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transmission, correlation and
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Ling Zhang2, Pengpeng Li1, Wei Ye1, Jia Chen1, Fang Li1,

Dong Yi1 and Yazhou Wu1*

1Department of Health Statistics, College of Preventive Medicine, Army Medical University,

Chongqing, China, 2Department of Health Education, College of Preventive Medicine, Army Medical

University, Chongqing, China

Background: The Shanghai COVID-19 epidemic is an important example of

a local outbreak and of the implementation of normalized prevention and

disease control strategies. The precise impact of public health interventions

on epidemic prevention and control is unknown.

Methods: We collected information on COVID-19 patients reported in

Shanghai, China, from January 30 to May 31, 2022. These newly added

cases were classified as local confirmed cases, local asymptomatic infections,

imported confirmed cases and imported asymptomatic infections. We used

polynomial fitting correlation analysis and illustrated the time lag plot in the

correlation analysis of local and imported cases. Analyzing the conversion of

asymptomatic infections to confirmed cases, we proposed a new measure

of the conversion rate (Cr). In the evolution of epidemic transmission and

the analysis of intervention e�ects, we calculated the e�ective reproduction

number (Rt). Additionally, we used simulated predictions of public health

interventions in transmission, correlation, and conversion analyses.

Results: (1) The overall level of Rt in the first three stages was higher than

the epidemic threshold. After the implementation of public health intervention

measures in the third stage, Rt decreased rapidly, and the overall Rt level in the

last three stages was lower than the epidemic threshold. The longer the public

health interventions were delayed, the more cases that were expected and

the later the epidemic was expected to end. (2) In the correlation analysis, the

outbreak in Shanghai was characterized by double peaks. (3) In the conversion

analysis, when the incubation period was short (3 or 7 days), the conversion

rate fluctuated smoothly and did not reflect the e�ect of the intervention.

When the incubation period was extended (10 and 14 days), the conversion

rate fluctuated in each period, being higher in the first five stages and lower in

the sixth stage.

Conclusion: E�ective public health interventions helped slow the spread

of COVID-19 in Shanghai, shorten the outbreak duration, and protect the
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healthcare system from stress. Our research can serve as a positive guideline

for addressing infectious disease prevention and control in China and other

countries and regions.

KEYWORDS

COVID-19, public health, interventions, dynamic prevention and control, e�ective

regeneration number

Introduction

In December 2019, coronavirus disease 2019 (COVID-19),

caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), emerged in China and spread to all parts of the

world (1–4). COVID-19 causes symptoms such as fever, cough,

fatigue, shortness of breath, and pneumonia, which can lead to

death in severe cases. COVID-19 had spread to the vast majority

of countries by May 2022, with over 500 million confirmed cases

and over 6 million deaths, having a profound impact on politics,

economies, and societies around the world.

To effectively control the COVID-19 outbreak, China

responded with a policy of “dynamic clearing and social

clearing.” However, with the continuous variation in the virus

and the complex situation of the international environment,

a small-scale outbreak and rebound of the epidemic were

inevitable (5, 6). In late February 2022, a new round of local

COVID-19 infections occurred in Shanghai. Shanghai is China’s

most important economic center, and if the outbreak were to

spread to other parts of the country, the consequences would

be incalculable. On March 28, 2022, the Shanghai government

gradually implemented public health intervention measures in

the city to curb the spread of the epidemic, including closed

district management, paying attention to elderly individuals,

establishing designated hospitals and carrying out double-

antibody screening (7, 8). In late May, the epidemic situation in

Shanghai was essentially controlled, and normal production and

life were restored on June 1. The epidemiological characteristics

of the Shanghai epidemic and the effect of public health

interventions are still unclear, and there are few relevant studies

(9). Thus, the association cannot be comprehensively and

accurately described.

The Shanghai epidemic was quite different from that in

Wuhan (December 8, 2019, to March 8, 2020) (10). Reviewing

the progress of the epidemic in Shanghai, inadequate control

of imported cases from abroad was an important cause of

the outbreak. As a result of the epidemic in Hong Kong

(December 31, 2021, to March 23, 2022) (11), Shanghai had

taken on the responsibility of transporting some imported

personnel to Shenzhen. The epidemic was sparked by an increase

in the number of imported personnel and flaws in isolation

management. In addition, the proportion of asymptomatic

infections in Shanghai was significantly higher than that in

Wuhan. Therefore, it is necessary to analyze the correlation

between local cases and imported cases as well as the conversion

between confirmed cases and asymptomatic infections (12, 13).

Many studies have calculated the basic regeneration index

(R0) of the COVID-19 epidemic, and its estimated value is

generally in the range of 2–7, revealing the high infectiousness of

COVID-19 (14–16). However, due to the small number of cases

and regions, more research is needed to confirm this finding. The

effective reproductive number (Rt) refers to the average number

of new cases that can be caused by one case at time t. It can reflect

the epidemic trend of infectious diseases in real time, and it is

an important index to guide epidemic prevention and control

and to evaluate intervention measures (17–19). However, there

is a lack of relevant research evaluating the developmental trend

of Rt and the effect of public health intervention measures

in Shanghai in 2022. We use statistical methods to investigate

and quantify changes in the epidemiological characteristics of

the spread of COVID-19 in Shanghai as well as the effects

of public health interventions, with the goal of developing

a comprehensive assessment system for the disease process,

disease transmission, and the impact of control measures that

will serve as a foundation for future interventions. Policy

formulation provides a scientific foundation for accuracy and

operability as well as significant promotional value.

Therefore, we use Shanghai, China, as a case study to

examine the epidemiological characteristics and the impact of

public health interventions against the backdrop of normalized

prevention and control to provide a positive guideline for the

follow-up response to the 2022 Shanghai epidemic. The main

work and contributions of this paper are as follows.

(1) We conducted extensive research on the main period of

the epidemic in Shanghai (January 30 to May 31, 2022), taking

into account cluster analysis and public health interventions to

divide the development stages of the epidemic, with the goal

of analyzing the epidemic situation in Shanghai. Changes in

transmission characteristics and control measures as well as

their correlations were investigated. (2) Because the Shanghai

epidemic may have been caused by imported cases and there

were many asymptomatic infections, we examined not only

the correlation between local and imported cases but also the

conversion of confirmed cases and asymptomatic infections.
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The difference between the Shanghai epidemic analysis and

previous epidemic analyses, as well as the innovation of this

study compared to previous research, lies in the two types

of analysis. (3) We used effective reproduction number (Rt)

analysis to determine the impact of public health interventions

on epidemic prevention and control, with the goal of evaluating

the temporal correlation between public health interventions

and Shanghai epidemic prevention and control and then

analyzing the significance and correctness of public health

interventions. (4) We simulated and predicted the evolution

of the epidemic when the implementation of interventions was

delayed, and we examined the number of cases that could have

been avoided due to public health interventions. This study

confirms the timeliness and effectiveness of the interventions

and provides a new model and experience related to the global

fight against the Omicron-based epidemic.

Materials and methods

Data sources

The data and public health interventions in this study

were public data released by the National Health Commission

and the Shanghai Municipal Health Commission. Newly

added cases were classified as local confirmed cases, local

asymptomatic infections, imported confirmed cases and

imported asymptomatic infections. In this outbreak, a local case

was first found on March 1. Since this round of the epidemic

came from abroad, we collected case data starting from January

30. On June 1, Shanghai announced the restoration of normal

production and everyday life. Therefore, the data that we

collected covered the period from January 30 to May 31, 2022,

totaling 121 days.

Statistical analysis

Transmission analysis

We used cluster analysis to aid segmentation and plotted

dynamic time-series maps to improve the interpretability

of the intervention phase. As feature vectors, we used the

number of newly added cases of local confirmed cases,

local asymptomatic infections, imported confirmed cases, and

imported asymptomatic infections, and we grouped the samples

using time as the label. The Manhattan distance method was

used to create a hierarchical clustering of the closest dates. In

the rectangular coordinate system, the date and the number of

infected people are denoted by X and Y, respectively. Assuming

that there are points i of coordinate (X1, Y1) and j of coordinate

(X1, Y2) on the plane, the Manhattan distance D
(

i, j
)

between

them is expressed as follows:

D
(

i, j
)

= |X1 − X2| + |Y1 − Y2| (1)

we used Rt analysis based on the Poisson distribution to

determine the transmission capacity of each stage and the impact

of public health interventions. Rt is defined as the average

number of secondary cases of primary cases in the population

at time t, representing the average number of second-generation

cases that an infected person diagnosed at a certain time will

infect during the infection period (20, 21). Rt can be used

to measure the real-time transmissibility during an epidemic

and to evaluate viral transmission before and after intervention

measures. The Rt at the beginning can be defined as R0, and the

Rt at the end can be defined as Rfinal.

We used the EpiEstim package in R software (version 3.6.3)

to fit Rt and the 95% confidence interval (CI) using the number

of new cases reported daily. Rt can be expressed as follows:

Rt =
It

∑t
s=1 It−sws

(2)

Here, It represents the number of new cases generated at time

t;
∑t

s=1 It−sws represents the sum of the infection incidence

up to time (t – 1); and ws represents the probability function

of the serial interval (SI). The infectious characteristics of

infected individuals are the basic idea of Rt calculation, and the

specific principle is shown in references (22, 23). In short, Rt

can be calculated by dividing the proportion of new cases at

time t by the cumulative cases at time (t – 1), and its weight

isws. Assuming Rt has a gamma prior distribution, Bayesian

statistical inference using the Poisson distribution can generate

a posterior distribution of Rt . The steps in the calculation

can be summarized as follows: (1) Determine the SI of the

epidemic situation, including the mean and standard deviation.

(2) Determine the sliding window time length, and estimate

the SI using the previously studied SI distribution. That is, the

infection time interval in two consecutive generations follows

the Gamma distribution with a mean value of 4.87 and a

standard deviation of 0.65 when a 1-day moving window is used.

(3) The plot function is used to plot the change in Rt over time.

Correlation analysis

In the time-series correlation analysis of domestic and

imported cases, we used polynomial fitting to obtain the fitting

curve and performed time lag analysis. Here, x and y represent

the number of local and imported cases at a given time. The

overall sample withm time points can be written as follows:

{(x1, y1)(x2, y2) · · · (xm, ym)} (3)

Here, a sample time point can be expressed as follows:

(xi, yi), i = 1, 2, 3, . . . ,m (4)
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When the distribution of these points

resembles the graph structure of a polynomial

of degree n, the final fitting formula is

as follows:

ŷ = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−1x+ an (5)

Here, X and Y represent the number of local and imported cases

at a certain time and construct a polynomial fitting formula;

a0 – an represent the fitting coefficient; n in xn represents the

index of the fitting polynomial; and ŷ represents the fitting

value of the corresponding imported case when the local

case is x.

We used interval geographic maps and nuclear density

maps to describe the incidence distribution in each

region and the time point in the spatial distribution.

Kernel density estimation, which analyzes the density

distribution of each element in the observed object’s

corresponding geospatial domain, was conducted based

on ArcGIS 10.8.1.

Conversion analysis

Asymptomatic infections account for a relatively high

proportion of the overall infections, which is not only an

important feature of this epidemic but also an important

basis for studying the impact of public health interventions.

To better analyze the ratio of asymptomatic infections to

confirmed cases and to analyze the changing characteristics

of the epidemic as it developed, we innovatively propose

the concept of the “conversion rate.” If the incubation

period is defined as t, the number of converted cases

(i.e., the number of confirmed cases) on that day is N1,

and the number of untransformed cases (i.e., the number

of asymptomatic infections) within t days before that

day is N2. Thus, the conversion rate Cr can be defined

as follows:

Cr =
N1

N2
(6)

Because the exact incubation period for transitioning

from an asymptomatic infection to a confirmed case is

currently unknown, we used a variety of settings, including

3, 7, 10, and 14 days, to better analyze the law of

conversion. Next, we used simulation studies to validate the

significance of public health interventions. Assuming that

no public health intervention measures were implemented

after March 28, the number of cases continued to rise

in line with the Cr value (3.02%) on March 28, and

the conversion number of asymptomatic infections can be

calculated accordingly.

Results

Division of development stages

We conducted cluster analysis based on the total number

of newly added cases per day. We comprehensively considered

the optimal clustering results and the public health intervention

time points and then divided the main epidemic period into six

stages. Figure 1 illustrates the epidemic curve of the symptom

occurrence date and key intervention events.

Regarding the first stage (1.30–3.11), sporadic infections

began to appear and were mainly imported cases, and sporadic

local cases began to appear. The imported cases were not

controlled in a timely manner, and cryptic transmission likely

began at this time, leading to the local transmission of COVID-

19. Regarding the second stage (3.12–3.28), local asymptomatic

cases and confirmed cases showed an upward trend. On March

24, thousands of new asymptomatic infections were reported

every day for the first time.

Regarding the third stage (3.29–4.04), the epidemic rapidly

worsened, and the government conducted nucleic acid screening

and implemented personnel and traffic controls, further

reducing the population’s social mobility. The fourth stage

(4.05–4.12) represented the high-risk period of the outbreak,

with the number of newly local confirmed cases exceeding 1,000

per day and the number of asymptomatic infections exceeding

20,000 per day.

In the fifth stage (4.13–4.26), the epidemic was in the

remission period. There was a delay in the effectiveness of public

health intervention measures, and the incidence trend had been

alleviated at this stage. The sixth stage (4.27–5.31) represented

the epidemic control period. In local cases, newly confirmed

cases and asymptomatic infections were gradually controlled to

<100 cases every day.

Transmission analysis using the e�ective
reproduction number

We combined the new case map and the Rt change map (the

sum of both local and imported cases) in the six stages to analyze

the epidemic transmission characteristics in each stage, as shown

in Figure 2.

In the first stage, Rt rose sharply and reached a maximum

value on February 17 (Rt = 3.19). At this stage, Rt was mainly

distributed between 1 and 3. In the second stage, Rt continued

to rise and reached an overall peak on March 16 (Rt = 4.02). At

this stage, Rt was mainly distributed between 2 and 4.

In the third stage, asymptomatic infections began to appear,

causing fluctuations in Rt . Rt showed a trend of first increasing

and then decreasing. It reached a peak in this stage on April 1

(Rt = 3.01) and then gradually decreased, but Rt remained above

1.5. This stage is when the public health intervention measures
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FIGURE 1

Correlation analysis between daily cases and public health intervention. Based on the date of symptoms, the epidemic curve shows the number

of cases and events per day. We also further describe the key events, situation characteristics and details of public health interventions at each

stage.

began to take effect. In the fourth stage, Rt continued to decline,

and it fell below 1 on April 9 (Rt = 0.99), indicating that the

spread of the epidemic had reached a controllable range.

In the fifth stage, Rt rebounded in a small range of cases, but

it was controlled 2 days later. Rt increased to above 1 on April

18 (Rt = 1.04) and decreased to below 1 on April 20 (Rt = 0.91).

In the sixth stage, the fluctuation trend of Rt was obvious, but Rt

was below 1.

In general, from February 28 to April 10, affected by

imported cases from abroad, the average Rt in Shanghai

was higher than the epidemic threshold, lasting ∼5.5 weeks.

Following the implementation of public health intervention

measures in Shanghai (March 28), the estimated Rt generally

decreased and fell below the epidemic threshold on April 10. The

overall Rt level in the first three stages was higher than 1, and the

overall level in the last three stages was lower than 1.

Furthermore, as shown in Figure 3, we examined the change

in the number of predicted cases (compared to the actual value)

and the end time of the epidemic under various simulation

conditions. The predicted number of cases was reduced by 664

when the public health interventions were implemented 1 week

earlier, and the epidemic was expected to end 9 days sooner. The

number of predicted cases increased by 1,265, 2,450, 10,811, and

29,073 when the public health interventions were delayed by 1,

2, 3, and 4 weeks, respectively, and the epidemic was expected to

end 18, 35, 56, and 63 days later, respectively.

Time-series correlation analysis of
imported and local cases

We analyzed the time distribution characteristics of

epidemic development in Shanghai, as shown in Figure 4. The

epidemic curve shows the bimodal epidemic of local and

imported cases. The earliest local confirmed cases occurred

on March 1, and the largest number of cases (5,487) in a

single day occurred on April 28. As Shanghai undertook the

task of transporting imported cases, imported confirmed cases

continued to exist, and more than 20 cases occurred in a single

day on February 20, with the largest number of cases (59)

on February 24. The 95% CIs of the four types of cases were

calculated, and their main concentration dates were analyzed, as

shown in Table 1. The results show that compared with imported

cases, local cases had a certain time lag effect of approximately

1 month.

According to the above results, there were mainly imported

cases in the first stage. Shanghai had not strictly controlled

and managed imported infected persons, and the number of

imported cases was higher than that of local cases. During the

second stage, local cases continued to rise. Local cases occurred

with the emergence of imported cases, and there was a certain

time lag effect of approximately 31 days. We analyzed the

correlation between the number of imported and the number of

local cases (including both confirmed cases and asymptomatic
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infections) and drew time lag analysis charts and correlation

analysis charts, as shown in Figure 5. In the time lag analysis

chart, compared with imported cases, local cases had a greater

lag and amplification, and the lag period was approximately 31

days, confirming the previous speculation. In the correlation

analysis chart, the curves fitted by various methods revealed that

there was a strong correlation between local cases and imported

cases, with R2 values above 0.8.

FIGURE 2

The shifting pattern of Rt. In the six stages, the daily new cases and the change trend of the Rt value are compared.
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FIGURE 3

Rt-based simulation prediction. (A) Rt is assumed to decline linearly over a 1-week period from R0 to Rfinal. Estimates in advance simulations are

obtained by considering R0 = 3.0 and Rfinal = 0.8; estimates in deferred simulations are obtained by considering R0 = 2.5 and Rfinal = 0.8. (B)

Di�erences in the number of cases (when compared to actual values) when public health interventions were implemented 1 week earlier or 1–4

weeks later. (C) The case end date if public health interventions began 1 week earlier or 1–4 weeks later.

The spatial distribution of local cases (including local

confirmed and asymptomatic infections) in Shanghai is shown

in Figure 6. In the first stage, the epidemic peak occurred in

the Minhang District, the Jiading District, etc. From the second

stage on, the epidemic peak gradually spread to the Pudong New

Area, reaching a peak in the fifth stage and decreasing in the

sixth stage. Therefore, there were case reports in 16 districts

of Shanghai, but there were significant geographical differences

in the distribution of confirmed cases. The highest incidence

rate was mainly in the Pudong New Area, followed by the

Minhang District.

Conversion analysis of asymptomatic
infections to confirmed cases

At present, the accurate incubation period from

asymptomatic infections to confirmed cases has not been

determined. Therefore, we adopted a variety of settings,

such as 3, 7, 10, and 14 days, to better analyze prognostic

rules. In practice, because no asymptomatic infections were

converted into confirmed cases in the first and second stages,

the conversion rates for each incubation period for the

third to sixth stages were calculated, as shown in Table 2

and Figure 7A.

When the incubation period was set to 3 and 7 days,

the overall conversion rate of each period showed a stable

trend, which was controlled between 10 and 20%. When the

incubation period was set to 10 and 14 days, the change

in the conversion rate in each period was more obvious,

the conversion rate in the fifth stage and before was higher,

and the conversion rate in the sixth stage was lower. The

box chart shows the distribution of the recovery rate at

each incubation period setting, and the results show that the

distribution of the recovery rate was close at each incubation

period setting.
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FIGURE 4

The temporal distribution of the epidemic. The time of onset and the epidemic curve of the Shanghai epidemic: Based on the daily number of

new cases listed on the report date, the cases were divided into local confirmed cases, local asymptomatic infections, imported confirmed cases

and imported asymptomatic infections.

TABLE 1 Distribution analysis of daily new incidences of four types of cases.

Type Distribution date Average value 95% CI

Lower bound Upper bound

Local confirmed cases 3.29∼5.1 475.41 305.97 644.85

Local asymptomatic infection cases 3.27∼5.8 4,847.13 3,496.70 6,197.57

Imported confirmed cases 2.5∼4.3 10.42 8.03 12.81

Imported asymptomatic infection cases 2.18∼3.25 3.25 2.39 4.10

In addition, we simulated the change in the conversion

rate under the condition of an uncontrolled epidemic, as

shown in Figure 7B. Assuming that Shanghai had not taken

public health intervention measures after March 28, the

case growth thereafter was calculated based on the R0 on

March 28 and simulated based on a Poisson distribution.
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FIGURE 5

Correlation analysis between local cases and imported cases. (A) Time lag analysis of the change trend between local cases and imported cases:

There was a large di�erence in the magnitude of factors. Natural logarithm processing was applied to local and imported cases. Based on the

time of imported cases, the order was as follows: January 30, February 10, February 20 and March 2. (B) Correlation analysis between local cases

and imported cases: The included local cases ranged from March 24 to April 13, and the imported cases ranged from February 11 to March 3.
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FIGURE 6

The spatial distribution of the epidemic. (A) A geographical map and (B) a nuclear density map showing the spatial distribution of local cases in

Shanghai, divided into 16 districts. The six submaps represent the six stages of epidemic development. Limited by media reports, this article

covers only the period from March 5 to May 31.

The results show that the recovery rate was higher when

the incubation period was set to 10 and 14 days and

gradually leveled off after May. It is speculated that public

health intervention measures need ∼10 days to be effective.

This simulation study also verifies the importance of public

health interventions.

Discussion

Principal results

We investigated and quantified changes in the

epidemiological characteristics of COVID-19 in Shanghai
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TABLE 2 Conversion rate (%) during each incubation period.

3 days 7 days 10 days 14 days

Third stage 0.74 (0.04, 1.71) 1.14 (0.09, 2.77) 2.76 (0.18, 7.43) 5.90 (0.46, 14.78)

Fourth stage 1.09 (0.10, 2.50) 2.89 (0.14, 7.79) 3.53 (0.30, 7.42) 7.99 (0.41, 20.38)

Fifth stage 3.68 (0.45, 6.83) 3.50 (0.58, 7.64) 3.56 (0.64, 5.99) 5.95 (0.70, 15.24)

Sixth stage 4.82 (0.89, 11.11) 2.93 (0.29, 5.41) 2.26 (0.17, 6.00) 1.49 (0.13, 4.94)

Total 3.80 (0.04, 11.11) 2.91 (0.09, 7.79) 2.74 (0.17, 7.43) 3.62 (0.13, 20.38)

FIGURE 7

Conversion rate during each incubation period. (A) Actual situation. (B) Simulation without public health interventions.

as well as the effect of public health interventions. To divide

the development stages for subsequent research, we used new

feature vectors and dynamic time-series maps. We created

a feature vector using the four indicators of local confirmed

cases, local asymptomatic infections, imported confirmed

cases, and imported asymptomatic infections and then drew

a dynamic time-series map of interventions using the cluster

analysis results and public health intervention measures. On

this basis, we divided the epidemic into six stages and then

dynamically and intuitively assessed the impact of public health

interventions on the development of the epidemic. Compared

with a subjective division (10), the stage division in this

paper was scientific and objective. The subsequent Rt analysis

also verified this conclusion. We then built a comprehensive

assessment system for the process, transmission, and the impact

of control measures in the analysis of COVID-19 transmission,

correlation and conversion. The following points of innovation

are described below.

First, we used Rt to perform transmission analysis and

to review common public health interventions, with the goal
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of assessing the impact of public health interventions on the

epidemic from an epidemiological standpoint. The first and

second stages were defined as the “rapid rise period.” Shanghai

had not implemented targeted intervention measures for cases

introduced from other countries. Mobility restrictions in some

key areas were implemented only in the second stage, resulting

in a rapid increase in the Rt value. The third and fourth stages

were defined as the “preliminary prevention and control period.”

To control the spread of the disease and to promote the recovery

of infected people, Shanghai implemented strong intervention

measures, such as mobility restrictions in the city, the use of

Fangcang shelter hospitals, and attention to elderly individuals,

resulting in an increase in the Rt value. It gradually decreased

after reaching its peak. The fifth and sixth stages were defined as

the “control and remission period.” Shanghai also implemented

measures such as conducting zoning management, optimizing

the efficiency of Fangcang shelter hospitals, and standardizing

nucleic acid testing on the basis of the previous measures so

that the Rt value continued to fall. The overall level of Rt in the

first three stages was higher than the epidemic threshold (i.e., 1)

but decreased rapidly after the implementation of strict public

health intervention measures. Additionally, the overall level in

the last three stages was lower than the epidemic threshold.

Both the decrease in the Rt value and the gradual decrease in

the number of new confirmed cases per day indicate that the

Shanghai government’s interventions had a positive impact on

controlling the COVID-19 epidemic and were able to effectively

block the spread of the epidemic and ease the disease burden.

The simulation analysis results indicate that the implementation

time of public health interventions is more important, and the

longer the delay is, the longer the epidemic is expected to last.

Second, for the first time, we used temporal correlation

analysis to reveal the relationship between local and imported

cases, with the goal of determining whether the outbreak

was caused by cases imported from other countries. The

spatiotemporal distribution analysis revealed the characteristics

of a bimodal epidemic of local and imported cases, with local

cases emerging concurrently with the appearance of imported

cases. The curves fitted by various methods in the correlation

analysis revealed that there was a strong correlation between

local and imported cases, and the R2 value reached more

than 0.8. According to the time lag analysis, there was some

lag and amplification in local cases compared to imported

cases, with a lag time of ∼31 days. The epidemic in Shanghai

was characterized by a combination of local transmission and

imported cases. Therefore, it is speculated that this round of

the epidemic came from imported cases. Analysis of the main

causes of local infections revealed the following. (1) The spread

of the epidemic was hidden and delayed. Insufficient attention

was given to cryptic transmission in the early stage of imported

cases. (2) The virus variant of this outbreak in Shanghai was the

Omicron BA.2 mutant, which has a faster transmission speed

and stronger transmission strength and can better break through

the immune barrier conferred by vaccines (24–26).

Next, for the first time, we investigated how asymptomatic

infections became confirmed cases. A significant feature of

this round of the Shanghai epidemic was the high proportion

of asymptomatic infections. The conversion of asymptomatic

infections to confirmed cases is conducive to directly reflecting

the impact of interventions, but previous studies on similar

topics have focused less on asymptomatic infections (27–30).

Therefore, our research evaluated asymptomatic patients and

analyzed the relationship between asymptomatic infections and

confirmed cases. When the incubation period was set to be

short, the overall conversion rate of each period showed a

stable trend. When the incubation period was set to be long,

the volatility of the conversion rate in each period was more

obvious. The conversion rate in the fifth stage and before

was higher, while the conversion rate in the sixth stage was

lower. The distribution of the conversion rate was similar with

different incubation period settings. There are two possible

causes. (1) The first is the role of public health interventions:

When the incubation period is short, intervention measures

may not yet come into effect. When the incubation period is

long, interventionmeasures take effect, and then, the conversion

rate gradually decreases. (2) The second is the constancy of

the true conversion rate: As of May 31, the true conversion

rate was ∼10%. The conversion rate calculated at the setting

of each incubation period was close to the true conversion

rate. Furthermore, we conducted a simulation study on the

change in the conversion rate under the assumption that the

epidemic was not under control, i.e., the calculation was based

on the R0 value without public health intervention measures.

Additionally, the simulation study was carried out using the

Poisson distribution. The effect of public health interventions

was verified.

Finally, we summarized and compared our findings with

those of previous studies. The analysis of transmission,

correlation and conversion presented above allowed us to

confirm the role of public health interventions in COVID-

19 prevention and control from a variety of perspectives.

To better validate the findings of this paper, we compared

them to previous studies on the impact of public health

interventions on the epidemic (10, 31–34). The Shanghai

epidemic differed from previous epidemics in terms of viral

types, the proportion of asymptomatic infections, and the

intervention times. In terms of viral strains, the Shanghai

epidemic was primarily caused by the Omicron BA.2 strain,

which has high infectivity and rapid transmission. In terms

of the proportion of asymptomatic infections, the Shanghai

epidemic had a relatively high proportion of asymptomatic

infections, and there was a certain proportion of confirmed

cases. In terms of the intervention times, the Wuhan epidemic

was controlled in 76 days, the Sichuan epidemic in 42 days,
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and the Shanghai epidemic in 66 days. Despite the many

differences in these outbreaks, studies have shown the role

of public health interventions in COVID-19 prevention and

control, demonstrating their effectiveness and generalizability.

Our experience can help China and other countries and regions

address the prevention and control of similar infectious diseases.

Limitations

This study still has some limitations. First, this paper

describes the result of the joint action of multiple interventions.

The effectiveness of a single measure cannot be assessed due

to ethical requirements. Second, the corresponding clinical

characteristics of confirmed cases could not be obtained. More

baseline data will be collected in the future to carry out an

analysis of population characteristics. Third, for other countries

and regions, the outbreak and development stages of the

epidemic do not necessarily show the same dynamic trajectory,

and more regional and temporal analyses are needed to verify

the robustness of the results.

Conclusion

In the foreseeable future, the epidemic process will still

depend on the efficiency of the implementation of public health

interventions. Timely and effective public health interventions

can effectively and quickly curb the spread of an epidemic and

protect the health care system from the overwhelming pressure

caused by the epidemic. This study describes an effective Chinese

experience and can be a positive guideline for global epidemic

prevention and control.
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