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This study aimed at implementing practice to build a standardized protocol

to test the performance of computer-aided detection (CAD) algorithms for

pulmonary nodules. A test dataset was established according to a standardized

procedure, including data collection, curation and annotation. Six types of

pulmonary nodules were manually annotated as reference standard. Three

specific rules to match algorithm output with reference standard were applied

and compared. These rules included: (1) “center hit” [whether the center of

algorithmhighlighted region of interest (ROI) hit the ROI of reference standard];

(2) “center distance” (whether the distance between algorithm highlighted

ROI center and reference standard center was below a certain threshold);

(3) “area overlap” (whether the overlap between algorithm highlighted ROI

and reference standard was above a certain threshold). Performance metrics

were calculated and the results were compared among ten algorithms under

test (AUTs). The test set currently consisted of CT sequences from 593

patients. Under “center hit” rule, the average recall rate, average precision,

and average F1 score of ten algorithms under test were 54.68, 38.19, and

42.39%, respectively. Correspondingly, the results under “center distance” rule

were 55.43, 38.69, and 42.96%, and the results under “area overlap” rule were

40.35, 27.75, and 31.13%. Among the six types of pulmonary nodules, the AUTs

showed the highest miss rate for pure ground-glass nodules, with an average

of 59.32%, followed by pleural nodules and solid nodules, with an average of

49.80 and 42.21%, respectively. The algorithm testing results changed along

with specific matching methods adopted in the testing process. The AUTs

showed uneven performance on di�erent types of pulmonary nodules. This

centralized testing protocol supports the comparison between algorithmswith

similar intended use, and helps evaluate algorithm performance.
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computer-aided detection (CAD), algorithm testing, pulmonary nodule, test set, data
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Introduction

Lung cancer has become the most common malignant

tumor that threatens human health (1). Pulmonary nodules

are common imaging signs in the early stage of lung cancer.

Early detection of pulmonary nodules and timely medical

intervention can improve the survival rate of patients (2), CT

screening provides an effective method for early diagnosis,

thereby accumulating tremendous amount of CT images for

radiologists to read (3).

CAD algorithm for pulmonary nodules may help assist

clinical decisions, and improve clinical work efficiency (4).

Usually, the common function of a CAD system is to

detect the location of the lesions (5). Afterwards, lesion type

classification and lesion size measurement may also be covered.

Therefore, lesion detection is fundamental and important.

Many researchers have devoted to improving or innovating

Artificial Intelligence (AI) -enabled algorithms for pulmonary

nodule detection to improve the detection performance of the

algorithms (6–21). Public datasets such as LIDC-IDRI (22),

LNDb (23), ANODE09 (24) supported algorithm competitions

and researches (25–37), which provided insights on how to

arrange algorithm testing. However, the procedure of algorithm

competitions is significantly different from product verification

and validation, which should provide high quality evidence for

regulation. In algorithm competitions, the training data and

testing data may come from the same dataset (22) and have

similar features. The annotation process may be conducted by

clinicians from a limited number of hospitals, which may not

reflect wide consensus of medical community. This situation

may decrease the comparability of algorithm testing results

among different labs. More effort is thus needed to improve

algorithm testing procedure. And for relative research, details of

the matching process between reference standard and algorithm

predicted ROIs were not sufficiently described in the literature,

but different matching methods may lead to differences in

performance test results which limit the comparability among

different algorithms.

AI-enabled CAD products for pulmonary nodules have

been developed and marketed in many countries (38–40), and

most of them are in the form of software as a medical device

(SaMD). While stakeholders are interested to compare products

and understand their quality, the verification and validation of

such products is often conducted by manufacturers individually.

Currently, there are differences in the performance metrics

and verification methods claimed by different manufacturers,

resulting in a lack of comparability between algorithms (41).

There is also a lack of understanding of the common quality

characteristics of these algorithms. Recently, standardization

organizations start to establish the framework to conduct

algorithm performance testing. It would be necessary to gain

practical experience (42, 43).

FIGURE 1

The workflow to build a test set for pulmonary nodules.

In this paper, a protocol is proposed to build datasets

for algorithm testing from the perspective of third party and

regulation. Three matching methods [center distance (44),

center hit (45), area overlap (46)] are applied to test the detection

performance of AUTs provided by ten different developers.

The overall performance of ten AUTs and the differences

in algorithm performance under different matching methods

are analyzed. Algorithm errors are also analyzed to further

understand the quality features of the AUTs. This work is aimed

at establishing prototypes for standardized verification of such

products and promote quality control. It may provide experience

for development of technical standards on CAD products.

Materials and methods

Test set

The construction of a test set followed the procedure in

Figure 1, which referred to the strategy in literature (47).

The design input clarified data collection requirement (CT

equipment, imaging parameters such as tube voltage, slice

thickness, slice spacing and reconstruction algorithm), data

diversity (patient spectrum, geological distribution of data

collection sites, proportion of different types of nodules) and
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TABLE 1 The proportion of di�erent types of nodules.

Types Proportion (%)

Solid nodules 42.66

Part-solid nodules 5.06

Pure ground-glass nodules 19.58

Calcified nodules 7.40

Pleural nodules 23.06

Pleural calcified nodules 2.24

rules for unique data identification. More details can refer to

literature (47).

CT images of patients with pulmonary nodules were

collected retrospectively under local ethical approval and

patient privacy protection requirements. They are stored as

Dicom (Digital Imaging and Communications in Medicine)

files. A data cleaning procedure was conducted to ensure the

integrity and validity of CT images. Cases with discontinuous

imaging sequences, missing slices, unreadable files, problematic

field of view and irrelevant imaging position were excluded.

Further examination was conducted to remove data which were

duplicated internally or externally and ensure the uniqueness of

each image sequence.

Annotation was conducted by groups of radiologists on

a custom-built annotation software. CT sequences can be

displayed at different angles. Multiple window level and width

settings are provided. Annotators were asked to label the

location (center of the bounding box), boundary and type of

pulmonary nodules on each slice (usually cross-sectional view).

The size of the nodule was also recorded, containing long

diameter, short diameter, average diameter, length and width of

the bounding box. The outputs were exported as csv files, which

were used as reference standard during algorithm testing.

Annotators were publicly recruited through a qualification

exam, which evaluated annotators’ skills to detect and segment

pulmonary nodules on 20 thoracic CT sequences in comparison

with annotation results from a high-level expert panel.

One hundred and eighty-five candidates from 112 hospitals

participated in the test. The passing criteria is: precision >0.8,

recall >0.8 and Dice coefficient >0.8. 24 junior radiologists and

15 senior radiologists passed the exam and received training.

They were from 25 hospitals in 13 provinces in China. The

junior radiologists have been engaged in image reading service

in tertiary hospitals for more than 5 years and have a title of

resident doctor or above. Every three junior radiologists form a

team, and the team leader is a deputy chief physician with more

than 10 years of work experience. The senior experts are chief

physicians or deputy chief physicians with more than 15 years of

work experience. They provide final review and arbitration.

The annotation consists of three steps. First, every team of

junior radiologists independently highlight pulmonary nodules

on a batch of CT image sequences back-to-back, and then a

TABLE 2 The proportion of di�erent sizes of nodules.

Sizes (diameter/mm) Proportion (%)

<4 69.91

[4, 6) 19.63

[6, 10) 7.28

≥10 3.18

computer program automatically evaluates the consistency of

the detection results. If they are consistent, the output will be

the union of the results marked by the three junior radiologists.

If results are inconsistent on certain slices, such slices will be

highlighted to remind senior experts. Second, the same team

gives the classification labels for the detected nodules from the

previous step. Third, the outputs are reviewed by the leader from

another team and arbitrated by arbitration experts. In case there

are controversial results, the arbitration experts will discuss and

determine the final annotation result.

The dataset contains a total of 593 cases from 22 hospitals

in 9 provinces in China, with a total of 6,109 nodules. These

nodules were counted from the perspective of type and size.

The proportion of nodules of different types and sizes was

shown in Tables 1, 2. A range of CT scanner manufacturers

and models was represented (38% of scans from seven different

Siemens Definition, Sensation, and Emotion scanner models,

36% of scans from three different Philips Brilliance, iCT scanner

models, 12% of scans from three different GE Medical Systems

LightSpeed, BrightSpeed scanner models, 9% of scans from UIH

uCT scanners, 3% of scans from Toshiba Aquilion scanners, 2%

of scans from other scanner models). Tube voltage ranged from

100 to 150 kV (mean: 117.4 kV). Tube current ranged from

17 to 544mA (mean:189.8mA). Conventional and enhanced

CT accounted for 67% and low-dose screening CT accounted

for 33%. The in-plane pixel size ranged from 0.5 to 0.9mm.

Slice thicknesses included 0.625mm (1.2%), 0.75mm (4.7%),

0.8mm (14.0%), 1mm (34.1%), 1.25mm (13.8%), 1.5mm

(1.3%), 2mm (28.5%), 2.5–6mm (2.9%). 72.1% of CT scans were

reconstructed using standard algorithm and lung algorithm, and

27.9% were reconstructed using high frequency algorithm and

bone algorithm.

The definition of various types of nodules is as follows (48):

(1) Solid nodules: focal increased density shadows with clear

borders in the lung parenchyma with a circular or

quasi-circular (sphere or sphere-like) boundary, and the

bronchi and blood vessel edges in the lesions cannot be

identified. The maximum long diameter of the nodule

is ≤3 cm.

(2) Part-solid nodules (mixed ground-glass density nodules):

focal increased density shadows with clear borders in

the lung parenchyma, round or round-like (sphere or

sphere-like). In some lesions, the bronchi and blood vessel
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edges can be identified, and the maximum long diameter

is ≤3 cm.

(3) Pure ground-glass nodules: focal increased density

shadows with clear borders in the lung parenchyma

with a circular or quasi-circular (sphere or sphere-like)

boundary, and the edges of the bronchi and blood vessels

in the entire lesion can be identified, with a maximum

long diameter of ≤3 cm.

(4) Calcified nodules: circular or quasi-circular (sphere or

sphere-like) complete calcium deposits in the lung

parenchyma with clear boundaries, the maximum long

diameter is ≤3 cm, and the CT value is usually above

100 HU.

(5) Pleural nodules and pleural plaques: Pleural nodules

are round and round-like (sphere and sphere-like) or

irregular focal increased density shadows originating

from the pleura, often connected to the broad base of

the pleura, the maximum long diameter ≤3 cm. Pleural

plaques are irregular flat protrusions of the pleura that

are localized and broad-based, with an irregular surface.

Hereinafter referred to as pleural nodules.

(6) Pleural calcified nodules: round or round-like (sphere or

sphere-like) complete calcium deposition foci with clear

borders originating from the pleura, the maximum long

diameter is ≤3 cm, and the CT value is usually above

100 HU.

More details and examples of pulmonary nodule annotation

refer to an expert consensus (48).

The dataset is managed as a sequestered test set according to

the IEEE 2801–2022 standard (49).

Algorithm under test (AUT)

10 AUTs provided by 10 different developers are tested in

this study. The developers are from medical device industry.

They all use deep convolutional neural network to perform lung

nodule detection. The AUTs are generally developed by transfer

learning based on developers’ self-developed training sets. The

pre-training models referred to Faster-RCNN, YOLO and other

public available algorithms (50–52). 9 AUTs are designed to

detect 2-D targets on each CT image. 1 AUT is designed to

detect 3D targets. To protect confidential information, details

on the algorithm architecture and weights are not disclosed.

According to the intended use, 3 AUTs detect only pulmonary

nodules (4 types in total), and 7 AUTs detect 4 types of

pulmonary nodules and 2 types of pleural nodules (6 types

in total). The output of the AUTs highlight the region of

predicted nodule in the form of a bounding box (B-Box) on

each slice.

During the test, each developer provided a server to install

and run their AUT. The configuration of the server was

FIGURE 2

The flowchart depicting matching process for one reference

nodule. Every reference nodule in each case goes through

matching process. Unmatched predicted nodules result in a

corresponding increase in the number of FPs.

determined by the developer. No internet connection was

allowed. The test set was imported to the AUT through an

external hard drive.

Mark-labeling methods

To determine whether the predicted mark matches the

reference standard (53) [this process is also called “mark-

labeling” (54)], the flowchart of matching process is shown in

Figure 2, and the specific details of mark-labeling methods are

described as follows, and for amore intuitive schematic diagram,

see Supplementary Figure A.1.

Center hit

In this study, the center point of the B-Box of the predicted

nodule falls within the range of the corresponding reference

nodule region as a successful detection match. If the predicted

nodule has multiple slices, as long as one slice satisfies the above

situation, the reference nodule can be recorded as successful

detection. The successfully detected reference nodules and

predicted nodules are recorded as true positive (TP) nodules.

After all reference nodules participated in the mark matching

process, the reference nodules and predicted nodules that are

not successfully matched are recorded as false-negative (FN)

and false-positive (FP) nodules, respectively. When a reference

nodule meets the conditions for successful matching with
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multiple predicted nodules at the same time, the distance

between the predicted nodule and the largest slice of the

reference nodule is further compared. The predicted nodule with

the smallest distance is recorded as the TP nodule, and other

predicted nodules need to participate in the matching process

of the remaining reference nodules. If a predicted nodule can

be matched with multiple reference nodules, the first reference

nodule is selected to match the predicted nodule according to

the matching order. With respect to the predicted nodule with

multiple slices, the definition of TP, FN, FP nodules, and the

matching of multiple reference nodules with a predicted nodule,

are handled in the same way in the three mark-labeling methods.

Center distance

For center distance scheme, the distance between the

center point of the predicted nodule B-Box and that of the

corresponding reference nodule B-Box is compared with a

threshold. Such a threshold is varied which is adaptively set to

the average radius of each reference nodule under matching,

which is the maximum of one quarter of the sum of the long

and short diameters across slices. If the distance is less than

threshold, reference nodule is considered successfully detected.

When a reference nodule meets the conditions for successful

matching withmultiple predicted nodules at the same time, their

distance is further compared, and the predicted nodule with the

shortest center distance is recorded as the TP nodule, and the

remaining predicted nodules participate in the matching process

of other reference nodules.

Area overlap

For “area overlap” rule, it is stipulated that the proportion

of the overlapping part of the predicted nodule B-Box area and

the reference nodule B-Box area to the reference nodule B-Box

area is greater than a threshold as a successful detection, and the

threshold is set to 0.5 empirically. When looking for a matching

predicted nodule for a certain reference nodule, if there are

multiple predicted nodules that can satisfy the aforementioned

description of successful matching, their proportions are further

compared, and the predicted nodule with the highest proportion

is considered to match the reference nodule.

Performance evaluation metrics

Recall, precision, and F1 score were selected to evaluate

algorithm performance. The recall reflects the proportion of

the correct nodules detected by the algorithm to the reference

nodules, that is, whether the algorithm can find out as

many reference nodules as possible. The accuracy reflects the

proportion of the correct nodules detected by the algorithm to

the nodules predicted by the algorithm itself, that is, whether

the algorithm can predict the reference nodules as accurately

as possible. The F1 score reflects an overall performance. For

the definitions of TP, FP and FN, see the description in section

Mark-labeling Methods. It can be seen that different mark-

labeling methods may affect the judgement and quantities of TP,

FP, and FN, thereby influencing the recall rate, precision, and F1

score values.

Results

Comparison between three
mark-labeling methods

Test the detection performance of ten algorithms according

to the three matching methods specified in chapter Mark-

labeling Methods, and comprehend the impact of different

testing methods on the metrics. The overall performance of the

ten algorithms is represented by the mean± standard deviation

(%) of the metric values (Figure 3).

In general, the algorithm performance under center hit and

center distance is higher than the area overlap, and the test

results of center hit and center distance are very close (the mean

of recall, precision, and F1 Score differ by 0.75, 0.5, and 0.57%,

respectively). Compared with the center hit, the average value of

the three indicators all drop by more than 10%. Among them,

the recall dropped the most by 14.33%, the precision dropped by

10.44%, and the F1 score dropped by 11.26%.

Further, different matching methods are regarded as

different groups, and then the results under different matching

methods are analyzed by the analysis of variance (ANOVA)

and t-test. When P > 0.05, it is considered that there is no

significant difference between groups. For recall (Figure 4A),

significant differences are seen among the three groups (P

= 0.0033), and through t-test analysis, there are significant

differences between center hit and area overlap (P = 0.0075),

and between center distance and area overlap (P = 0.0054). For

center hit and center distance, there is no significant difference

FIGURE 3

The histogram showing the average and standard deviation of

the recall, precision, F1 score of the 10 AUTs according to three

mark-labeling methods.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1071673
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1071673

FIGURE 4

Comparison of three mark-labeling methods by boxplot. (A) The boxplot showing the range of the recall of the AUTs according to three

mark-labeling methods. (B) The boxplot showing the range of the precision of the AUTs according to three mark-labeling methods. (C) The

boxplot showing the range of the F1 score of the AUTs according to three mark-labeling methods. Note: **means P value is no more than 0.01,

*means P value is no more than 0.05, ns means P value is greater than 0.05.

between two groups (P = 0.8503). Regarding the precision

(Figure 4B), although the mean precision for the area overlap is

lower than the other twomatchingmethods, from the analysis of

variance, there is no significant difference in the mean precision

under the three matching methods (P = 0.152). Also, there

is no significant difference between any two groups under the

t-test (P = 0.9394 for center hit and center distance, P =

0.0954 for center hit and area overlap, P = 0.0829 for center

distance and area overlap). As for F1 score (Figure 4C), the

same as the variance analysis of recall, significant differences

are seen among the three groups (P = 0.0080). And similarly,

t-test results for any two groups show statistically significant

differences between area overlap and center hit (P = 0.0120)

and between area overlap and center distance (P = 0.0090). In

the meanwhile, P-value between center hit and center distance

is 0.8782 which means there is no significant difference between

two groups.

In order to have a more intuitive impression of the

specific performance differences of different AUTs under the

three matching methods, the relative differences of ten AUTs

under the three matching rules are further explored from the

perspective of TP nodules. Specifically, test results under the

“center hit” rule are chosen as the baseline. The relative changes

for the other two matching rules are calculated, respectively

(Figure 5). For example, the calculation formula of the relative

difference (RD) of the recall under “center distance” rule is

as follows.

RDdist =
TPdist−TPhit

TPhit
(1)

In Figure 5, the ten AUTs show varying degrees of difference

for the three matching methods. The performance of the 90%

(9/10) AUTs under “area overlap” rule is relatively lower than

the other two matching methods. There is one AUT (AUT 5)
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FIGURE 5

The graph depicting ten AUTs’ relative di�erences of center

distance and area overlap with respect to center hit, respectively.

that is particularly unaccustomed to the test method of area

overlap, with a relative drop of as high as 59%. And it is worth

mentioning that there is also an AUT (AUT 3) that maintains a

high degree of consistency under three mark-labeling rules, and

its performance under “area overlap” rule is slightly higher than

that under “center hit” rule, which is fundamentally different

from other AUTs. In addition, the performance of all AUTs

under “center distance” rule is slightly higher than that under

“center hit” rule, and the relative increase is as high as 3.34%.

All AUTs show relatively optimal test results under “center

distance” rule.

Analysis of FN nodules

After comparing the differences in the evaluation metrics

of AUTs under three mark-labeling rules objectively, in order

to assess the quality of AUTs and try to find out the reasons

for the general performance of the AUTs using this sequestered

test set, further research is carried out to count the erroneous

results of ten AUTs under “center hit” rule. The type and

size of nodules may affect the performance test results, which

were taken into account in experimental design. Focus on the

reference nodules that were not successfully detected, namely FN

nodules, features of FN nodules in the two dimensions of type

and size were observed, and the common quality characteristics

of AUTs were investigated. In addition, we selected the images

of FN and TP nodules of four types of nodules with stronger

medical significance to indicate the nodules that are difficult

to detect and relatively easy to detect by the algorithms, see

Supplementary Figures A.2–A.5.

Six types of nodules

Divide the number of each type of FN nodules by the

number of this type of reference nodules as the miss rate of

FIGURE 6

The average miss rate of AUTs on the six types of nodules under

the center hit.

AUT on this type of nodules. Then, the miss rate of all AUTs

for a certain type of nodules is expressed in the form of mean ±

standard deviation (%) to illustrate the overall situation of AUTs’

miss detection of this type of nodules (Figure 6). And overall

miss situation of different nodule types can be compared.

In terms of nodule types, AUTs can detect part-solid nodules

and calcified nodules more accurately than other types, with an

average miss rate of 28.64 and 27.28%, respectively. Especially

for part-solid nodules, the fluctuation of detection performance

of different AUTs on such nodules is also the smallest (standard

deviation is 5.96%). For these AUTs, themost challenging nodule

type is pure ground-glass nodule, with an average miss detection

rate of over 50% (as high as 59.32%, twice as many as solid

nodules), followed by pleural nodules and solid nodules, with

an average miss rate of 49.80 and 42.21%.

Combine size and type

The dimension of size was added to further refine the types

that are likely to be missed in different size ranges. The specific

method is to plot themiss rate of each type of nodules against the

range of average diameter, including 4 bins [<4, (4, 6), (6, 10),

≥10mm] for each AUT, respectively. Within each bin, nodule

types with highest miss rate for each AUT are counted and

shown as a heatmap (Figure 7).

In general, among all nodule diameter ranges, pure ground-

glass nodules are the most likely to be missed. For nodules

<6mm in diameter, all AUTs have the highest miss detection

rate for pure ground-glass nodules among all types. In the

diameter range from 6 to 10mm, pure ground-glass nodules

are the most difficult type to be detected for 7 AUTs. Part-solid
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FIGURE 7

Heatmap depicting nodule types and diameters most likely to be

missed by 10 algorithms. The x axis represents nodule size

range. The y axis represents nodule type. For example, when the

nodule diameter is between 6 and 10mm, 7 AUTs are most likely

to miss pure ground-glass nodules; 2 AUTs are most likely to

miss part-solid nodules; 1 AUT is most likely to miss solid

nodules.

nodules are the most difficult type to be detected for one AUT.

Solid nodules in this size range are most difficult for two AUTs.

For large nodules larger than 10mm in size, 90% (9/10) of AUTs

need to continue to make efforts to detect pure ground-glass

nodules, there is also an AUT that needs to detect large solid

nodules more accurately.

Discussion

With the development of AI technology, more computer-

aided detection products for pulmonary nodules may enter

the market in the future. While verification and validation

activities are mainly conducted bymanufacturers, it is important

for regulators and public stakeholders to understand the

algorithm performance in a more comparable manner. From the

perspective of third-party testing, it may be helpful to explore

a pathway to build test set and compare products directly,

objectively and quantitatively.

This study demonstrated a centralized method to build

test set and conduct algorithm performance testing. Data

was randomly sampled from diverse hospitals and regions

according to the design input. Annotators were recruited

publicly through qualification exams and randomly grouped

to conduct annotation. The whole process relies on the

same standardized procedure. The workflow is different from

conventional multicenter study and may decrease variation of

annotation among different hospitals.

Using the same test set, different AUTs are tested and

compared quantitatively. The testing results indicated that

specific mark-labeling method would affect interpretation of

algorithm performance. This study shows that, among the

three mark-labeling methods adopted in the experiments, ten

AUTs under the method of center distance showed the highest

precision and recall, as performance metrics of computer-

aided detection. The “center hit” method showed intermediate

results. The “area overlap” method showed the worst results.

From the perspective of clinical application, the mark-labeling

methods are associated with follow-up operations after image

analysis. For example, if robotically assisted surgery needs

information from computer-aided detection of pulmonary

nodules, it would be necessary for the AUT to export the

position of predicted nodule, so the “center distance” approach is

favorable. Under the context of radiotherapy, the “area overlap”

approach is preferred. It may be helpful to choose mark-labeling

rule according to the intended use and usage scenarios of

the product.

In this study, it seems that the average recall of the

ten AUTs is lower than results reported in other literature

(25–27). There are several underlying reasons. First, the test

set used in this study is independent and isolated from the

training or tuning process of AUTs. In other literature, AUTs

may be trained and tuned on a subset of a large data set

and then tested on another subset. The correlation between

training and testing data may facilitate the model to achieve

better testing results. Therefore, the test set in this paper

seems more challenging and helps reflect the generalizability

of algorithm. Second, the annotation of the test set is based

on a centralized and relatively strict procedure, which requires

intense support from experienced radiologists. For developers

of the AUTs, however, their training sets and tuning sets are

prepared spontaneously. Annotation activities and results may

have difference.

For the evaluation metrics, the FROC curve was not adopted

(other researchers may have chosen) because each developer

has fixed the optimal detection threshold before providing the

algorithm. In order to be more in line with the actual clinical use

scenarios of the product, evaluation metrics such as recall on its

specified detection threshold were calculated.

Based on the above results, the algorithm errors were further

compared among different AUTs and analyzed the trend. False-

negative nodules are chosen as the target, and we observed

what type and size of nodules are more likely to be missed by

AUTs, resulting in a lower recall by the algorithm. Based on the

research results, manufacturers are encouraged to pay attention

to the accuracy in the detection of solid nodules, pure ground-

glass nodules and pleural nodules in the development stage.

Especially for pure ground-glass nodules of various sizes, the

low detection accuracy of such nodules is the main reason for

the poor performance of AUTs. It is necessary to consider taking

related technical methods (such as increasing its proportion in

the training set, using better tuned algorithms, etc.) to improve

the detection performance of the product on these three types of

nodules and small nodules. At the same time, how to reduce the

number of false positive nodules also needs to be considered in

the development process, and there is also a trade-off between

recall and precision.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1071673
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1071673

In summary, this paper systematically described a

standardized workflow to build test sets and conduct

algorithm testing in a third-party manner. The test

set construction covered data collection, data curation,

annotation, annotator management, which followed data

quality management standards (49). If organizations

follow this workflow, the comparability of data sets may

be improved, since each step is well defined and the rule

is relatively transparent. The algorithm testing section

compared both performance metrics and trend of algorithm

errors among different products, which also provided useful

evidence to enrich the perspective of product evaluation

and comparison.

There are several limitations in this study. First, while

three mark-labeling rules are compared, it is difficult to

assign the specific threshold of “center distance” rule or “area

overlap” rule. The thresholds used in the experiments are

selected empirically. It may not represent the requirement

from clinical users’ perspective. More discussion on the

threshold selection should be made in the future. Consensus

is needed to propose clear requirement on how computer-

aided detection products should present the algorithm output.

Second, this study compared different algorithm outputs on a

sequestered test set in a black box manner, providing barely

no clue to evaluate the process of algorithm design. It is

difficult to further discuss the advantages and disadvantages

of model design according to such test results, since there

may be implicit discrepancies in the training sets, parameter

settings, and training methods among developers in the

research and development stage. Third, efficiency is not

compared among different AUTs since they operated on

separate servers that were provided by developers. Since medical

device manufacturers would claim their own requirement

on computation resource during premarket application, it

may be helpful to define a benchmark to further evaluate

algorithm efficiency based on consensus of manufacturers and

clinical users.

In the future, more work will be conducted to evaluate the

quality and comparability of test sets, whichmay further support

standardization of testing methods and provide technical

reference for the regulation of such products.
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