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Understanding the relationship between CO2 emissions from commuting

(CEC) and the built environment is crucial for sustainable transportation and

land-use policymaking during the process of constructing a low carbon city.

Previous studies usually assume that the relationship is linear, which may

lead to inaccurate CEC prediction and ine�ective policy. Using daily travel

survey data of residents in the central city of Jinan, this study adopted a

gradient boosting decision tree model to explore the threshold e�ect and

the non-linear relationship between built environments and CEC. Our findings

suggest that 40% of CEC is related to the workplace environment, which is

higher than the residential environment and other socioeconomic variables.

The five most important variables are road density within 1 km radius of

the workplace (13.493%), distance to the center at workplace and residence

(10.908%, 10.530%), population density at workplace (9.097%) and distance

to bus stop from the residence (8.399%). Distance to city center plays the

most important role and its non-linear relationship reflects the influence of

the urban spatial structure of Jinan on CEC. Furthermore, the thresholds and

non-linear relationships provide planning guidelines to support urban planning

development policies for low carbon city.

KEYWORDS

built environment, gradient boosting decision model, CO2 emissions from

commuting, non-linear relationship, threshold e�ect

Introduction

As an important source of energy consumption, the transportation sector accounts

for a substantial share of greenhouse gas (GHG) emissions (1, 2). Due to rapid

urbanization and motorization, developing countries have higher transport-related

energy consumption and GHG emissions (3). However, rapid urbanization and
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motorization brought along consequences such as heavy usage

of vehicles, traffic congestion, road accidents, and air pollution

in many major cities in China, which has a negative impact on

the health of residents (4). Since commuting is an essential daily

activity for urban residents, which accounts for approximately

50%∼60% of their total trips (5), it is necessary to develop

methods to control CEC effectively.

The urban built environment is the spatial reflection of

land-use policies, and the source of urban traffic demand. It

also has a locked effect on travel behaviors (the commuting

mode, commuting distance, and travel times), implying that

the urban built environment could also affect CEC. Urban

geography and urban planning scholars have attempted to

create green transportation-oriented urban built environments

and minimize automobile dependence to reduce CEC by

optimizing urban spatial organization. Western countries which

have adopted transportation and land-use policies including

new urbanism, smart growth, and transit-oriented development

(TOD) programs to alleviate the problem of urban sprawl have

achieved positive results. However, some research found that

these policies were weakened for large cities in China due to

the urban spatial structural transformation and the complexity

of institution reform (6). While existing literature attaches

great importance to the effect of the built environment at

residence, the effect of the built environment at workplace is

often neglected. However, the built environment characteristics

at workplace may be associated with the commute behaviors

(7) and hence changing the daily CEC. Workers are less

likely to choose their jobs based on the built environment

characteristics at workplaces, representing the independent

effects of the built environment instead of self-selection effects.

However, the effects of the built environment characteristics

at workplaces on CEC rarely have been explicitly examined.

If the built environment at workplace has a significant effect

on CEC, physical improvements in residential areas are

insufficient to achieve the goal of carbon reduction. Moreover,

some studies using the machine learning methods reveal that

there is non-linear relationship between built environment

and travel behavior (8–11). This would help decision makers

understand the threshold of the built environment variables,

and improve the outcomes of the urban planning process.

Therefore, understanding CEC and its relationship to the

built environment at residence and workplace is crucial and

necessary for sustainable effective transportation and land-

use policymaking.

Using the daily travel survey data of residents of the

central city of Jinan in China, this study contributes to the

existing literature from the following aspects: (1) Gradient

boosting decision tree (GBDT) model is applied to estimate

the non-linear effects of the built environment on CEC at

both residential and workplace locations, this would help to

examine the threshold of built environment variables, and

better understand the CEC problem, (2) this study analyzes the

importance of built environment on CEC, (3) our results provide

the empirical evidence toward the development of large cities in

developing countries.

The remainder of the paper is structured as follows. Section

2 provides a brief review of the impact of built environments

on CEC. Section 3 introduces the research design, including

regional characteristics, data sources, and research methods.

Section 4 presents the results. Section 5 discusses research

limitations and possible future research directions. Section 6

concludes the paper.

Literature

For over two decades, CEC has received significant attention.

Urban built environments and socioeconomic factors have

been considered to have significant impacts on CEC in

previous studies. The urban built environment includes many

factors, which referred to as 6D, i.e., density, diversity, design,

destination accessibility, distance to bus stop, and demand

management (9, 12). Above six factors are closely related

to commuting behaviors. Based on aggregate (country/city)

or disaggregate (individual/household) data, the direct and

indirect impacts of different built environment variables on

commuting behaviors and related CO2 emissions are already

well explored, especially for the built environment variables

at the residence (13–16). Using different methodological

approaches and geographies, many research showed that a

community has great potential to reduce automobile use and

CEC if its built environment characteristics include a high

population density, good public transport accessibility, and a

high land-use diversity, although the significance andmagnitude

of the effects of these built environment factors can vary

substantially (12, 16).

Many empirical studies were conducted to examine the

influence of the built environment on CEC in residential

areas. Based on data from the 2006 Austin Household Travel

Survey, Choi and Zhang (17) found that a 1% increase in

density was found to reduce household vehicle emissions by

0.1%. However, this relationship is not consistent due to

the different geographical contexts. Other studies have found

that when the residential population density reaches a certain

level of threshold, improving the density will not necessarily

reduce CEC. Using the 2006 Puget Sound Household Travel

Survey data, Hong (18) found that people living in denser

neighborhoods tend to generate fewer CEC. However, this effect

becomes insignificant as population density reaches a certain

level. Most studies confirmed that the mixed degree of land use

is negatively correlated with CEC, and improving the degree of

land use mixing in urban suburbs is more helpful for reducing

CEC than improving population density (19, 20). Distance to

bus stop access is positively related with CEC (21). However,

Chai et al. (19) found that households located far from the city
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center but with greater transit accessibility in Beijing increased

their dependence on public transportation, thereby reducing the

probability of commuting by private car. Similarly, improving

street connectivity in residential areas will reduce CEC (22, 23).

However, as behavioral research deepens our understanding

of people’s daily behaviors, several studies started to focus

on the effect of the built environment in non-residential

locations. Researchers believe that people’s commuting will be

jointly influenced by the built environment of their residences

and workplaces. The built environment at the workplace

appears to have an important impact on travel behavior, but

it is overlooked in the literature. Considering that only the

geographical environment of residential areas may lead to

misunderstanding of the results, overestimating the background

impact of neighborhood areas and underestimating the impacts

of other places (24). Huang et al. (25) represented the

overall geographical environment in a more accurate way.

Furthermore, examining the influence of built environment

variables at workplace will provide a reference for the design

and redevelopment of employment centers. Otherwise, urban

plannersmay incorrectly estimate the effect of built environment

attributes at both locations. Empirically, several studies have

found that car ownership, commuting mode and commuting

distance are all related with the built environment at both ends of

commuting (7, 26–30). For instance, in terms of car ownership,

Ding and Cao (30) found that the higher employment density

and bus stop density at workplace could reduce the likelihood

of owning vehicles in the New York metropolitan area, and

the residential built environment had a greater impact on the

ownership of cars. However, using data from residents in transit-

supported suburban neighborhoods in Shanghai, Shen et al.

(31) found that there is an insignificant connection between

work location and car ownership. Nasri and Zhang (32) found

that higher residential and employment densities at residences

and workplaces decreased the probability of automobile use

and increased the probability of non-motorized travel mode

choices. However, Sun and Dan (33) used the Multi-nominal

Logistic Regression model and conclude that increasing the

population density in residential areas can significantly reduce

the probability of private automobile use, while the built

environment at workplace has a relatively weak influence on

the choice of commuting mode in Shanghai. Dang et al.

(28) used a cross-classified multilevel model to estimate the

effect of land-use diversity at residences and workplaces on

commuting distances and found that land-use diversity at the

workplace is more important for reducing commuting distance

than at residential areas. Thus, commuting behavior (such as

commuting mode and commuting distance) could be affected

by both locations. Therefore, we hypothesize that the built

environment at both workplace and residential locations should

influence CEC, which are closely related to commuting behavior.

However, there is still insufficient research about effects of the

built environment at both locations on CEC, and it is uncertain

regarding the linearity of the relation. Linear models are used

widely in the study of the relation between built environment

variables and travel behaviors. However, these models cannot

solve the multicollinearity between variables, and may cover up

the local the non-linear correlation and the threshold effect,

which will mislead the planning process (30, 34). Besides,

according to previous studies, the built environment variables

could have marginal effects on travel behaviors (35, 36).

Considering the high density, high mixing degree and the

complete public transport system in Chinese cities, the non-

linear hypothesis between the built environment and travel

behaviors should be adopted in the study of Chinese cities (37).

In practice, it is also important for urban planners to explore the

most effective impact range of the built environment for low-

carbon travel. These research questions will help us understand

the mechanism by which built environment variables affect

CEC to formulate effective low-carbon urban planning and

transportation policies. In addition, socioeconomic factors

including income level, education level, and family size, have

also been demonstrated to impact travel behaviors (38–41). To

fill the gap in the current literature, we use the GBDT model

to capture the marginal effects and importance of the built

environment variables at residences and workplaces on CEC

after controlling for the individual socioeconomic factors.

Data and methods

Data

Study area

The study area is the urban city of Jinan, which is the capital

city of Shandong Province and the central city located within

the downstream Yellow River area. As a typical major city in

China, Jinan is going through rapid urbanization. For example,

the number of household vehicles has increased significantly

over the years, from 5.4 per 100 households in 2005 to 58.5 per

100 households in 2020. Similarly, there was an increase in the

number of private cars from 0.254 million vehicles in 2005 to

2.962 million vehicles in 20201. The rapid increase in vehicles

have negative impacts on traffic and environmental conditions.

During the past 5 years, Jinan ranked as the 5th most congested

city and the 7th city with heavy air pollution in China2,3. Jinan’s

overall urban planning calls for low-carbon developments in the

new era. Therefore, studying the relationship between the urban

1 Source: Bureau of Statistics of Jinan. (2002–2018) Jinan Statistical

Year book. Beijing: China Statistic Press, China.

2 Source: Amap.com. China Major Cities Transportation Analysis

Report 2018 Q3. 2018. Available online: https://trp.autonavi.com/tra�c/

(accessed on March 15, 2019).

3 Source: Ministry of Environment Protection (MEP), 2018. Rank of

national key monitoring cities air quality year. Environ. Educ. Z1, 16.
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built environment and CEC could provide a solid foundation for

the development of a low-carbon city.

According to the overall urban plan for Jinan (2021–2030)4,

this study is conducted primarily in the central area of Jinan,

which is located east of the Yufu River, west of the east ring

line of the expressway, south of the Yellow River and north of

the mountain area. This area encompasses five administrative

regions, namely, the Huaiyin District, the Licheng District, the

Lixia District, the Shizhong District, and the Tianqiao District.

The entire study area is 337 km2 and has a population of 2.82

million people which accounts for 77.3% of the urban population

in Jinan.

Data and variables

The data is obtained from a travel survey from January

to July in 2021 for residents over 18 years old. The survey

design takes into consideration of error control mechanism

and introduces randomness to ensure equal participation

opportunities for residents located in each subdistrict. Besides,

the number of participants was determined based on the

proportion of the population within each district. For 1,200

surveys distributed, the residence address, work address and

socioeconomic attributes are sampled at the same time, while

participants with no employment information (e.g., students,

retirees, and freelancers, are removed from the sample. After

applying all filters, our sample contains 920 observations from

64 residential subdistricts and 57 workplace subdistricts.

To better understand the distribution of geographical

locations for the respondents, the location of the residential

areas and workplaces are obtained through spatial analysis

methods from ArcGIS 10.2 platform. Based on the distribution

of the residential and workplace respondents presented in

Figure 1, it is obvious that most of the respondents are

located within the second ring. The distribution of residences

is relatively scattered, and the employment sites are more

concentrated in the central business district (CBD). Since the

local government moved to the eastern suburb in 2009, the city

is in transition from the monocentric to polycentric.

The survey is composed of three parts, i.e., individual

travel behaviors, socioeconomic factors and several

urban built environment factors. Based on the data,

descriptive statistical analyses were performed on the travel

behavior characteristics, the residential and workplace-

built environments, and the socioeconomic attributes of

respondents (Table 1).

Travel behavior characteristics include the daily commute

mode and commuting distance of the resident. There are eight

4 Source: Jinan Municipal Planning Bureau. Jinan Urban Development

Strategic Plan (2018-2050) [2019–04–02]. Available online: http://nrp.

jinan.gov.cn/art/2019/4/2/art_43830_3510946.html (accessed on April 2,

2019).

commute modes included in this study, which are walking,

bicycle, electric bicycle, motorcycle, bus, unit shuttle, private

car, and taxi. Approximately 41.17% of the residents choose

private cars to travel, and 29.48% of the residents choose

walking, bicycles, electric cars or other green travel methods.

The remaining residents rely on bus traveling. In our analysis,

the commuting mode is a dummy variable, and 1 (0) represents

car traveling (other transportation methods). The commute

distance is obtained from the Baidu map through identifying the

respondent’s residence and work location. The results indicate

that approximately 48.15% of the residents have a commuting

distance of more than 6 km and that the average one-way

commute distance is 7.155 km.

The socioeconomic variables of individuals and families

considered in this study include age, monthly income, level of

education, family size and the number of private cars within the

household. Combination of these variables reflects the impacts

of family demands, life cycle and travel ability on family travel

(19). Our result suggested that 47.93% of the respondents are

under the age of 40, and 36.53% have an averagemonthly income

of more than 5000 RMB. Additionally, the average family size of

the respondents is 3.263, and 77.96% own car.

With respect to the built environment factors, prior studies

suggest that the following five variables should be considered (9,

12, 16, 33) distance from the city center, road density, distance

to bus stop, population density, and land-use diversity.

The distance from the city center of Jinan is measured by

the average straight distance to the main urban center and

sub center, in ArcGIS 10.2 software. The average distance from

residential areas is 7.593 km, while the average distance from

workplaces is 6.807 km. The population density is calculated by

dividing the populations by the subdistrict area and is based

on survey data from the sixth census of Jinan. The average

residential population density is 12136.57 person/km2, and

the average population density at the workplace is 12303.65

persons/km2. The road density reflects the urban design, which

is the sum road length within 1 km radius at residence or

workplace, and the average value is 5.029 km/km2 and 5.691

km/km2, respectively. The distance to bus stop reflects access

to bus and is captured by the distance from the location

(residence or workplace) to the bus stop. The average distance

to bus stop from residential areas and workplaces is 221.094m

and 188.459m, respectively. The land-use diversity reflects the

degree of mixing of different land-use types and is calculated

following previous studies (28, 42). The value is between 0 and

1. The larger the value is, the higher the degree of land-use

diversity and the greater the balance in the distribution of the

land functions. In this paper, the subdistrict is used as the unit

of measurement. Based on the land use map of Jinan in 2020,

four types of land use which are closely related to residences and

work are selected: residential land, public service facilities land,

industrial land, and municipal utility land. The average diversity

of land use at the residential and workplace levels is 0.713 and
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FIGURE 1

Locations of the residential areas and workplaces of respondents in central Jinan.

0.741, respectively. Descriptions of the variables in this study are

shown in Table 1.

Methodology

Measurement of CEC

To calculate CEC accurately, this study measured CO2

emissions based on trip distance methods proposed by current

travel research (19, 43–45). Based on transportation modes

and the commuting distances obtained through surveys, the

commuting CO2 emissions could be directly calculated using the

following formula:

CEi=
∑

t

∑

j

Ditj×Fj (1)

Where CEi is the daily commuting CO2 emission of

respondent i. Ditj is commuting distance of respondent i using

the commuting mode j for the commute t. And Fj represents

the CO2 emission factor of the commuting mode j. According

to the studies on China’s transportation CO2 emissions (45, 46),

the relevant parameters are presented in Table 2, where CO2

emissions are direct emissions.

Based on Equation (1), the commuting carbon emissions

of each respondent in central city of Jinan could be obtained

for a single day. For all respondents, the average value of

the commuting CO2 emissions is 1641.579 g, and for the

respondents commuting by car and by bus, the average value

is 3687.849 g and 529.618 g, respectively. Figure 2 shows the

Lorenz curve of CO2 emissions from private cars, buses, and

all respondents in the central city of Jinan. The distribution

of the commuting CO2 emissions from all respondents is not

equal and reflects the 70/20 principle, in which 70% of the CO2

emissions are generated by approximately 20% of the residents.

For respondents commuting by cars and buses, the distributions

approximately fit a 60/30 distribution, indicating that 60% of the

CO2 emissions are generated by 30% of the residents.

The GBDT model

The GBDT model is applied in this study to explore the

association between built environment characteristics and CEC.

Through building decision trees, GBDT model is popular in

dealing with many classification and regression problems. The

literature has shown that the GBDT model is a powerful tool to

deal with small sample size (9). Compared with the traditional

regression models, the GBDT approach cannot produce the

statistical inference and the significance level of variables, but it

can deal with multicollinearity among variables more effectively,

determining the importance of variables, and allowing for

accurate predictions (47). The GBDT model can be expressed

as follows:

FM (x)=

M∑

m=1

T(x,θm) (2)
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TABLE 1 Descriptive statistics for variables.

Variable Description Mean Min Max Std. Dev.

Individual travel behavior variables

Commuting mode 0= Commuting by the other modes (58.83%). 0.412 0 1 0.492

1= commuting by car (41.17%)

Commuting distance (km) Daily commuting traveled distance (one way) 7.155 0.533 37.237 5.906

Individual socioeconomic variables

Gender 0= Female (52.28%); 1=Male (47.72%) 0.478 0 1 0.500

Age (years) Age 38.270 18 68 8.045

Monthly income (RMB/month) 1= Below 2000 RMB (19.24%) 2.943 1 6 1.191

2= 2000 to 2999 RMB (9.35%)

3= 3000 to 4999 RMB (34.89%)

4= 5000 to 6999 RMB (31.96%)

5= 7000 to 9999 RMB (3.48%)

6= 10000 RMB and above (1.09%)

Family size (people) Number of household members 3.263 1 7 0.983

Car ownership 0= No car (22.04%). 0.92 0 3 0.608

1= Owing one car (63.7%)

2= Owing 2 cars (13.59%)

3= Owing 3 or more cars (0.43%)

Built environment variables at residential place

Distance to city center (km) Straight line distance from CBD and sub center 7.593 4.913 29.480 3.096

Road density (km/km2) Road length within a 1 km radius of residence 5.029 0.363 11.676 2.295

Distance to bus stop (m) The nearest distance to bus stops from the residence 221.094 24.329 922.03 151.981

Population density(people /km2) Population/subdistrict area 12136.57 297 32870.5 10078.75

Land-use diversity Degree of mixing of different land uses in residence* 0.713 0.434 0.888 0.102

Built environment variables at workplace

Distance to city center (km) Straight-line distance from CBD and sub center 6.807 4.913 18.937 2.449

Road density (km/km2) Road length within a 1 km radius of workplace 5691 0.337 12.174 2.362

Distance to bus stop (m) The nearest distance to the bus stops from the workplace 188.459 19.333 1210.28 119.540

Population density (people /km2) Population/subdistrict area 12303.65 598 32870.5 10728.46

Land-use diversity Degree of mixing of different land uses in workplace 0.741 0.434 0.888 0.088

920 persons, 64 residential subdistricts, 57 workplace subdistricts. The values in brackets in the description column denote the proportion of each categorical variable.

*Hlandi =
−

n∑
K=1

pK,i ln(pK,i)

ln(K,i)
.

TABLE 2 Carbon emission factor by transportation modes.

Transportation

mode

Transportation

tool

CO2 intensity

(g/person km)

Car Private car, taxi, 233

Public transit Bus, 26

Unit shuttle 20.3

Personal assistive

mobility device

Electric bicycle, light

motorcycle

10

Other Walking, bicycle 0

WhereT(x, θm) is the decision tree;M is the number of trees,

θm is the parameters of the decision tree.

In the GBDT model, the loss function of the decision tree

is the squared error function, which is denoted by L(•). And

the minimum loss function is used to determine the parameters

of the next decision tree, where Tm−1 (xi) is the current

decision tree.

θ̂m=argmin

N∑

i=1

L[yi;Tm−1 (xi)+T(x;θm)] (3)

To obtain robust model results, the GBDT model is

estimated by R software in this study. Specifically, the

sample is divided into five subsets, at each iteration,

the model is fitted using four different subsets (80% of

the data) and validated by the remaining subset (20%
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FIGURE 2

Lorenz curve of the distribution of daily CEC from cars, buses

and all respondents in Jinan.

TABLE 3 The relative importance of variables.

Variables Importance (%) Rank

Individual socioeconomic variables (30.502)

Car ownership 21.299 1

Income 5.285 7

Age 1.825 14

Gender 0.257 15

Family size 1.836 13

Built environment at residence (29.577)

Distance to center 10.530 4

Road density 4.253 8

Population density 2.587 11

Distance to bus stop 8.399 6

Land use diversity 3.808 10

Built environment at workplace (39.915)

Distance to center 10.908 3

Road density 13.493 2

Population density 9.097 5

Distance to bus stop 4.244 9

Land use diversity 2.173 12

of the data). Overall, a maximum of trees and the

shrinkage parameter is set to 1000 and 0.05, respectively.

And we chose five-way interaction, and the best results

could be obtained after 2,500 boosting iterations. The R

squared is 0.221. The relative importance of independent

variables and partial dependence plots are derived for

further analysis.

Results

The relative influence of independent
variables

Table 3 presents the relative influence of built environment

characteristics and individual socioeconomic variables.

The relative influence of a predictor measures its relative

empirical improvement in reducing prediction errors. The

total relative influence of all predictors adds up to 100%.

The built environment is more important in predicting CEC

than individual socioeconomic variables. This finding is

consistent with other studies that applied the GBDT model

to examine built environment effects on driving behavior

(8). Specifically, the ten built environment characteristics at

residence and workplace collectively contribute to almost 70% of

the predictive power, whereas the five individual socioeconomic

variables account for about 30%. Besides, the built environment

characteristics at workplace contribute to almost 40%,

more significant than those at residence, which account for

around 30%.

The most important predicting variable is car ownership

(21.299%). Owning a car will directly increase the probability of

car commuting, resulting in high carbon emissions. Therefore,

the impact is relatively large. The second is the road density

in the workplace (13.493%). The road density in the workplace

reflects the density and connectivity of road facilities and is an

important factor affecting CEC. The third is the distance from

the workplace to the city center (10.908%), and the fourth is the

distance from the place of residence to the city center (10.530%).

The distance between living and working places to the city center

jointly determines the commuting distance. These two factors

reflect the location characteristics, respectively. The importance

of location on commuting behavior has been confirmed in

many studies (27), with a total of 21.4% contribution. The

fifth is the population density of the workplace (9.097%). The

concentration of the population in the workplace is an important

factor affecting the commuting behavior of residents. The sixth

is the distance from the bus stop in the residence (8.399%). The

distance from the bus station reflects the service capability of the

public transportation facilities in the residence, and depicts the

convenience of residents’ commuting by bus, which is of high

importance. The importance of other variables is similar, and

the value is < 5%. In contrast to most studies which showed that

the variable of land use diversity has a greater effect on CEC,

our results did not discover important relation between land use

diversity and CEC. This result could be related to the calculation

method at the street scale. At the street scale, themain urban area

has a high degree of land use and development, and the average

land use diversity at residence and workplace is 0.713 and 0.741,

respectively. The homogeneity is strong, resulting in the weak

explanatory power when compared with other variables.
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The e�ects of built environment at the
residence and workplace

In the linear model, the coefficient of the independent

variable remains unchanged globally, while the independent

variable in GBDT does not maintain a stable slope. This

may have a non-linear effect on the dependent variable,

and there is a threshold effect in the region where the

slope changes suddenly. In this way, it can help decision

makers find the thresholds of variables and realize the

efficient development of urban planning. In this study, we

used the GBDT and produced partial dependence plots

to illustrate the relationships between built environment

variables and CEC (Figures 3–7). A partial dependence

plot demonstrates the marginal effect of an independent

variable on the predicted response while controlling for

all other variables in the model. The vertical axis is CEC,

the horizontal axis represents the respective variable. The

fitted curve is smoothed to better show the changes. The

overall trend of all independent variables is consistent with

our expectations.

Figures 3A,B illustrates the impact of distance to center,

with the relative importance presented along with the label

for the horizontal axis. Distance to city center has positive

threshold effects on CEC. When the distance is < 12 km,

its slope is relatively steep. Once it exceeds 12 km, its slope

becomes smooth. When people live close to the city center,

the accessibility to facilities is high and people have more

travel mode choices instead of driving, and the CEC would be

lower. However, for people live far from the city center, they

tend to commute by car due to the lower accessibility and

inconvenient transit service. Therefore, CEC would be higher.

However, once the distance is beyond 12 km, the CEC remains

relatively unchanged.

By contrast, distance from workplace to center also takes

on non-linear effects on CEC, which decreases before increases.

The results show that individuals who work closer to the center

within 5 km tend to emit more CEC, since they often reside

far away from the center due to the tradeoff between the

commuting cost and housing price (32). And according to the

survey, the negative correlation are also found between the

workplace location and residence location. Since most cities

like Jinan in China are still monocentric, there are gradient

characteristics such as population density, employment density

and housing prices (5). In our sample, 21.3% of those who

work within 5 km from the urban center have to commute

10 km or more distance. Thus, people tend to work in close

proximity to the center, while residences are far from the center.

As the distance increasing, the job-home separation could be

improved, and many people will lower the CEC. However, once

the distance exceeds 5 km, the CEC shows an increasing trend.

The longer distance from the workplace to the city center, the

higher dependence on the car when commuting, resulting in an

increasing CEC. Similar to the variable of distance to the center

at residence, once the distance exceeds 13 km, CEC remains

unchanged. The results show that the location of residence

and workplace jointly affect CEC, and it is important to form

the polycentric spatial structure in central city of Jinan in

the future.

Figure 4A illustrates the relation between CEC and distance

to bus stop at residence. Overall, the higher accessible transit

service has a negative relation with CEC. When the nearest

distance to the public transit is <500 meters of a residence,

the increase of the distance to bus stop leads to a higher

CEC. This pattern is consistent with Gallivan et al. (48).

Beyond this range, the change of CEC is trivial as the distance

increases. Figure 3B shows the impact of the distance to bus

stop at workplaces, and is similar to that at residence which

means that better access to bus stop at workplace could

lower CEC. This result is consistent with previous research

(45). However, once the distance exceeds 500 meters, the

change of CEC is insignificant. Therefore, the distance to

bus stop at residences and workplaces plays an important

role in CEC. The access to public transit at the residences

has a significant impact on CEC. This is due to the uneven

spatial distribution of bus facilities. Dense bus routes are

highly concentrated in the employment center instead of the

residences (9).

Figures 5A,B shows the influences of population density. It

shows the threshold effect of population density at residence

on CEC. Overall, the effect of population density at residence

reaches a high level at about 22,000 people/km2 before slowly

decreases. This could be explained by the concentration of

human activities because of high density (36). For most

cities in China, locations with low population density often

coincide with an inconvenient public transportation and less

employment opportunities, which means that residences in

these areas are more likely to commute by car. As the

population density increasing, the government will improve

the supply of public facilities and infrastructures, indicating

that there would be a higher usage of the public transport

system and less CEC. However, with the further increase of

population density, public infrastructure will eventually fail to

meet public needs, and car commuting would increase. Once

the population density reaches above 22,000 people/km2, the

issue of traffic congestion would emerge. Preference for the

public transport increases, which results in less CEC. In general,

there exists a U-shaped relationship between the population

density at residence and the CEC. Figure 5B suggests that the

increase in population density at the workplace also lowers

the CEC. The reason is that urban centers are important areas

of employment, and there are normally a complete public

transportation system and high population density in these

areas. When the population density of workplace increases,

traffic jams and high parking charges will occur. Besides,

commuting by car is more energy and time consuming. As a
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FIGURE 3

The partial e�ect of distance to the center on CEC. (A) At residence (10.530%). (B) At workplace (10.908%).

FIGURE 4

The partial e�ect of distance to the bus stop on CEC. (A) At residence (8.399%). (B) At workplace (4.244%).

result, an increase in the population density at the workplace

will reduce the likelihood of car commuting, as well as the

corresponding CEC.

As a diversity indicator, land use entropy index at residence

is negatively correlated with CEC in Figure 6A. This negative

relationship is consistent with the previous literature (49, 50).

However, the land-use diversity at the workplace also has a

non-linear effect on CEC, and 0. 55, 0.7 and 0.75 are the

important turning points. When land use diversity is relatively

homogeneous (entropy < 0.55), it has a trivial influence

on CEC. However, when there are several types of land-

uses (0.55≤entropy≤0.7), CEC decreases. Moreover, land use

diversity has increasing effect once all types of land use are

relatively evenly distributed (entropy > 0.7). On the other hand,

if the land use diversity is higher than 0.75, it will lower the

CEC. Overall, land use diversity is effective on CEC when it
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FIGURE 5

The partial e�ect of population density on CEC. (A) At residence (2.587%). (B) At workplace (9.097%).

FIGURE 6

The partial e�ect of land use diversity on CEC. (A) At residence (3.808%). (B) At workplace (2.173%).

reaches a certain level, but it has a diminishing return once it

reaches a different threshold. The reason is that to give full play

to the agglomeration benefits of land, the land use types are

often dominated by industrial land and commercial land, and

residential land is often distributed in peripheral areas with few

job opportunities. This results in a higher degree of home-work

separation and more CEC.

Road density could reflect the street connectivity. The

literature suggests that it is negatively related to driving distance

and positively related to transit use (16). Thus, road density

could lead to the decrease of CEC. As shown in Figure 7, the

road density at residence within 1 km buffer of residence shows

a negative correlation with CEC, similar to that of workplace. It

hugely lowers CEC when the road density at residence is higher

than 2 km/km2, but the decreasing effect is trivial once the road

density is higher than 8 km/km2.

The comparison with log-linear
regression

A traditional log-linear regression model is constructed

to compare with the GBDT model, and natural logarithmic

transformation is performed on variables with positive or
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FIGURE 7

The partial e�ect of road density on CEC. (A) At residence (4.253%). (B) At workplace (13.493%).

negative skew distribution, which can effectively improve the

fitness of the linear model. To achieve desired results, the natural

logarithm standardization was performed on all continuous

variables. Analyzing the results of OLS model estimation in

Table 4, it can be found that the p-value of the F test is <

0.001, indicating that the results are reliable. The standardized

coefficients of the variables show the relative agreement between

the traditional model and the GBDT model on the overall

expected effect, but the significance and the relative importance

of the variables of the GBDT model are quite different.

Specifically, we include the built environment variables of

residence and workplace in the regression model, respectively,

and results show that the significant variable either at residence

or at workplace could be found. However, after including all

variables in the regression model, the variable at workplace

(distance to center from workplace) becomes insignificant.

These results confirm that the linear regression could cover

up the local impact of variables. Besides, the R2 of the log-

linear regression is 0.137, which is lower than that of GBDT

(0.223), indicating that the GBDT method is more suitable for

explaining the impact of built environment variables on CEC.

The difference is due to the biased estimation caused by the

pre-existing linearity assumption, reflecting the advantages of

non-linear models.

Discussion and limitations

Accuracy of the GBDT model

The GBDT model is adopted in this study to examine

the non-linear relationship between built environment

characteristics and CEC at residence and workplace. In contrast

to the parametric specification of non-linear relationships, this

model considers the non-linear relationships between built

environment variables and CEC. It also assesses the relative

importance of different built environment characteristics

in reducing CEC and the collective contribution of built

environment variables relative to individual socioeconomic

characteristics. Since the patterns of non-linear relationships

vary among built environment variables, this makes parametric

specification of non-linear relationships inefficient and

inaccurate. Apart from that, it is suggested that applying the

threshold of built environment variables during the urban

planning process would help achieve the goal of a low carbon

city (51).

The e�ects of built environment

Consistent with prior research, our results confirmed

that the built environment has stronger impacts on CEC

compared with the individual socioeconomic variables.

Compared with built environment variables at residence,

those at workplace have affect CEC significantly, indicating

that the built environment characteristics of work center

can be used to meet the low carbon development goal

in the future. For example, according to the current

urban spatial structure of Jinan, employment land is

concentrated in the urban center and residential land is

spread outward. This structure offers individuals employed

in the central urban area a wider range of locations to choose

their residences.

The five built environment variables together, i.e., the road

density at workplace, the distance to the center at workplace,
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TABLE 4 The results of log-linear regression.

Variables (1) (2) (3)

Individual socioeconomic variables

Age −0.024** −0.026** −0.024*

(0.012) (0.012) (0.012)

Gender 0.250 0.251 0.238

(0.191) (0.194) (0.193)

Income 0.242*** 0.217** 0.240***

(0.087) (0.089) (0.088)

Car ownership 1.447*** 1.443*** 1.447***

(0.165) (0.165) (0.165)

Family size 0.230** 0.197** 0.227**

(0.094) (0.095) (0.095)

Built environment at residence

Distance to center 1.172*** 1.110***

(0.360) (0.402)

Road density 0.065 0.035

(0.252) (0.258)

Population density −0.013 0.005

(0.091) (0.094)

Distance to bus stop 0.290** 0.288**

(0.127) (0.128)

Land use diversity −0.113 −0.114

(1.677) (1.720)

Built environment at workplace

Distance to center 0.742** 0.087

(0.373) (0.416)

Road density 0.118 0.035

(0.247) (0.250)

Population density −0.088 −0.062

(0.075) (0.077)

Distance to bus stop 0.005 0.015

(0.139) (0.138)

Land use diversity −0.288 −0.335

(1.836) (1.859)

Constant −7.464 −1.773 −7.076

(4.869) (4.877) (6.070)

Observations 920 920 920

R2 0.137 0.118 0.137

F 14.29*** 12.05*** 9.59***

***, ** and * indicate that the p-value is significant at the 1, 5 and 10%, respectively.

Figures in brackets denote standard errors.

the distance to the center at residence, the population density

at workplace and the distance to bus top, contribute to more

than 5% of CEC. Among all variables, the distance to the

center at residence and workplace, representing the regional

location, played the most important role in reducing CEC. The

regional location largely determines land use characteristics and

transportation infrastructure surrounding the region (20). On

the other hand, land use diversity tends to be less influential.

This is different from research findings in Western countries,

which attached more importance to the effect of high land

use diversity and high population density in reducing CEC

(9). While in China, majority of big cities are characterized

by dense population, high land use diversity and complete

public transport networks. Therefore, the regional location

will have a stronger impact on CEC than other variables

in China.

Specifically, the road density at workplace has the strongest

impact on CEC. It lowers CEC significantly when the road

density is higher than 2 km/km2, once the road density is

higher than 8 km/km2 the decreasing trend becomes trivial. This

indicates that road density is not negatively related to CEC under

all circumstances.

The distance to the center at residence and workplace

indicates the local location, which jointly contribute to

20% of the total CEC. In general, due to the dislocation

of workplace and residence, the distance from the city

center is positively related to the level of CEC. However,

according to the threshold effect, when the distance to

center reaches 12 km, the CEC remains high, indicating that

the government could formulate the industry layout within

such distance.

The increase in population density at workplace also has

a negative impact on CEC. This implies that urban planners

could increase residential land supply in the employment center

accordingly to alleviate home-work separation, meanwhile

raise awareness of compact development. This could increase

the mixed functionality of urban land and create more

employment opportunities nearby, which could effectively

reduce the reliance on commuting by cars, lowering the

CEC accordingly.

The distance to the bus stop at residence which represents

the public transit accessibility also plays a vital role in

determining CEC. Many studies have also confirmed that the

higher the accessibility of public transport, the more likely

residents are to choose non-motorized commuting. Individuals

who live in longer distance from the bus stop will emit more

CEC. As the distance from residence to the bus stop increases,

the demand for taking the bus decreases and many people will

prefer to commute by car. Consistent with previous studies

(21, 25), the more commute they take, the higher CO2 emissions

there will be (44). Therefore, it is necessary to solve the last

mile problem during commuting to effectively limit the demand

for car commuting, and reduce CO2 emissions. These results

can help planning practitioners effectively prioritize objects for

urban built environment intervention.

The findings in the study have direct policy implications

for Chinese cities like Jinan, which are in the process of

rapid motorization.

First, this study shows that if planners focus on future

population and employment growth in central urban areas (or
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up to 12 km from centers), the amount of increase in CEC

associated with population and employment growth will be

minimized. Multicenter development is actively advocated to

provide more job opportunities, especially in outer areas of

the central city, to shorten the commuting distance as well

as reduce the related CO2 emissions. Second, in terms of

land use planning, urban planners should pay more attention

to the built environment variables at workplace. This would

help to improve the road network quality at employment

centers. Additionally, due to the high level of land use diversity

in employment centers, continuously increasing the land use

diversity will not lead to a reduction in CEC. However,

it should appropriately increase the supply of residential

land in the employment center to alleviate the home-work

separation. Third, it is important to improve the transportation

access at both residence and workplace to decrease CEC,

and solve the problem of last mile during commuting,

enhancing the attractiveness of public transportation. This

is especially the case for those who prefer to commute

by car, and reduce potential CEC. In addition, multimodal

transportation systems and more plausible land-use patterns

should be established to support sustainable urban development,

such as acceleration of the construction of multiple urban

public transport modes (e.g., subway and BRT), and managing

the personal commuting activities through big data and

information technology.

Limitations

This study has the following limitations. First, the

computation of CEC was based on existing emission factors,

and we did not consider vehicle or transit occupancy, which

could affect the true CEC from commuting. Second, the

population density and land-use diversity are measured at

subdistrict level. However, the effect of the built environment

variables is measured at different spatial scale (such as

traffic zone, community, and 1 km or 500m radius of a

residence). In addition, policymakers are more concerned

about which dimensions of the built environment can lower

CEC. Therefore, the comparative study of the effects of

variables at different scales requires further study in the future;

Third, in terms of the power of the CO2 emission from

commuting model, it could be improved by incorporating

additional built environment variables, such as road network

design, employment density, and parking availability, into

the models for a more in-depth analysis. Lastly, since the

data are cross-sectional, the influence found in this study

is more of an association than causality, similar to most

studies in the literature. In general, this study helps to

understand the impact of built environment variables at

both residences and workplaces on the CEC to large cities

of China.

Conclusions

Based on the assumption of non-linear relationship between

built environment and travel behavior, this study applies the

GBDT model in analyzing the impact of the built environment

at both residences and workplaces on CEC using the daily

travel survey data of residents in the central city of Jinan. After

controlling the socioeconomic factors, we examine the non-

linear threshold effect of each variable on CEC, which enriches

the existing theoretical and empirical research. Our findings

suggest that:

(1) Built environment variables collectively are more

important in predicting CEC than individual socioeconomic

variables, which is consistent with most studies using parametric

models. The following five variables have the highest predicting

power among built environment characteristics: road density

at workplace (13.493%), distance to the center at workplace

and residence (10.908 and 10.530%, respectively), population

density at workplace (9.097%), and distance to bus stop from

the residence (8.399%). The distance to the center at residence

and workplace, representing the local location, jointly contribute

to 20% of CEC. In terms of the socioeconomic variables, car

ownership has the highest predictive power (21.299%). On the

other hand, land use diversity tends to be less influential either

at residence or at workplace.

(2) The built environment at workplace contributes to 40%

of the total CEC, which is higher than the build environment

at residence. It is necessary to perform a planned intervention of

the built environment elements at both residence andworkplace.

Majority of built environment variables at residence had similar

impacts on CEC as those of workplace except population density

and land use diversity, the impact of which on CEC varies

significantly between the residence and workplace. Contrary to

the impact of land-use diversity at residence, there are threshold

effects for the land-use diversity at workplace affecting CEC.

For the population density, the threshold effect only exists

for residence.

(3) The non-linear and threshold effects of the urban built

environment and CEC are determined in the Jinan city, and the

threshold value of built environment variables could be obtained

using the GBDTmethods, which could guide the urban layout in

future during the low carbon city construction.
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