hb content was

only correlated with the palpebral region of patients, so other

noise information was introduced to facilitate data acquisition.

Identifying the causal factors regarding prediction results

contributed to enhancing the reliability and interpretability of

the prediction. Consequently, for this study, based on the deep

neural semantic segmentation network, the palpebral region

was extracted by clipping the original palpebral photographs

collected to realize the extraction of predictive causal features.
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Mask RCNN (32), a highly efficient instance semantic

segmentation model, was capable of realizing pixel-level

image instance segmentation. The region of interest alignment

algorithm (ROIAlign) and fully convolutional network (FCN)

were designed on the basis of the (33). The semantic

segmentation prediction and classification prediction were

divided into two branches of the network. Specifically, the

classification prediction branch provided a prediction for

the ROIAlign and generated category labels and rectangular

boxes, while the semantic segmentation prediction branch

generated a binary mask of the image. In this study, the

palpebral conjunctival region was first extracted on the basis

of such highly-efficient and accurate segmentation of the

neural network.

As shown in Figure 3, an image involving the palpebral

conjunctival region was input. Then forward reasoning was

conducted through the palpebral positioning network to output

the palpebral region of this image. Layer0, layer1, layer2, layer3,

and layer4 were all blocks composed of network structures such

as the convolutional layer, batch normal layer, and activation

function. The FPN network constituted by p2, p3, p4, p5, and p6

consisted of a convolutional layer and up-sampling operation.

The region proposal network (RPN) was mainly responsible

for extracting the ROI from the image and generating the

target candidate region. The combination of the ROI Align

layer with the FPN feature layer and RPN layer to form

a fixed feature layer contributed to the network calculation.

The eye image to be processed is first inputted into the pre-

trained ResNet+ FPN network to extract features and obtain

the corresponding feature maps. The feature map obtains a

considerable number of candidate frames (regions of interest or

ROI) through RPN. Then, binary classification of the foreground

and background is performed using the SoftMax classifier. More

accurate candidate frame position information is obtained from

frame regression. Additionally, part of the ROI is filtered out

under non-maximum suppression. Afterwards, the feature map

and the last remaining ROI are sent to the RoIAlign layer,

enabling each ROI to generate a fixed-size feature map. Finally,

the flow passes through two branches, one branch enters the fully

connected layer for object classification and frame regression,

and the other branch enters the full convolutional network

(FCN) for pixel segmentation.

Hb concentration prediction network

CNNs perform well in different types of visual recognition

tasks such as image classification (34), target detection (35),

and semantic segmentation (36). One of the most important

factors leading to the success of CNNs is the intensive training

of the availability of images. However, in the medical field, it is

difficult to collect sufficient training images with clear labels for

Hb content prediction. The difficulty in the collection of a large

and accurate training set is attributed to the trouble of providing

accurate Hb value labels for eyelid images of patients (even for

domain experts) and the time-consuming collection of eyelid

images and Hb values of patients, which may limit the number

of training samples.

Nonetheless, without the traditional recognition problem,

the fluid concentration in the eyelid is in a naturally sequential

gradient from 6 to 18 mol/L, and the sequential data among

classes will be ignored if labels receive a one-hot encoding.

In a given eyelid image of a patient, we are interested in

estimating the Hb value of the patient. For two-input eyelid

images X1 and X2 with ground-truth labels y1 and y2, if

there is a close correlation between y1 and y2, the correlation

between X1 and X2 should be similar, and vice versa. For

example, eyelid images with Hb values ranging from 9 to 11

moL/L should have closer correlations than those with Hb

values ranging from 9 to 16 moL/L. In other words, close

correlations are expected among input images with similar

output features. Hence, each instance can be assigned with a

discrete label distribution y according to its basic facts using

label correlation. Label distribution can naturally describe the

fuzzy information among all possible labels. Through label

distribution learning, the training instances mapping to each

class of labels are increased significantly, but the total number

of training instances does not actually become larger, which

can reduce the training sample space. In this study, the

concentration prediction neural network was thus designed

based on CNNs and label distribution learning.

Given that X represents the input image of the patient’s

eyelid, y is the real label, whose continuous value is y ∈ [6, 18].

The model was trained to predict a value as close as possible

to the real label. To make use of label correlation, the truth

value y was transformed into a normal distribution p(y, σ ) to

represent a new label. The mean value was set to the value of real

label y, and σ is the standard deviation of a normal distribution.

Also, pk(y, σ ) is the k
−th element of p(y, σ ), and the continuous

value of k is k ∈ [5, 20] ; pk(y, σ ) can be expressed as follows:

pk
(

y,σ
)

= 1√
2πσ

exp(− (k− y)2

2σ 2
) (3)

where pk represents the probability that the truth value of

Hb is k.

In the training process, assume that G(∗, θ) is the

classification function of the training estimation model, θ is

the model parameter, and z (X, θ) = G(X, θ). The input

image X was transformed into a classification vector z (X, θ),

which was then transformed into a probability distribution

P̂ (X, θ) through the softmax function, and the k-th element was

expressed as follows:

P̂ (X,θ) = exp(zk(X,θ))
∑

n exp(zn(X,θ))
(4)
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FIGURE 3

Flow chart of palpebral segmentation network.

where zk(X, θ) is the k-th element of z (X, θ ).

The difference between the predicted distribution and the

real distribution was measured using Kullback–Leibler (K–L)

divergence (37). Based on the K–L loss, the model parameters

were updated using a stochastic gradient descent (SGD)

optimizer, so as to make the two distributions nearly similar.

LKL
(

X,y,θ ,σ
)

=
∑

k
pk(y,σ )ln

pk(y,σ )

p̂k(X,σ )
(5)

After the label distribution learning, the truth value of Hb

concentration predicted by the model is shown in Figure 1, and

L1Loss was adopted to calculate the loss between the truth value

and the predicted value. The overall loss was calculated below:

l̂(x) = LKL
(

X,y,θ ,σ
)

+ L1Loss
(

y
′
,y

)

(6)

where y′ is the predicted value, y is the truth value.

With the aim of facilitating the subsequent implementation

of the concentration prediction function in the mobile terminal,

several kinds of lightweight CNNs, including MobileNetv3

(38), MobileNetv2 (39), ShuffleNetv2 (40), SqueezeNet (41),

and ResNet CBAM (42) and BCNN (43), were selected as the

backbone networks to extract features in this study. Details are

shown in the experiments.

Experimental results and analysis

Data description

The images of 1,065 patients receiving surgery were collected

from the Department of Anesthesiology at Southwest Hospital

as the data set in this experiment. The Hb concentration in all

patients was consecutive values distributed between 6 and 18

moL/L (we got the Hb concentration through formal laboratory

FIGURE 4

Raw input eye and eyelid image.

testing). As shown in Figure 4, the above picture is the original

collected eye picture, and the bottom is the manually cropped

eyelid picture. The raw data distribution (Figure 5A) showed

that the data were imbalanced as there were more data of

patients with a normal Hb level but fewer data of the two

extremes (patients with a low or high Hb level). The reason

is that the images of patients without lesions are common,

whereas it is difficult to collect images of patients with lesions

or even severe lesions, which also reduces the generalization

ability of machine learning algorithms. In this study, therefore,

the samples were balanced by up-sampling by synthetic minority

oversampling Technology (SMOTE). In detail, the data were

divided into the training set and the test set, and then up-

sampled separately to balance the data. After up-sampling, the

specific distribution of the training set is shown in Figure 5B,

that of the test set is shown in Figure 5C, and that of the sample

data size is shown in Figure 5D.

Evaluation indexes

In order to quantitatively evaluate the comprehensive

performance of the eyelid image extraction algorithm based on

Mask RCNN, this paper adopts Average Recall (AR), Average
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FIGURE 5

(A) Distribution of raw data. (B) Distribution of up-sampled training set. (C) Up-sampled test set. (D) Sample data size.

precision (AP), and mean intersection over union (mIOU) as

the evaluation of eyelid image extraction index.

In order to quantitatively evaluate the performance of

accurate prediction of hemoglobin concentration, three indexes

are used in this study, which are R2 coefficient, mean absolute

error (MAE), and the explained variance score (EVS). Smaller

MAEmeant better model fitting. Also, r2 is in a theoretical range

of [-∞, 1] and a normal range of [0, 1]. The closer of R2 to 1, the

stronger the explanatory ability of the variables of the equation

to y, and the better the model fitting to data. Besides, the closer

of R2 to 0, the worse the model fitting, and the empirical value

>0.4 represented the better fitting effect.

Eyelid segmentation experiment

These experiments used the open source Pytorch learning

framework, Python language programming to realize the

algorithm network. In addition, the hardware environment is

Dawning workstation from Chongqing Institute of Green and

Intelligent Technology, Chinese Academy of Sciences, equipped

with dual NVIDIA 2080Ti graphics cards (11 GB), 64-bit

Ubuntu16.04 operating system.

In the segmentation experiment, the existing network

structure of COCO training set mask-RCNN was directly

adopted after the fine-tuning based on the existing weights. A

total of 852 eye images was selected for fine-tuning training

and 213 images for testing. The training set received multi-scale

training, with a batch size of 8. SGD was adopted, and when the

learning rate (LR) = 0.01 and num epochs = 24, StepLR decay

was employed. The LR declined by 1/2 in the 16th epoch, and it

doubled in the 20th epoch. The eyelid segmentation results are

shown in Table 1. Figure 4 shows the results of segmentation.

The output result of eyelid semantic segmentation is shown

in Figure 6, The effect of eyelid segmentation is very good. The

value in the first row in Table 1 indicates that only the prediction

boxes with IOU ≥0.5 are counted, and Average Precision and

Average Recall of this prediction box are calculated. The second
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TABLE 1 The average precision and recall under di�erent thresholds

of mIoU.

Method Threshold

of IOU

Average

precision

Average

recall

mIOU

Mask-RCNN EYE

0.5 0.988 0.991 0.678

0.5:0.95 0.588 0.660

0.75 0.662 0.781

Swin-transformer COCO ADE20K

0.5 0.709 – 0.535

0.5:0.95 0.519 –

0.75 0.565 –

FIGURE 6

Schematic diagram of segmentation results.

row represents the Average Precision and Average Recall of

the prediction boxes under the IOU thresholds that increase

from 0.5 to 0.95 with the size of 0.05. Obtain 10 groups of

Average Precision and Average Recall, and finally calculate the

Average. The value in the third line indicates that only the

prediction boxes with an IOU ≥0.75 are counted, and the

Average Precision and Average Recall of this prediction box are

calculated. mIOU: It refers to the IOU average of all predicted

targets and Ground truth.

When the IOU threshold is 0.5, the Average Precision and

Average Recall of the model are the largest, which can reach

more than 0.98. When the IOU threshold is 0.75, the Average

Precision of the model is 0. 662 and Average Recall is 0.781,

which is lower than when IOU threshold is 0.5. This is because

more strict IOU threshold is used in statistics, which is in

line with common sense. When the threshold is 0.5: 0.95, the

Average Precision of the model is 0.588, and the Average Recall

is 0.660. This is because when the IOU threshold is larger (IOU

> 0.75), the conditions for selecting prediction targets are more

demanding, which will lead to a further decline in the model

results. The Average Precision of the model also reached more

than 0.58, which also proved that the model was very ideal. Since

we do not have the Average Precision related to eyelid detection

as a reference, this paper refers to Swin-Transformer (44), the

latest research result in computer vision. Although the data set

is different, it can be explained that in the latest research results,

the Average Precision of coco data set can reach 0.709 when the

IOU threshold is 0.5 (our Average Precision is 0.988), which is a

good model. In terms of mIOU, our mIOU is 0.678, which is far

higher than Swin-Transformer’s index of 0.535 in ADE20K.

Accurate hemoglobin concentration
prediction experiment

In this study, the backbone network for Hb concentration

prediction included the fine-grained feature extraction network

B-CNN, lightweight convolution image classification networks

(MobileNetv3, MobileNetv2, SqueezeNet, and Shufflenetv2),

and the residual network combined with attention mechanism

(ResNetCBAM). Additionally, an experiment was conducted

based on the palpebral conjunctiva feature engineering method

(see Supplementary material). In this experiment, the small

model parameter of mobilenetv3 was 0.75. The SEblock layer

was added to the last layer of backbone networks for feature

extraction. Table 2 shows the specific network structure of

mobilenetv3. 10-fold cross-validation was performed for all

models, and images were cropped to 224 × 224. On the basis

of the SGD algorithm, the descent kinetic energy was set to

0.9, the weight decay was 5e-4, the batch size was 64, the LR

was initialized to 0.01, and the total epoch was 300. Besides,

over-fitting should be avoided using a premature stop strategy.

Experiment with up-sampled data set (Train: 1,218, Test:

296). The experiment was conducted three times in three

groups. First, the Hb concentration was predicted based on the

palpebral conjunctiva images artificially selected by the feature

engineering method. Secondly, the experiment was based on the

original eye images and the feature engineering method. In the

end, experiments based on deep convolution network are carried

out to verify the model in this paper. The input images of each

group are shown in Figure 7. Table 3 shows the experimental

results. As revealed by the linear regression model established

based on palpebral conjunctiva images artificially selected by

the feature engineering method, the optimal effect could be

achieved when the coefficient r2 was 0.3, EVS was 0.304, and

MAEwas 1.995. The experiment using original eye images based

on feature engineering showed that all models failed to predict

effectively. The optimal effect could be obtained when random

forest r2 was −0.019, EVS was −0.004, and MAE was −2.421,

revealing that the original eye images contained a lot of pseudo-

correlation noise that disturbed the prediction of Hb. Hence,

based on a priori causal knowledge, it is necessary to locate the

palpebral conjunctiva and predict Hb in conjunctiva regions.

In this study, the r2, EVS, and MAE of the model designed

based on deep neural networks were superior to those of

palpebral conjunctiva images artificially selected by the feature

engineering method. The worst model was the Shufflenetv2
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network, with the r2 of 0.321, EVS of 0.357, and MAE of 1.983,

while the optimal model was mobilenetv3+SEblock, with the

r2 of 0.512, EVS of 0.535, and MAE of 1.521, which were

0.202, 0.214, and 0.378, respectively, higher than those of images

selected based on the feature engineering method. Moreover,

comparison in experiments revealed that the prediction efficacy

of mobilenetv3+SE was better than all other deep learning

models. In comparison with that of the Shufflenetv2 network,

the prediction efficacy of mobilenetv3+SE was improved with

the r2 of 0.181, EVS of 0.161, and MAE of 0.366, respectively. It

can be concluded that the model based on deep neural networks

is superior to the traditional artificial feature engineering

TABLE 2 Structure of Mobilnetv3+SE.

Input Operator Exp size #Out

224× 224× 3 conv2d, 3× 3 – 16

112× 112× 16 bneck, 3× 3 16 16

56× 56× 16 bneck, 3× 3 72 24

28× 28× 24 bneck, 3× 3 88 24

28× 28× 24 bneck, 5× 5 96 40

14× 14× 40 bneck, 5× 5 240 40

14× 14× 40 bneck, 5× 5 240 40

14× 14× 40 bneck, 5× 5 120 48

14× 14× 48 bneck, 5× 5 144 48

14× 14× 48 bneck, 5× 5 288 96

7× 7× 96 bneck, 5× 5 576 96

7× 7× 96 bneck,5× 5 576 96

7× 7× 96 conv2d, 1× 1 – 576

7× 7× 576 Pool, 7× 7 – –

1× 1× 576 conv2d, 1× 1 – 1,024

1× 1× 1,024 AdaptiveAvgPool2d – –

1× 1× 1,024 conv2d, 1× 1 – 64

1× 1× 64 BatchNorm2d – 64

1× 1× 64 conv2d, 1× 1 – 64

1× 1× 64 ReLU – 64

1× 1× 64 conv2d, 1× 1 – 15

method, and the design of the network structure can also affect

the prediction of the final Hb concentration.

Ablation experiment

Ablation experiments were conducted to validate the

influence of eyelid segmentation on the mobilenetv3+SE neural

network that is the optimal model based on experiments. The

concentration was predicted by experiments based on original

eye images, eyelid images that were artificially cropped, and

eyelid images receiving semantic segmentation, respectively.

The experimental results (Table 4) illustrated that the r2

was 0.512, EVS was 0.535, and MAE was 1.520 for eyelid

images receiving semantic segmentation, 0.503, 0.518, and

1.528 for artificially cropped eyelid images, and 0.306, 0.338,

and 1.952 for original eye images, respectively. It seems that

eyelid region extraction by causal knowledge is beneficial to

improving the prediction efficiency of the Hb concentration

and identifying the effectiveness of the method proposed in

this study.

Conclusion and prospect

Hb detection is the foremost part of the diagnosis

of perioperative anemia, and it is expected to be rapid,

non-invasive, real-time, and easy to operate under the

ideal condition. As artificial intelligence technology advances,

computer vision has been widely applied in image recognition

and analysis in the medical field. The recognition and analysis

of palpebral conjunctiva images by machine learning not

only has higher accuracy than that by doctors’ visual method

but also can make up for the shortcomings caused by the

lack of medical personnel as well as the deficiency and

backwardness of medical equipment. Besides, patients with

anemia receive blood transfusion in light of their Hb levels, so

they need to be monitored frequently. Thus, their Hb levels

are usually measured invasively. Invasive methods are generally

not recommended, especially for infants, the elderly, pregnant

women, patients with anemia, and those with sickle cell disease.

FIGURE 7

The input images of each group.
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TABLE 3 Model experimental results with 95% confidence intervals.

Methods R2 EVS MAE

Prediction results of palpebral conjunctiva images artificially selected by feature engineering method

Decision tree 0.262 (0.242, 0.283) 0.267 (0.247, 0.287) 2.054 (2.028, 2.080)

Linear regression 0.300 (0.288, 0.312) 0.304 (0.292, 0.315) 1.995 (1.979, 2.010)

SVM 0.267 (0.248, 0.286) 0.270 (0.252, 0.289) 2.042 (2.019,2.064)

K-nearest neighbor regression 0.249 (0.230, 0.268) 0.251 (0.233, 0.27) 2.057 (2.036,2.078)

Random forest regression 0.285 (0.270, 0.299) 0.287 (0.273, 0.302) 2.028 (2.010, 2.047)

Boosting tree regression 0.296 (0.283, 0.308) 0.298 (0.287, 0.31) 2.012 (1.995,2.029)

Prediction results of original eye images base on feature engineering

Decision tree −0.013 (−0.032, 0.006) −0.001 (−0.021, 0.018) 2.425 (2.404,2.447)

Linear regression −0.077 (−0.113,−0.041) −0.064 (−0.101, 0.027) 2.462 (2.427,2.496)

SVM −0.052 (−0.081,−0.024) −0.039 (−0.068,−0.01) 2.428 (2.401,2.455)

K-nearest neighbor regression −0.021 (−0.040,−0.001) −0.006 (−0.026, 0.014) 2.401 (2.382, 2.420)

Random forest regression −0.019 (−0.041, 0.003) −0.004 (−0.027, 0.019) 2.421 (2.397,2.444)

Boosting tree regression −0.053 (−0.083,−0.024) −0.037 (−0.067, 0.007) 2.442 (2.410, 2.473)

Prediction results of deep CNNs based on a priori causal knowledge

BCNN 0.447 (0.446, 0.447) 0.452 (0.451, 0.453) 1.812 (1.812, 1.813)

mobilev2 0.447 (0.445,0.450) 0.462 (0.459, 0.466) 1.822 (1.819, 1.826)

Shufflenetv2 0.321 (0.319,0.323) 0.357 (0.352, 0.364) 1.983 (1.976, 1.991)

Squeezenet 0.498 (0.495,0.502) 0.511 (0.508, 0.514) 1.688 (1.685, 1.693)

Resnet_cbam 0.463 (0.461,0.466) 0.463 (0.461,0.466) 1.719 (1.714, 1.725)

mobilenetv3+SE 0.512 (0.499,0.517) 0.535(0.515, 0.542) 1.521 (1.481, 1.574)

TABLE 4 Ablation experiment results with 95% confidence intervals.

Methods R2 EVS MAE

Eyelid images receiving semantic segmentation

mobilenetv3+SE 0.512 (0.505, 0.512) 0.535 (0.513, 0.519) 1.520 (1.515, 1.526)

Artificially cropped eyelid images

mobilenetv3+SE 0.503 (0.499, 0.507) 0.518 (0.515, 0.522) 1.528 (1.511, 1.574)

Original eye images

mobilenetv3+SE 0.306 (0.296, 0.317) 0.338 (0.329, 0.348) 1.952 (1.936, 1.967)

Frequent blood sampling will make patients feel extremely

uncomfortable, and its cost is quite high, especially in areas

with limited economic resources worldwide. It is important to

research methods and design tools to monitor Hb concentration

in a non-invasive way to reduce the cost of patients. In this study,

we proposed to predict the accurate hemoglobin concentration

and finally constructed a model using the deep learning method

to predict eyelid Hb of perioperative patients based on the a

priori casual knowledge. The model is effective and practical

through verification by experiments of the real medical data

set, of which the R2 can reach 0.512, the explained variance

score can reach 0.535, and the mean absolute error is 1.521. For

the shortcomings of this study and the future work direction,

firstly, there are too few data sets, and the generalization ability

of the model needs to be improved, so extended research

should be conducted based on more eyelid pictures collected

from cooperative hospitals in the future. Secondly, the model

parameters of the eyelid image segmentation algorithm based

on mask-RCNN are too large to be transplanted to the mobile

terminal, therefore, in the future, a more compact model

should be designed to segment eyelid images. Additionally,

developing a model based on the deep learning method into

a practical system is also the exploration field of this study in

the future.
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