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The relationship between technological innovation (TL) and environmental

pollution (EP) and its action mechanisms are complex and controversial

aspects of discussion. Using the spatial autocorrelation analysis, standard

deviation ellipse analysis, kernel density function, spatial econometric model,

this study analyzed the spatial distribution, evolution characteristics, and

influencing factors of the EP and TL from 2000 to 2020 in China. Results

found there was a significant spatial autocorrelation between the EP and TL

in 2000–2020. The standard deviation ellipse of EP was broadly distributed in

the “southwest-northeast” direction, indicating that EP presented a trend of

concentration in the direction of “southwest-northeast.” Themoving trajectory

of the center of gravity for the EP in 2000–2020 was essentially moved

from the northeast to southwest. Overall, the national level of TL exhibited a

“north-south change, high in the east, and low in the west” trend. Regional

di�erences were gradually expanding, and the polarization was evident.

Regardless of using least squares method (OLS) or quantile regression (QR)

models, TL, human capital (HC), and industrial structure (IS) all had an inhibitory

e�ect on the EP at the e�ective significance level. Total population (TP), foreign

direct investment (FDI), and local fiscal expenditure (LFE) were positively related

to the EP.

KEYWORDS

technological innovation, environmental pollution, space e�ect, quantile regression,

China

Introduction

With the rapidly development of global economy and industrialization, the global

environmental sustainability is constantly threatened, which has aroused extensive

attention (1, 2). Water pollution (3, 4), air pollution (via gaseous emissions) (5, 6),

soil pollution (7), and air pollution (via other industrial pollutant emissions) have a

significant influence on environmental stability (8). With the societal advancements,

an awareness of the destruction of the natural environment has emerged (9–11). The

book “Silent Spring” focuses on scientific information regarding environmental risks

(12). Research has indicated that disparities in economic development levels could trap

regions in environmental inequality problems such as environmental restriction policies
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(13), industrial structure layouts (14), and research &

development (R&D) investment in green technology innovation

(15, 16). Developed nations have a higher income level

encouraging them to prioritize high-quality environmental

development at an early stage. During the later stages of

economic development, there was a progressive decline

in environmental pollution as the economic development

level increased (17). Environmental inequality intensifies the

contradiction between economic development and pollution

discharge in some regions, and key industrial emissions

such as sulfur dioxide, soot, wastewater, and solid waste are

significantly correlated in a spatial context (18–21). Although

the geographical environment or climatic conditions influences

environmental pollution, anthropogenic factors such as

excessive use of fossil fuels, increased population densities, rapid

urbanization, and industrialization remain the primary causes

of environmental pollution and degradation (22–24).

Technological innovation (TL) is often considered the

driving force behind economic growth, and it can play

an important role in strengthening the competitiveness of

enterprises and enhancing the national economy as a whole

(25). Because of regional heterogeneity and asymmetry, TL has

become a research hotspot for solving environmental pollution

problems by developing a sustainable industrial structure (IS)

(26). About the relationship between the environment and

TL, during the previous studies, there is no research-based

consensus on the relationship between TL and the environment

pollution, with three main viewpoints existing. First, TL can

effectively improve environmental quality in accordance with

sustainable development goals (27). Second, TL can degrade

environmental quality in the short term, but this trend can be

reversed as an investment in core R&D technologies grows (28).

Third, there is no influence or a non-linear relationship between

TL and environmental quality (29). However, as research has

progressed, the majority of researchers currently agree that TL

is the most effective method to reduce environmental pollution

under the guidance of reasonable policies. Despite the fact that

TL cannot directly reduce the carbon emission intensity, it can

indirectly reduce the carbon emission intensity by supporting

the adjustment and optimization of IS, as demonstrated by a

number of research findings (30). The industry-based economy

has begun tominimize pollution through transformation and TL

because of the progress in industrialization (31).

Researches concerning the reduction of environmental

pollution by TL in the world are growing. Various studies have

been conducted in domestic and foreign. Many international

scholars have conducted research in succession (32–34). Such as,

Mughal et al. (35) analyzed the panel data of five South Asian

countries (Bangladesh, Bhutan, India, Maldives, and Pakistan)

from 1990 to 2019 to examine the impacts of TL, EP, energy

consumption, and economic growth in these countries. The

results demonstrated that the development of TL within the

context of policies on sustainable development had eased the

consumption of energy, but the resultant consumption levels

were still significant. Omri and Hadj (36) examined data from 23

emerging economies and found that most developing countries

could effectively reduce carbon dioxide emissions through TL

and solid environmental governance. Iqbal et al. (37) used data

on the consumption of renewable energy in 37 Organization

for Economic Co-operation and Development (OECD)member

countries and the enhanced mean group (AMG) method to

examine and conclude that renewable energy and TL could

contribute to environmental improvement.

As the largest developing country globally, the rapid

industrialization and high-quality economic development of

China have led to an increase in its income level and heightened

concern for EP. Chen et al. (38) analyzed the impact of

enterprise TL on air pollution using large enterprise-level

data sets from 1998 to 2012. The results showed that TL

could significantly reduce the pollution from emissions of

enterprises. The sulfur dioxide emissions of industries could

be reduced by 2.71% if patent authorizations were increased

by 1%. Following further analysis, it was determined that

the industrial sector, geographical location, and ownership

type influenced the reduction in air pollution via TL. Hao

et al. (29) examined the impact of TL on EP from the

perspective of the quantity and quality of foreign direct

investment (FDI) using panel data between 2006 and 2016

for 30 Chinese provinces. The findings revealed that there

was a complex non-linear relationship between TL capacity

and environmental pollution. When the level of FDI increased

from a low to a high level, TL could improve the quality

of the environment. However, when the level of FDI went

beyond a certain threshold, this beneficial impact would

diminish. The ability of TL to have a positive impact on

environmental pollution may improve as the quality of FDI

grew. Xin and Lv (39) utilized a geographically weighted

regression model to analyze the regional differences and

impact mechanisms of TL on environmental pollution using

data from 285 cities in China. The results indicated that

both TL and environmental pollution exhibited significant

spatial agglomeration, with urban TL having a detrimental

effect on environmental pollution. Economic development,

human capital, FDI, environmental regulation, and other factors

jointly affected the pollution improvement effect of TL, which

indirectly reduced environmental pollution by optimizing IS via

technological progress.

Therefore, it can be deduced that besides TL, there are

also many other factors have the most significant effects, such

as the acceleration of economic development, the modification

of IS, the improvement of environmental pollution-control

policies. Therefore, the impact of TL on EP is unpredictable and

limited by numerous factors, and different regions have distinct

geographical characteristics. Existing studies have discussed

the mechanism of TL affecting EP, but most of them are

qualitative analysis. There is a lack of quantitative research on
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TABLE 1 Variable setting.

Variable type Variable definition Variable description Data source

Explained variable Environmental pollution (EP) Comprehensive index of industrial wastewater

discharge, industrial SO2 discharge, and industrial

smoke (powder) dust discharge

“China Statistical Yearbook,” statistical yearbook of

each province

Explanatory variable Technological innovation (TL) Number of green invention patent applications China national intellectual property administration

(https://www.cnipa.gov.cn/)

Control variable Total population (TP) Total regional population “China statistical yearbook”

Gross domestic product (GDP) Regional gross domestic product “China statistical yearbook”

Human capital (HC) Number of college students per 10,000 people “China statistical yearbook”

Foreign direct investment (FDI) Regional foreign direct investment “China statistical yearbook”

Ratio of added value of secondary

and tertiary industries (IS)

Added value of secondary industry/added value of

tertiary industry

“China statistical yearbook”

Environmental regulation (ERS) The intensity of environmental regulation is

measured by the comprehensive index of

expenditure and regulatory indicators

“China statistical yearbook,” “China environmental

statistics yearbook”

Local fiscal expenditure (LFE) Local fiscal expenditure “China statistical yearbook”

the degree of interaction among various influencing factors at

the spatial level.

In view of the research deficiency above, this study

aimed to analyze the interaction between TL and EP by

focusing on 31 provinces in China, taking into account

various driving factors, such as TP, GDP, IS, FDI, HC, ERS,

and LFE among other factors. By analyzing this mechanism,

this study could facilitate a better understanding of the

specific mechanisms of inter-provincial TL capacity and

environmental pollution and provide a theoretical basis

for the Chinese government to formulate innovative

incentive policies and environmental pollution control

measures that are reasonable and effective. Moreover,

it served as a scientific reference for coordinating the

development capacity of TL between provinces and enhancing

environmental governance.

Data sources and variables selection

The sample interval of this study was set as 2000–

2020, owing to data availability, and the total scope of

the research covered 31 provinces (including municipalities

and autonomous regions, excluding Hong Kong, Macao,

and Taiwan). In view of the previous researches (39–41),

based on the principles of objectivity, impartiality and data

availability, on the premise that the explanatory variable and

the explained variable are determined, this study selected the

main control variables. Data sources of the variables can been

in Table 1.

Explained variables

Environmental pollution (EP) index: environmental

deterioration is mainly caused by industrial pollution.

Numerous researches utilize industrial emission indicators to

quantify the level of environmental pollution. Accordingly,

this study selected three indicators, namely, industrial

wastewater discharge, industrial SO2 discharge, and industrial

smoke (powder) dust discharge, calculated their weights

using the entropy method, and calculated a comprehensive

index of environmental pollution for each province using

weighted summation.

Explanatory variables

Technological innovation level (TL): this study considered

the number of invention patent authorizations as an indicator to

measure the level of TL.

Control variables

In addition to TL, other factors affect the ecological

environment. The following control variables were selected in

this study based on their comparability and the availability

of data:

(1) Gross domestic product (GDP): the total GDP is a

measure of the amount of economic development.

(2) Total regional population (TP): the TP of the region

represents the population scale of the region.
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(3) Industrial structure (IS): as an important link

between human economic activities and the ecological

environment, IS defines the types and quantities of pollution

emissions and has varying degrees of impact on the ecological

environment. Comparatively, the secondary industries have

a far greater coercive effect on the ecological environment

than primary and tertiary industries. However, owing to

the advancement of information technology, the tertiary

industry has gradually assumed a dominant position in

the IS. This study measured the IS by the ratio of the

added value of the secondary industry to that of the

tertiary industry, taking into account the environmental

impact of the secondary industry and the change in

the IS.

(4) Foreign direct investment (FDI): as an important

expression of economic globalization, it is debatable what

impact FDI has on the environment, but its impact is

undeniable. This study used the quantities of FDI to measure its

environmental impact.

(5) Human capital (HC): human capital is the carrier

of knowledge and technology, as well as an indispensable

aspect for analyzing the environmental effects of HC. Once

human capital attains a high level, HC can benefit the local

environment via technology spillover. The academic community

has not established a consensus on human capital measurement

indicators. This study was constrained by the availability of

provincial data provided references to prior research to measure

the amount of human capital using the number of college

students per 10,000 people.

(6) Environmental regulation (ERS): the majority of

existing studies estimate the intensity of environmental

regulation from the perspectives of environmental input and

environmental performance. The former consists of pollution

control investments, government environmental protection

fiscal expenditures, and emission reduction costs, whereas the

latter comprises pollution discharge fees, pollution discharge

taxes, and pollutant disposal rates. This study covered

economic-environmental regulation because it was simpler

to internalize external environmental costs via economic-

environmental regulation (42). Based on the consistency and

availability of data, this study employed a comprehensive

index of expenditure and regulatory indicators to assess the

intensity of environmental regulation. The expenditure index

focused on governance expenditures, which were measured

by the ratio of industrial pollution control expenditures

to industrial added value. The regulatory indicators are

based on the monitoring of government departments in

implementing the environmental regulation system and policies,

following the practice of existing research (43, 44), and

using the revenue from domestic sewage charges as the

regulatory indicators. In this study, the min-max standardized

method was used to calculate the comprehensive index of

environmental regulation variables. The formula used was

as follows:

ERSij =
ERSMij −min(ERSMi)

max(ERSMi)−min(ERSMi)
+

ERRIij −min(ERRIi)

max(ERRIi)−min(ERRIi)

(i = 1, 2, . . . , 21; j =1, 2, . . . , 31) (1)

Where ERSij represented the comprehensive index of

environmental regulation of the jth province in the ith

year, ERSMij and ERRIij were the proportions of investment

in environmental regulation and the average income of

environmental regulation of the jth province in the ith year,

respectively. The max(ERSMi) and min(ERSMi) represented

the maximum and minimum values of the proportion of

environmental regulation investment in each province of the

country in the ith year, respectively. The max(ERRIi) and

min(ERRIi) represented the maximum and minimum of the

average income of environmental regulation in each province of

the country in the ith year, respectively.

(7) Local fiscal expenditure (LFE): the local financial

expenditure was used to represent the level of concern for local

financing of public goods.

Methods

Spatial autocorrelation analysis

(1) Global spatial autocorrelation. Spatial correlation of

variables is the premise of using spatial econometric models. In

this study, Moran’s index (Moran’s I) was used to test the spatial

autocorrelation of core variables (45). If the sample range of the

spatial correlation test was set to encompass the whole research

scope of this study, the global Moran index could be utilized to

reflect the spatial distribution pattern state of variables across the

entire region (i.e., determining whether a clustering distribution

existed). Formula (2) demonstrates the calculation method:

I =

n
∑

i=1

n
∑

j=1
Wij(Y ij − Y)(Yj − Y)

S2
n
∑

i=1

n
∑

j=1
Wij

(2)

where S2 =
∑n

i=1 (Yi−Ȳ)
n represented the sample variance, Wij

represented the spatial weight matrix, and Yi and Yj were the

observed values of area i and area j, respectively. The value range

of Moran’s I index was−1≤Moran’s I ≤1. If the I value was >0,

it indicated a positive spatial autocorrelation; when the I value

was <0, it indicated a negative spatial autocorrelation; when I

was equal to 0, there was no spatial autocorrelation.

(2) Local spatial autocorrelation. Global Moran’s index can

only characterize the cluster status of core variables within a
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provincial scope and is incapable of accurately locating and

distinguishing the specific spatial correlation patterns of the

region (45). The local spatial correlation index LISA could

describe whether the aggregation distribution between a region

and its surrounding areas was a high- or low-value aggregation.

The calculation method is shown in formula (3):

Ii =

(Yi − Y)
n
∑

j=1
Wij(Yj − Y)

S2
(3)

where S2 =

n
∑

j=1,j 6=i
Yj−Y

n−1 ; Ii is the local spatial autocorrelation

coefficient of the ith province; Yi represents the observation

value of the ith province; and Wij represents the spatial

weight matrix. Based on the local Moran’s I index, the LISA

agglomeration map can be drawn up, which classifies the local

spatial connection forms into High-High cluster, Low-Low

cluster, Low-High cluster, and High-Low cluster.

Standard deviation ellipse analysis

The standard deviation ellipse derived from spatial statistics

can accurately reveal the spatial distribution characteristics of

geographical elements (46). The model primarily represents the

shape, orientation, distribution range, and other characteristics

of the spatial distribution of attribute values of the research scope

via the long axis, short axis, center of gravity, and rotational

angle (47). The formula is as follows:

Xw =

n
∑

i=1
wixi

n
∑

i=1
wi

Yw =

n
∑

i=1
wiyi

n
∑

i=1
wi

(4)

tan θ =

(
n
∑

i=1
w2
i 1x2i −

n
∑

i=1
w2
i 1y2i )+

√

n
∑

i=1
w2
i 1x2i −

n
∑

i=1
w2
i 1y2i )+ 4

n
∑

i=1
w2
i 1x2i 1y2i

2
n
∑

i=1
w2
i 1xi1yi

(5)

σx =

√

√

√

√

√

√

√

√

n
∑

i=1
(wi1xi cos θ − wi1yi sin θ)2

n
∑

i=1
w2
i

σy =

√

√

√

√

√

√

√

√

n
∑

i=1
(wi1xi sin θ − wi1yi cos θ)

2

n
∑

i=1
w2
i

(6)

S = πσxσy (7)

where (xi, yi) indicates the geographical coordinates of province

i in the study area, and wi represents the weight. (Xw, Yw)

represents the weighted average geographical center coordinates

of the study area; θ is the azimuth angle of the ellipse (1xi,

1yi); represents the deviation between the geographical location

of province i in the study area and the weighted average

geographical center coordinates of the study area; σx and σv

represent the standard deviation values along the X-axis and

Y-axis, respectively; and S is the area of the ellipse.

Trend surface analysis

Trend surface analysis is based on spatial data and uses

mathematical analysis methods to simulate spatial surfaces,

depict the spatial distribution law of geographical elements, and

consequently investigate the spatial change trend of geographical

elements. It has significant utility in spatial analyses (48). In this

study, we used coupled co-scheduling as the observation value,

and we simulated the spatial differentiation characteristics of

TL of provinces in China using trend surface analysis. If (xi,

yi) is the spatial position of the ith province, then Z (xi, yi)

represents the trend function of the ith province, where the

X-axis depicts the east-west direction, and the Y-axis depicts the

north-south direction.

Dynamic evaluation analysis model

To further investigate the spatiotemporal dynamic

characteristics of the EP, the kernel density function was

employed to analyze its temporal characteristics. The kernel

density function method analyzes the overall spatial change and

evaluates the overall difference by adjusting the convergence

degree and range of the function curve. The kernel density

function is as follows:

f (x)=
1

nh

t
∑

i=1

K

(

xi − x

h

)

(8)

where n is the total number of samples and h is the set window

width, where lim n → ∞, h(n) = 0. In this study, the Gaussian

kernel function is used for estimation, and its expression is:

K (x) =
1

√
2π

exp

[

−
x2

2

]

(9)

By combining the distribution form and the kernel density

function diagram, we could effectively judge the change of the

EP across various observational periods and then characterize

its dynamic characteristics.
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TABLE 2 Regional division of China.

Region Provinces

Eastern China Beijing, Tianjin, Shanghai, Liaoning, Jiangsu. Zhejiang, Fujian, Shandong, Guangdong.

Central China Hebei, Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Hainan.

Western China Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Xizang, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang.

The driving factors based on the quantile
regression model

The least squares method is the most commonly used

method of fitting a regression curve to given data (49). The basic

notion is as follows:

f (x) = α1ϕ1(x)+ α2ϕ2(x)+ ...+ αmϕm(x) (10)

where ϕk(x) is a predetermined set of linearly independent

functions; αk is an undetermined coefficient (k = 1, 2,..., m, m

< n); and the fitting criterion is to minimize the square sum of

the distance ∂i between yi (i = 1, 2,..., n) and f (xi), also known

as the least square criterion.

Traditional regression models emphasize the influence

of explanatory variables on the conditional expectations of

the explained variables, depicting a concentrated trend while

frequently disregarding the coefficient changes resulting from

the conditional random probability distribution. To remedy this

flaw, Koenker and Bassett Jr. (50) developed the QR model.

This model excludes the interference of outliers more effectively

than other models and does presume that the data follow a

normal distribution. It can examine the influence of explanatory

variables on explained variables in different quartiles in an

effective manner (51). The formula for the panel data is

as follows:

QYit (τ |Xit) = αi + Xit
Tβ (τ) , (i = 1, 2, . . . , n;

t = 1, 2, . . . ,T) (11)

whereQYit is the conditional quantile function; i is the individual

of different samples; t is the sample observation period; n is the

sample size; T is the study period; τ is the quantile set in this

study, and the value range is (0, 1); αi is a constant term; and

β(τ ) is the influence coefficient at the τ quantile, which isoften

estimated using weighted least squares β .

β (θ) = min(α,β)

q
∑

k=1

n
∑

i=1

T
∑

t=1

wkρτk

[

Yit − αi − XT
itβ (τk)

]

(12)

where β(θ) represents the influence coefficient; k is the kth group

of quantiles; q represents the number of quantile arrays; wk

is the weight coefficient of the k quantile; ρτk represents the

quantile loss function; and β(τk) is the influence coefficient of

the k quantile.

In order to clearly express regional differences, the Table 2

shows the specific divisions of the eastern, central and western

provinces in China.

Results

Spatial autocorrelation analysis

The global spatial autocorrelation, as measured by the

global Moran’s I index, can reflect the interdependence

of core variables in various regions in the global range.

Table 3 depicts Moran’s I index of the spatial distribution

of environmental pollution and TL under the conditions

of a geographical adjacency matrix from 2000 to 2020. In

the majority of provinces, the results indicated there is a

significant spatial autocorrelation between EP and TL, which

could be utilized for subsequent spatial effect measurements

and estimation.

For further analysis, this study further uses LISA scatterplot

to characterize the EP clustering distribution of the area

and its surrounding areas (Figure 1). Figure 1 shows that,

except for insignificant areas, there were four spatial clustering

types of EP: High-High cluster, Low-Low cluster, Low-High

cluster, and High-Low cluster. Quantitatively, the positive

spatial correlations of High-High cluster and Low-High

cluster are predominated. Among them, from 2000 to

2020, High-High cluster of EP agglomerations are mainly

distributed in the central and northern areas, which may

be due to the fact that the technological innovation and

industrialization of these cities are at a high level, and the

negative impact of industrialization on the EP is greater than

the positive effect of technological innovation, and technological

innovation activities are not enough to improve the EP in

the surrounding areas; Low-High cluster of EP agglomerations

are mainly located in the central and southern areas of

China (Hubei, Anhui), indicating that these areas have a

low level of EP themselves and a high level of EP in the

surrounding areas.
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TABLE 3 Global Moran’s I index of each core variable from 2000 to 2020.

Year Variable I Year Variable I Year Variable I

2000 TL 0.0980** 2007 TL 0.0064* 2014 TL 0.0077*

EP 0.0281* EP 0.7720* EP 0.1229**

2001 TL 0.0442** 2008 TL 0.0375* 2015 TL 0.0264**

EP 0.0387* EP 0.0756* EP 0.1012**

2002 TL 0.0382** 2009 TL 0.0456* 2016 TL 0.0340**

EP 0.0403* EP 0.0735* EP 0.1051**

2003 TL 0.2299* 2010 TL 0.0449* 2017 TL 0.0012*

EP 0.0574* EP 0.0989** EP 0.1298**

2004 TL 0.0504* 2011 TL 0.0394* 2018 TL 0.0033*

EP 0.0725* EP 0.1283** EP 0.0789*

2005 TL 0.0054* 2012 TL 0.0249* 2019 TL 0.0241*

EP 0.0651* EP 0.1352** EP 0.0606*

2006 TL 0.0092* 2013 TL 0.0125* 2020 TL 0.0069*

EP 0.0628* EP 0.1325** EP 0.1090**

*, **, and *** Mean significant correlation at the level of 10%, 5%, and 1%, respectively.

FIGURE 1

LISA cluster diagram of EP in 2000–2020.

Trend analysis

Trend analysis of core explanatory variables

The spatial distribution direction and dynamic

characteristics of the comprehensive EP at the national

and provincial scales were investigated using the standard

deviation ellipse analysis tool of ArcGIS 10.3 software

(Environmental Systems Research Institute), as listed in Table 4

and Figure 2.

The results show that the following: (1) the standard

deviation ellipse was generally positioned in the eastern China.

The circumference of the ellipse showed a “first increasing and

then decreasing” trend; it increased from 58.23 km in 2000 to

63.87 km in 2015 and then decreased to 63.77 km in 2020. (2)
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TABLE 4 Basic information of standard deviation ellipse analysis.

Year Circumference of

the ellipse (km)

Elliptical

area (km2)

Longitude Latitude X-axis

length (km)

Y-axis

length (km)

Direction

2000 58.23 255.86 113.46 33.11 7.47 10.91 56.53◦

2005 59.75 274.33 113.55 33.31 8.02 10.89 57.30◦

2010 61.24 289.14 113.45 33.50 8.30 11.10 60.05◦

2015 63.87 313.05 113.20 34.00 8.54 11.67 68.54◦

2020 63.77 314.11 113.01 33.55 8.68 11.52 65.95◦

FIGURE 2

Standard deviation ellipse and center of gravity movement

trajectory of China’s environmental pollution index (EP) from

2000 to 2020.

FIGURE 3

Dynamic evolution of the national EP from 2000 to 2020.

The area of the ellipse showed a “continuous increase” trend;

it increased from 255.86 km2 in 2000 to 314.11 km2 in 2020,

indicating that the EP of cities outside the ellipse was higher

than that of cities inside the ellipse during 2000–2020. During

the study period, the EP in the central region had a spatial

distribution characteristic of “continuous expansion.” (3) There

was a clear difference between the long and short axes of the

standard deviation ellipse, indicating that the spatial distribution

of the national EP was directional. The standard deviation ellipse

was broadly distributed in the “southwest-northeast” direction,

indicating that EP presents a trend of concentration in the

direction of “southwest-northeast.” (4) The rotational angle of

the standard deviation ellipse increased from 56.53◦ in 2000 to

68.54◦ in 2015 and then decreased to 65.95◦ in 2020. It revealed

that the ellipse first rotated counterclockwise and subsequently

slightly clockwise, indicating that the EP in the southwest or

northeast changed rapidly. (5) The moving trajectory of the

center of gravity of the EP from 2000 to 2020 was as follows:

from 2000 to 2005, it moved to the northeast; from 2005 to 2015,

it continued to move to the northwest; and from 2015 to 2020, it

moved to the southwest. Henan Province was always the center

of gravity of the EP from 2000 to 2020 (Figure 2).

To better elucidate the dynamic characteristics of regional

differences in the EP, this study used the Gaussian kernel density

function and growth distribution chart to depict the evolution

trend of regional differences in the EP. The data for 2000, 2005,

2010, 2015, and 2020 were selected, and the dynamic evolution

process of the national and provincial EPs was plotted using

Stata 15 software (Computer Resource Center) (see Figure 3).

Overall, the peak of the kernel density curve of the national

and provincial EPs slowed down progressively. In 2005, the

center of the density function shifted to the right compared

to 2000, and the peak declined, indicating that the regional

differences were increasing. In 2010 and 2015, the center of the

density function shifted to the right by a substantial margin, the

peak slowed, and the width significantly widened, indicating that

the disparity between regions in the EP expanded with time.

In 2020, the peak value of the kernel density function of the

EP abruptly increased, and the center of the function shifted

to the left, indicating that the polarization of the regional EP

had weakened.

Trend analysis of explained variables

The trend surface analysis was used to process and analyze

the national TL level from 2000 to 2020 to analyze the changing
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FIGURE 4

(A–E) Trend surface analysis results of provincial technological innovation (TL) levels in China.

TABLE 5 Least squares method (OLS) and quantile regression (QR) estimation results.

Variable OLS QR

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

ln TL −0.078*** −0.056*** −0.046*** −0.046*** −0.052** −0.051** −0.057*** −0.062** −0.089*** −0.110***

(0.013) (0.012) (0.01) (0.011) (0.016) (0.017) (0.018) (0.024) (0.026) (0.024)

ln TP 0.337*** 0.236*** 0.276*** 0.303*** 0.329*** 0.361*** 0.373*** 0.410*** 0.354*** 0.362***

(0.023) (0.022) (0.018) (0.019) (0.027) (0.03) (0.032) (0.042) (0.045) (0.041)

ln HC −0.112*** −0.067* −0.100*** −0.123*** −0.139*** −0.163*** −0.155*** −0.200*** −0.139* −0.080*

(0.03) (0.029) (0.024) (0.025) (0.036) (0.041) (0.042) (0.057) (0.06) (0.055)

ln FDI 0.044*** 0.030*** 0.031*** 0.035*** 0.040*** 0.038*** 0.033*** 0.045*** 0.051*** 0.044**

(0.007) (0.007) (0.006) (0.006) (0.009) (0.01) (0.01) (0.014) (0.015) (0.013)

ln IS −0.248*** −0.184*** −0.203*** −0.220*** −0.245*** −0.281*** −0.270*** −0.290*** −0.324*** −0.287***

(0.028) (0.027) (0.022) (0.023) (0.034) (0.038) (0.039) (0.052) (0.055) (0.051)

ln LFE 0.176*** 0.132*** 0.124*** 0.126*** 0.140*** 0.150*** 0.145*** 0.188*** 0.209*** 0.210***

(0.016) (0.015) (0.013) (0.013) (0.019) (0.022) (0.022) (0.03) (0.032) (0.029)

_cons −2.951*** −2.200*** −2.372*** −2.519*** −2.739*** −2.903*** −2.834*** −3.315*** −3.025*** −3.006***

(0.172) (0.164) (0.138) (0.141) (0.206) (0.23) (0.239) (0.319) (0.336) (0.31)

Values in parentheses are t-test values; ***, **, and * represent significance at a confidence level of 1, 5, and 10%, respectively.

trend and distribution law of TL at the national and provincial

levels. The X-axis signifies the due east direction; the Y-axis

represents the due north direction; the blue curve shows the

change fitting line of the national TL in a north-south direction;

and the green curve represents the change fitting line in an

east-west direction (Figure 4). Figure 4 demonstrates that the

national green technology innovation index in its entirety

exhibits a trend of “north-south change, high in the east, and

low in the west”.

Based on the north-south trend of the curve, the level

of TL in 2000–2005 displayed a clear north-south spatial

distribution, with high levels in the north and low levels in the

south (Figures 4A,B). However, from 2010 to 2020, it gradually

transformed into a significant spatial distribution characterized

by low values in the north and high values in the south.

The northeast showed evident spatial characteristics of “high

in the east and low in the west.” While, the gap between

the east and the west slightly widened, indicating that the

gap of TL level at the provincial level in China was steadily

widening in an east-west direction. The level of TL among

regions had developed to varying degrees, and the regional gap

was deepening (Figures 4C–E).
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FIGURE 5

Distribution of the regression elasticity coe�cient of influencing factors of the environmental pollution index (EP) in China.

Influencing factors of green technology
innovation level

Existing research indicates that the degree of EP differs

at various stages of economic development, and the impact

of different stages of TL on the EP varies as well. Compared

with the ordinary least square regression, the QR model gave

a novel perspective on the basis of compensating for the

biases and outliers in the data, which could not fulfill the

presupposition of mean regression: when the independent

variable was determined, more data were mined at different

levels of the dependent variable to effectively portray the

dynamic relationship between different and dependent variables.

Therefore, this study estimated the dynamic relationship

between the EP and TL using equations (10) and (11). There

was potential formulticollinearity among variables. Based on the

QR, the process was as follows: take the logarithm of the primary

term of the control variable, conduct a multicollinearity test,

eliminate variables with possible collinearity, and finally retain

TL, TP, HC, FDI, IS, and LFE. To compare the mean regression

coefficient of the traditional panel data model, the OLS model

was initially generated. To enhance the evaluation effect, this

study utilized nine quantile indexes (i.e., 0.10, 0.20, 0.30, 0.40,

0.50, 0.60, 0.70, 0.80, and 0.90) to evaluate the relationship

between various influencing factors and the distribution of the

EP under variable conditions. Table 5 lists the panel QR results

for different variables, whereas Figure 5 depicts the elasticity

coefficient distribution for various variables.

Table 5 demonstrates that the regression coefficients

(regression curve slopes) of different variables in different

quartiles vary; that is, the degree of influence and the effect

of different variables on the marginal effects for EP in various

quartiles differ. From the perspective of core explanatory

variables, regardless of OLS or QR, the impact of TL on the EP

was negative at the level of effective significance, and the overall

trend initially increased and then decreased with the increase in

quantile, indicating that TL had a negative impact on the EP.

This indicated that all provinces in the country were in the initial

stage of cost saving and that TL support, such as technology

improvement and management mode optimization, was poor.

Innovation compensation could hardly compensate for the

high production costs caused by environmental regulation,
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and matching funds and policies could hardly demonstrate the

impact of environmental pollution levels, making it difficult to

offset the negative impact of TL on the crowding-out effect of

innovation input. The results showed that TL was the primary

contributor to the EP, and that the inhibitory effect of TL on EP

was more significant in the middle quartile provinces than that

in the high quartile provinces.

Regarding the control variables, the TP, HC, FDI, IS, LFE, all

had a significant impact on the EP at the effective significance

level. Specifically, the TP had a significant positive correlation

with the EP, and the positive effect fluctuated with an increase

in the quantile, which generally exhibited a trend of “initially

increasing and then decreasing.” The specific realization was

that the regression coefficient exhibited an ascending trend in

the low and middle quartiles (0.10–0.70) and a descending trend

in the high quartiles (0.80–0.90). This showed that increasing

the total population would aggravate the level of environmental

pollution to a certain extent, because population growth would

result in the aggregation and development of various industrial

resources, which will aggravate the degree of environmental

pollution to a certain extent.

HC had a significant inhibitory effect on the EP, which

fluctuated as the quartile increased. Specifically, the regression

coefficient revealed an increasing trend in the low and middle

quartiles (0.10–0.50), followed by a fluctuating trend in the

high quartiles (0.60–0.90). This was because HC reflected

the educational level and consciousness of environmental

protection of local populations, which is conducive to regional

environmental protection.

FDI had a significant positive effect on the EP at the middle

and low quartile levels, with a clear inverted “m” - shaped rising

trend with an increase in the quartile. This indicated that the

influence of FDI on regions with a low EP was evident, whereas

the effect of FDI on regions with a high EP was weaker.

IS had a significant inhibitory effect on the EP, which

fluctuated with an increase in quantiles. Particularly, the

regression coefficient revealed an ascending trend in the low and

middle quartiles (0.10–0.50), followed by a fluctuating trend in

the high quartiles (0.60–0.90). This indicated that the inhibitory

effect of IS in regions with a low EP was minimal, whereas

in regions with a high EP, the inhibitory effect of increased IS

was amplified.

The positive effect of local LFE on the EP fluctuated with

an increase of the quantile. Generally, it showed an “n” type

fluctuating trend with an increase of the quantile. The specific

performance is that in the low and middle quantiles (0.10–0.60),

the regression coefficient was low, and the positive effect on

the EP was weak. Moreover, it was at a high level in the

high quartile (0.70–0.90), and it had a strong positive effect

on the EP. This demonstrated that the regression coefficient

of LFE increased as the quantile increased. The positive

effect of LFE gradually increased, indicating that the degree

of environmental pollution could effectively be reduced by

increasing LFE during the transition process of provincial EP

from low to high.

The aforementioned results demonstrated that each variable

had different effects on the EP at various quantile levels. On

this basis, the confidence interval diagram of the QR curve of

the various quantiles was produced to investigate the impact

of different variables on the EP (Figure 5). The regression

elasticity coefficient distribution of variables demonstrated that

the influence of social and economic factors on the level of green

TL was phased. The upper and lower limits of OLS estimation

coefficients and their confidence intervals are represented as

horizontal lines, and their coefficients and confidence intervals

remain unchanged as quantiles change. For the regression

coefficient of the QRmodel, with a change of quantile conditions

(Figure 5), it was discovered that the regression coefficient

significantly changed with a high EP.

The TP, HC, FDI, IS, and LFE had a significant influence on

the EP at the effective significance level, regardless of whether

OLS or QR was used. In particular, the regression coefficients

and confidence intervals of the TP, FDI, and LFE were all >0,

indicating a positive effect on the EP. The confidence intervals

of the TP and FDI were gradually widening, indicating that

the standard deviation of the coefficient and its volatility were

gradually increasing.

The promoting effect of TP and TS on the EP of low and

middle quartile provinces was greater than that of high quartile

provinces; FDI had a more substantial role in promoting the

improvement of the EP of high-ranking provinces than other

variables. The regression coefficients and confidence intervals

for TL, HC, and IS were <0, indicating a negative impact on

the EP.

Furthermore, the coefficient estimates for different quantiles

of each variable fell outside the coefficient confidence interval of

the mean regression model, indicating that the mean regression

model was partially irrational and the QR model could better

explain the relationship between variables. However, compared

to the results of panel QR, the TP, HC, FDI, IS, and LFE

estimated by OLS fixed-effect regression were the same at the

level of effective significance, regardless of whether it was OLS

or QR.

Conclusion and policy
recommendations

This study analyzes the spatial distribution pattern

of the national EP and TL, explores its spatiotemporal

evolution trend, and then quantitatively evaluates the effect

of the influencing factors on the EP. It ensures a thorough

understanding of the specific mechanisms of inter-provincial

TL capacity and environmental pollution in China, as well as

promoting the formulation of innovative incentive policies

and environmental pollution control measures that are
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reasonable and effective by the Chinese government. This

study found there is a significant spatial autocorrelation

between the EP and TL. Overall, the spatial distribution of

the EP was directional, being concentrated in the southwest

and northeast. TL showed a “north-south change, high in

the east, and low in the west” trend. Regional differences

and the phenomenon of polarization were clearly visible.

Regardless of using OLS or QR, TL, HC, IS all had a

constraining effect on the EP at the effective significance

level, whereas the TP, FDI, and LFE were positively correlated

to the EP.

Certainly, there were some shortcomings in this study.

Factors were used which were difficult to quantify, such

as environmental awareness and policy control, which

may affect the research results. Future research should use

appropriate methods to incorporate the aforementioned

factors into the analysis of influencing factors, enhancing

the accuracy. In additional, the research scale should be

more refined.

Based on the findings above, the following

recommendations can be proposed: Firstly, we should

completely understand the complex relationship between TL

and EP, and then we should formulate a positive strategic plan

for green industrial development. We should maximize the

role of TL in industrial production and increase investment in

green technology R&D to advance environmental protection

technologies. Secondly, in the context of high-quality economic

development, we should actively encourage the optimization

and upgrading of the industrial sector, especially the secondary

and tertiary industries. To achieve the optimization and

upgrading of the IS during industrialization. Thirdly, we should

strengthen policy support and environmental regulation for

the development of regional TL by enhancing the green policy

framework. Finally, we should optimize the market competition

environment, strengthen the legislative framework for the

innovation of green technology by enterprises, and enhance the

system of environmental regulations and standards.
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