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Background: Influenza is a serious public health problem, and its prevalence

and spread show significant spatiotemporal characteristics. Previous studies

have found that air pollutants are linked to an increased risk of influenza.

However, themechanism of influence and the degree of their association have

not been determined. This study aimed to determine the influence of the air

environment on the spatiotemporal distribution of influenza.

Methods: The kernel density estimation and Getis-Ord Gi∗ statistic were used

to analyze the spatial distribution of the influenza incidence and air pollutants in

China. A simple analysis of the correlation between influenza and air pollutants

was performed using Spearman’s correlation coe�cients. A linear regression

analysis was performed to examine changes in the influenza incidence in

response to air pollutants. The sensitivity of the influenza incidence to changes

in air pollutants was evaluated by performing a gray correlation analysis. Lastly,

the entropy weight method was used to calculate the weight coe�cient of

each method and thus the comprehensive sensitivity of influenza incidence to

six pollution elements.

Results: The results of the sensitivity analysis using Spearman’s correlation

coe�cients showed the following ranking of the contributions of the air

pollutants to the influenza incidence in descending order: SO2 >NO2 >CO>

PM2.5 >O3 >PM10. The sensitivity results obtained from the linear regression

analysis revealed the following ranking: CO>NO2 >SO2 >O3 >PM2.5 >PM10.

Lastly, the sensitivity results obtained from the gray correlation analysis showed

the following ranking: NO2 >CO>PM10 >PM2.5 >SO2 >O3. According

to the sensitivity score, the study area can be divided into hypersensitive,

medium-sensitive, and low-sensitive areas.

Conclusion: The influenza incidence showed a strong spatial

correlation and associated sensitivity to changes in concentrations

of air pollutants. Hypersensitive areas were mainly located in the

southeastern part of northeastern China, the coastal areas of the

Yellow River Basin, the Beijing-Tianjin-Hebei region and surrounding

areas, and the Yangtze River Delta. The influenza incidence was most

sensitive to CO, NO2, and SO2, with the occurrence of influenza

being most likely in areas with elevated concentrations of these three
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pollutants. Therefore, the formulation of targeted influenza prevention and

control strategies tailored for hypersensitive, medium-sensitive, low-sensitive,

and insensitive areas are urgently needed.
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influenza incidence, air pollutants, sensitivity, sensitive division, China

Introduction

Influenza poses a serious threat to human health because of

its high contagiousness and incidence. Several global pandemics

have directly caused casualties and indirectly caused economic

losses, which creating major problems for many countries in

the last hundred years (1). Influenza is an infectious disease

that has not been fully brought under control (2). China’s

urbanization and ecological civilization construction processes

remain to be synchronized, which has indirectly resulted

in the integration and complication of influenza-influencing

factors and the generation of numerous potential health-related

crises within the population (3, 4). Historical experience has

shown that widespread epidemics of infectious diseases, such as

influenza, are often exacerbated by the polluted air environment

(5). Air pollutants are plausible biological factors explaining the

occurrence of influenza cases. Short- and long-term exposure

to air pollutants increase the risk of morbidity and mortality

from a wide range of systemic diseases, including cardiovascular,

respiratory, and other diseases, thereby contributing to the

emergence and spread of influenza (6, 7). In 2012, the

International Council for Science launched the Future Earth

Initiative. This initiative emphasizes the need to strengthen

research on the direct and complex relationship between

changes in environmental pollution and human health. The

Chinese government has also proposed the Healthy China

Initiative, which meets national priorities and the emphasis on

sustainable development. The government has clearly identified

measures required to implement comprehensive urban air

quality management to meet standards and promote significant

improvements in ambient air quality in cities nationwide and

effectively resolve outstanding environmental problems that

affect the health of the population (8). The following questions

arise. What have been the characteristics of the spatiotemporal

distribution of influenza and air pollutants in recent years? How

can the relationship between the incidence of influenza and

air pollutants be studied? How can the pattern of sensitivity

of influenza to air pollutants be scientifically measured? These

issues are major problems and challenges for the prevention and

control of influenza and air pollutants in key areas and regions

of their occurrence.

The notion that airborne pollution particles provide

“condensation nuclei” to which influenza virus droplets attach

has been prevalent within environmental health research for

several decades. Toxicological studies have suggested that air

pollutants are biologically plausible factors leading to the

occurrence of influenza-like cases. The main mechanisms

driving these cases include inflammatory responses, oxidative

stress, and genetic damage (9–11). Exposure to air pollutants,

which produce free radicals, can lead to mucosal irritation of the

airways and mechanical damage, affecting mucus clearance by

cilia and reducing an individual’s resistance to viral infections,

such as influenza (12). Epidemiological evidence also suggests

that short or long-term exposure to air pollutants significantly

increases the risk of influenza morbidity and mortality (13–

18). Different pollutants have different health effects on the

population (19, 20). PM2.5 contains toxic substances, such

as nickel, vanadium, acidic oxides, and pathogenic bacteria.

When inhaled into the airways, these toxic substances adsorb

to the alveoli, where they interact with the surfactant secreted

by the lung cells, causing damage to the alveolar walls. This

process causes inflammation and increases the vulnerability

of the population to viruses (21). PM10 contains heavy

metals, polycyclic aromatic hydrocarbons, and other toxic and

harmful substances, which can lead to lesions in human organs

following their entry into the alveoli (22). SO2 stimulates

peripheral nerve receptors in the smooth muscles of the

upper and bronchial airways, weakening the ability of the

respiratory tract to block pathogens and inducing susceptibility

to infection by the influenza virus (23). Nitrogen oxides can

generate irritants, such as HNO2 and HNO3, when they

enter the alveoli through inhalation. This process increases

the permeability of lung capillaries and causes respiratory

diseases, such as bronchitis, pneumonia, and emphysema, and

heightens the risk of influenza infection (24). Inhalation of a

certain concentration of CO into the body decreases oxygen

absorption into the blood. Moreover, the altered dissociative

properties of oxyhemoglobin further reduce oxygen delivery

to the tissues, and resistance to the influenza virus is reduced

(25). Inhalation of certain concentrations of O3 promotes lipid

peroxidation in the epithelial cells of the respiratory tract, which

increases the production of arachidonic acid. Such substances

induce inflammatory lesions in the upper respiratory tract,

weakening its defenses (26). Pathogenic reactions of these air

pollutants in humans increase the potential for the production

and transmission of influenza viruses within the population.

The impacts of six key air pollutants on the incidence of

influenza have rarely been studied in the field of environmental

health. Applying a generalized summation model, Feng et al.

(27) demonstrated that ambient PM2.5 concentrations were
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significantly associated with the risk of influenza-like illness

in Beijing during the flu season and that the effect of PM2.5

differed across age groups, in this city. Adults comprised the

most significantly affected population, probably because of their

longer exposure to outdoor pollution. Ali et al. (28) reported

a statistically significant negative association between O3 and

influenza transmission in Hong Kong, China. They suggested

that this finding could be related to the virucidal activity

of O3 and its effect on host defense and even immunity to

influenza viruses. Liu et al. (16)found a positive association

between PM2.5 and the incidence of clinical influenza in Hefei

Province in China and a negative association between PM10

and the incidence of clinical influenza. No relationship has

been reported between NO2 concentrations and the influenza

incidence. Su et al. (29) found that PM2.5, PM10, CO, and

SO2 concentrations were associated with influenza-like cases

in Jinan, China. Moreover, there was a lagged effect of air

pollutants on the incidence of influenza. Recent studies on the

correlation between the influenza incidence and air pollutants

have mostly applied statistical models, such as correlation

analysis (30), regression analysis (30), machine learning (31),

and non-linear models (32). To the best of our knowledge,

few studies have developed and applied sensitivity analysis to

examine the relationship between disease and environment.

Sensitivity analysis is an important research method for

measuring changes and interactions among geographic elements

(33). This research approach constitutes a frontier and hotspot

within geographic environmental modeling research (34). It

can be effectively used to identify the main environmental

pollutants linked to the influenza incidence and to identify the

magnitude of the contribution of each risk factor to the influenza

incidence (35–38).

Relatively few studies have quantitatively analyzed the

association between influenza and the full range of air pollutants.

Most of these studies have been conducted at the level of

prefecture-level cities within individual provinces. However, the

spatiotemporal distribution of influenza determined through

a nationwide study encompassing municipal, macro, meso,

and micro scales and a long-time series has not yet been

conducted. Relatively few studies have applied sensitivity

analysis in the field of health geography. Accordingly, we

collected data on the incidence of influenza and air pollutants

in Chinese prefecture-level cities during the period 2014–2017

and explored the spatial clustering characteristics of influenza

and air pollutants in these cities. Moreover, we studied

the interrelationship between infection with human influenza

and air environment factors using Spearman’s correlation

coefficients, a linear regression model, and gray correlation

analysis in an attempt to address this research gap. The

results obtained were used to delineate national influenza

control zones.

This study had three aims. The first was to determine

the influence of the air environment on the spatiotemporal

distribution of influenza and to enrich the theory informing

the relationship between the environment and infectious

diseases in health geography. The second was to build a

“comprehensive model of susceptibility” to generate hierarchical

and progressive innovation in susceptibility research methods

and to provide a new research paradigm for exploring the

relationship between infectious diseases and environmental

pollution. The final aim was to provide theoretical support

and policy inputs for national and local Centers for Disease

Control and Prevention to implement infectious disease

prevention and control, formulate regionalized prevention

and control strategies, establish long-term prevention and

control mechanisms and set environmental health standards,

and effectively contribute to and advance the Healthy

China Initiative.

Materials and methods

Theoretical framework

We introduced a sensitivity research framework for

investigating the relationship between the influenza incidence

and air pollutants. As shown in Figure 1, we applied a method

for characterizing the degree of response of one factor to a

change in another factor. Our framework, which encompassed

sensitive subjects, factors, judgments, and results, was aimed

at discovering scientific laws of organic correlation between

two or more factors. A sensitive subject was defined as a

system or individual whose response is affected by a change

in one or more factors. In the context of environmental

health, sensitive subjects include the status of human health,

disease morbidity, and mortality. In this study, sensitive

subjects mainly referred to the influenza incidence. Sensitive

elements were defined as factors that lead to the changes that

influence sensitive subjects and involve the natural environment

as well as socioeconomic and individual factors. In our

study, these elements were the six air pollutants elements:

PM2.5, PM10, SO2, NO2, CO, and O3. Changes in sensitive

elements affect sensitive subjects, which consequently respond

to these elements.

To assess sensitivity, we performed a Spearman’s correlation

analysis, linear regression analysis, and gray correlation analysis,

which could determine the specific impacts of sensitive elements

on subjects. Spearman’s correlation coefficients were applied to

determine a simple correlation between the influenza incidence

and air pollutants, while regression analysis was performed

to observe their fitting effect according to their level of

correlation, and gray correlation analysis was performed to

assess the degree of association. In light of an overview of

the results of each model, we ranked elemental sensitivity

and spatial sensitivity to morbidity for each of the pollutants.

Accordingly, we delineated prefecture-level cities into high,
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FIGURE 1

Theoretical framework.

medium, low, and insensitive zones according to their sensitivity

scores. This research paradigm can be extended to cover more

disease types and research areas and provides a theoretical and

methodological foundation for tracing environmental pollution

and health protection technologies relating to diseases of high

prevalence at a regional level.

Data and processing

Prefecture-level cities constituted the basic unit and scale

for this study. We used data compiled from 31 provinces,

municipalities, and autonomous regions in China (excluding

Hong Kong, Macau, and Taiwan) (Figure 2). The research was

conducted from 2014 to 2017, and the compiled data comprised

the influenza incidence, air quality, and maps (Table 1). We also

obtained monthly data on the influenza incidence in prefecture-

level cities. To examine the regional and temporal aspects of

the influenza incidence, all of the reported data were utilized

as samples. During the study period, the number of cities for

which annual data on the influenza incidence were available

increased from 359 in 2014 to 366 in 2017. The data were

sourced from the Data Center of China Public Health Science,

under the China Center for Disease Control and Prevention

(https://www.chinacdc.cn/). Given the small number of deaths

recorded, we used data on the number of influenza cases

calculated as follows: incidence = the number of cases×100 000/

total population. Statistical data for some regions were missing

for several years within the study period. Consequently, the

data on influenza were not spatially continuous. The missing

data were treated as blank and not interpolated. The layers of

data used in administrative maps of prefecture-level cities were

obtained from the Geographic Information Bureau of the State

Bureau of Surveying and Mapping (http://bzdt.ch.mnr.gov.cn/).

Pollutant indices for air quality were obtained from real-time

air quality monitoring data published by the China National

Environmental Monitoring Center (http://www.cnemc.cn/) and

included data on fine particulate matter (PM2.5), inhalable

particulate matter (PM10), sulfur dioxide (SO2), nitrogen

dioxide (NO2), ozone (O3), and carbon monoxide (CO). A total

of 190 cities were monitored daily for air quality in 2014, and

366 were monitored in 2015–2017. Accordingly, the monthly

mean value for each city was calculated based on the daily data.

Differences in the number of samples between years affected

statistical efficiency but did not compromise our statistical

inferences because the total coverage was sufficiently large.

We have ensured the consistency of the spatial and temporal

resolution of the two data through processing. Spatially, because

the influenza incidence and air pollution base data were at

the prefecture-level city scale and the number of reported

prefectures varied among years, we selected the intersection of

the two datasets from 2014–2017 as the original dataset for

sensitivity analysis, and missing data were treated as blank.

Temporally, we calculated monthly means for each city based

on daily data of air pollution, to match monthly values of

influenza incidence.
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FIGURE 2

The study area.

TABLE 1 Data source and processing.

Data Source Processing

Influenza

incidence

The Data Center of China

Public Health Science

(https://www.

chinacdc.cn/ )

Incidence= the number

of cases× 100 000 people

without interpolation

Air quality The China National

Environmental Monitoring

Center (http://www.

cnemc.cn/)

Calculate monthly mean

value by daily data

Maps The Geographic

Information Bureau of the

State Bureau of Surveying

and Mapping (http://

bzdt.ch.mnr.gov.cn/)

Processed and produced

by the standard map with

the review number GS

(2019)1825, with no

modification

Methods

Spatial analysis

Kernel density estimation is a non-parametric method of

estimating the probability density function of a random variable

(39). The method is particularly useful for analyzing and

displaying the distribution of influenza incidence.

The local Getis-Ord Gi∗ hotspot detection is a typical

statistical method of local spatial autocorrelation that can be

used to identify spatial variation (40). It can accurately reflect

the distribution of hotspots for air pollutants in a given area.

Statistical analysis

Correlations between air pollutant concentrations and

influenza incidence during the study period were estimated

using Spearman’s correlation coefficients due to the abnormal

distributions of all these variables (41).

Regression analysis is a statistical analysis method used

to determine the quantitative relationship of interdependence

between two or more variables. A linear regression model of the

influenza incidence and air pollutants was developed to enable

the degree of the sensitivity to the influenza incidence to changes

in air pollutants to be quantitatively analyzed.

Gray correlation analysis is performed to measure the

closeness of association by comparing the geometric similarity

of curves composed of multiple series (42). This method of

statistical analysis has no rigid requirements on the sample size

and on the presence (or not) of a pattern connecting samples.

It was deemed a useful method for conducting a more in-

depth evaluation of the sensitivity of the influenza incidence

to changes in air pollutants as the sensitive elements. The first

step entailed processing the index data indicator data without

considering their dimensions. Next, the correlation coefficient

was calculated, with the discriminant coefficient, ρ ǫ [0, 1],

used to weaken the effect of distortion induced by excessive

maximum values. The value of ρ is usually taken as 0.5. The third

step entailed calculating the correlation; a higher correlation

corresponded to a stronger association between air pollutants

and the influenza incidence. According to previous studies

(43), the correlations can be classified into four levels. When

0 < rij≤ 0.35, the correlation is weak; when 0.35 < rij ≤

0.65, the correlation is moderate; when 0.65 < rij≤ 0.85, the

correlation is strong; when 0.85 < rij≤1.00, the correlation is

extremely strong.

The concept of entropy originates from thermodynamics

and is a measure of the uncertainty of the state of a system.

The entropy weight method is a mathematical method used to

judge the degree of dispersion of a certain index, enabling the

index to be assigned and calculated more objectively. A larger

value indicates that more information provided by the index

corresponds to its stronger influence on the comprehensive

evaluation, and to a higher associated weight. We used the

entropy weighting method to compare and synthesize the

sensitivity results obtained using different methods. The detailed

procedures of entropy method are described as follows (44):

(1) Standardize the original value of indicators:

X
′

ij =
Xij −min(Xj)

max
(

Xj
)

−min(Xj)
(1)

where X
′

ijis the standardized value of the ith evaluating object on

the jth indicator, Xij is the original value, and the original value

of this study mainly refers to the absolute value of the median

of the correlation coefficient, the absolute value of the mean

of the regression coefficient and the absolute value of the gray

correlation coefficient; max
(

Xj
)

and min
(

Xj
)

are the maximum

and the minimum, respectively.

(2) The proportion of the ith evaluating object on the jth

indicator is calculated:
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TABLE 2 The weights for each method.

Method Weight

Spearman’s correlation method 0.14

Regression analysis 0.77

Gray Correlation analysis 0.09

Yij =
X

′

ij
∑m

i=1 X
′

ij

(2)

where m is the number of evaluating objects, which refers to six

air pollutants in this study.

(3) The entropy of each evaluating indicator can be defined as:

ej = −k

m
∑

i=1

(

Yij × lnYij
)

(3)

Where k =
1

lnm
. The evaluating object i on the indicator j is

excluded if Yij = 0.

(4) The redundancy of the entropy is computed as follows:

dj = 1− ej (4)

(5) The weight of entropy of each evaluating indicator could be

expressed as:

wj =
dj

∑n
j=1 dj

(5)

where n is the number of methods in this study.

Weights for all methods are listed in Table 2.

The comprehensive sensitivity score was calculated using

the weights obtained with the entropy weighting method, which

were then multiplied by the standardized data of each indicator

to obtain its sensitivity score. Next, the sensitivity scores of

each indicator for each prefecture-level city were summed. The

calculation formula was as follows:

Si =

6
∑

n=1

(

Cn×0.14+ R∗n0.77+ G∗
n0.09

)

(6)

where Si denotes the sensitivity composite score for prefecture-

level cities; i is the prefecture-level city; Cn denotes normalized

data for correlation coefficients between morbidity and six

air pollutants in the Spearman’s correlation analysis; Rn

denotes normalized data for the correlation coefficient between

morbidity and six air pollutants in the linear regression

model; and Gn denotes normalized data for the correlation

coefficient between morbidity and six air pollutants in the gray

correlation analysis.

Results

Analysis of the pattern of the influenza
incidence and air pollutants

We analyzed the kernel density of influenza incidence

in the study area, and hotspot agglomeration area could

be judged from the peak distribution of kernel density

values. Relevant studies have shown that the larger the

search radius, the smoother the surface of the generated

results, and the selection of the search radius value also

changes with the scale of the study (45). In this study,

we examined the distribution of agglomerations based on

the scale of countries, and thus a high search radius

should be chosen. By trying different search radius, the

results showed that the spatial difference in density of

elements was most obvious at a search radius of 200 km,

which portrayed large and medium agglomerations while also

outlining relatively small agglomerations. Figure 3 shows the

kernel density of the spatial distribution of the influenza

incidence in China from 2014 to 2017. The incidence of

influenza was high and concentrated in Beijing and the

provinces of Hubei, Anhui, Zhejiang, and Guangdong. Zhuhai,

Zhongshan, Huizhou, Guangzhou, and Handan were typical

high-incidence cities, which may be related to rapid economic

development and the increase in the number of factories in

recent years.

Figure 4 shows the local spatial autocorrelation

characteristics of air pollutants. During the period 2014–

2017, air pollutants in China showed obvious clustering

characteristics and a clear delineation of cold and hot spots.

Their distribution characteristics were similar to those of

China’s population as indicated by the characteristic “Hu

line,” indicating the density of distribution of the country’s

population, which accords with the findings of previous studies

(46, 47). Air pollutants tend to cluster in the region east of

the Hu line, especially in the Beijing-Tianjin-Hebei region.

High-concentration agglomerations were evident in Henan,

Hunan, and Shandong Provinces, and at the junction of

Shandong and Jiangsu Provinces, which formed hubs from

which the air pollutants diffused widely into surrounding

areas. The distribution of air pollutants also showed some

correlation with topographic features. Specifically, the air

pollutants showed significant clustering characteristics in

the Tarim and Sichuan Basins and the Kuan-chung, Fenhe,

North China, and Yangtze (middle and lower) Plains. These

characteristics are associated with the convergence of air

pollutant particles, and consequently their limited diffusion,

when they are deposited in low-lying terrains (48–52). Some

provincial capitals, such as Zhengzhou, Shijiazhuang, Xi’an,

Wuhan, Jinan, and Chengdu, are heavily polluted. There has

been a trend of expansion to surrounding grades, with these

cities at the center. This trend may be related to the per capita
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FIGURE 3

Kernel density estimation of influenza incidence in China. (A) Influenza incidence in 2014. (B) Influenza incidence in 2015. (C) Influenza

incidence in 2016. (D) Influenza incidence in 2017.

car ownership in the provincial capitals and the development of

secondary industries (53).

A sensitivity analysis based on spearman’s
correlation coe�cients

Table 3 shows the correlation coefficients between the

influenza incidence and air pollutants in various prefecture-

level cities in China, with a p-value below 0.05. The correlation

coefficients between the respective concentrations of PM2.5,

PM10, SO2, NO2, CO, and O3, and the influenza incidence

were all above 0.5. The first five factors had positive values,

with the maximum and minimum values within a range

of 0.5–1.0 and median values mostly concentrated around

a value of 0.75, indicating a strong correlation. However,

the correlation coefficients between the O3 concentrations

and influenza incidence had negative values, with a median

value concentrated around −0.750, indicating a negative

correlation. Our comparison of the degrees of correlation

between the five other air pollutants, which were positively

correlated with the influenza incidence, revealed that their

absolute values showed differences that were not significant.

The correlation between the influenza incidence and the SO2

concentration was the highest among all of the pollutants,

with the highest median value (0.795). The average median

values of NO2 and CO concentrations were, respectively,

0.790 and 0.774. Those of PM2.5 and PM10 were lower, at

0.764 and 0.747, respectively. The average median correlation

coefficient between the O3 concentration and the influenza
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FIGURE 4

Analysis of six types of air pollutants in China during the period 2014-2017 using the local Getis-Ord Gi* statistic. (A) PM2.5. (B) PM10. (C) SO2. (D)

NO2. (E) CO. (F) O3.

TABLE 3 Median correlation coe�cients between the influenza

incidence and air pollutants in China’s prefecture-level cities during

the period 2014–2017.

PM2.5 PM10 SO2 NO2 CO O3

2014 0.769 0.728 0.811 0.810 0.804 −0.851

2015 0.748 0.741 0.769 0.770 0.777 −0.734

2016 0.753 0.765 0.803 0.772 0.752 −0.710

2017 0.785 0.754 0.797 0.809 0.763 −0.754

Mean value 0.764 0.747 0.795 0.790 0.774 −0.762

incidence was −0.763, indicating a significant negative

correlation.

A sensitivity analysis based on a linear
regression model

According to the results of the correlation analysis, the

prefecture-level cities that showed a strong correlation between

the influenza incidence and air pollutants were selected for

further analysis to control for the influence of meteorological,

topographical, and human factors on the model. Using monthly

data on the incidence of influenza and air pollutants in each

prefecture-level city from 2014 to 2017, and after screening as

the original data, we built a linear regression model to calculate

the regression coefficients at the national scale. Figure 5 shows a

significant relationship between the influenza incidence and the

concentration of air pollutants in the majority of regions. The

regression coefficients of PM2.5, PM10, SO2, NO2, and CO with

the influenza incidence were mostly positive, and the regression

coefficients of O3 with the influenza incidence were mostly

negative. Our results indicated that the influenza incidence was

most sensitive to changes in CO concentrations; for example,

for every 1 µg/m3 increase in the CO concentration in Ningbo,

the influenza incidence increased by 32.54. For every 1 µg/m3

increase in the CO concentration in Zhangzhou, the influenza

incidence increased by 33.18. The ranking of the contribution

of each element to the influenza incidence, in descending order,

was as follows: CO>NO2 >SO2 >O3 >PM2.5 >PM10.

Areas demonstrating significant sensitivity were mostly located

in the Beijing-Tianjin-Hebei region; the Fenwei Plain, Jiangsu,

Anhui, Shandong, Henan and the Yangtze River Delta. Referring

to the regression results for the influenza incidence and the

six air pollutants during the period 2014–2017, we selected

provinces in which the influenza incidence was more sensitive

to changes in air pollutants for a scattering fitting. Figure 6

shows a high R2 and a good linear fit. Specifically, the influenza

incidences in Guangdong, Fujian, Guangxi, and Shanghai were
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FIGURE 5

The spatial distribution of regression coe�cients between the influenza incidence and six types of air pollutants in China during the period

2014-2017. (A) PM2.5. (B) PM10. (C) SO2. (D) NO2. (E) CO. (F) O3.

strongly correlated with air pollutants, and the degree of the fit

was higher.

A sensitivity analysis based on gray
correlation analysis

We performed gray correlation analysis to calculate the

integrated gray correlations between air pollutants and the

influenza incidence in prefecture-level cities from 2014 to 2017.

Our calculations indicated that the integrated correlations of

the influenza incidence with PM2.5, PM10, SO2, NO2, CO, and

O3 concentrations in China were 0.792, 0.793, 0.789, 0.798,

0.796 and 0.753, respectively, and the overall ranking was

NO2 >CO>PM10 >PM2.5 >SO2 >O3. It can be seen that

the absolute difference between the influenza incidence and the

six air pollutants in China was small, with all of the elements

showing a strong correlation with the influenza incidence. The

highest correlation occurred between NO2 concentrations and

the influenza incidence, revealing that they were most strongly

related, whereas O3 concentrations had a relatively small effect

on the influenza incidence.

We averaged the values for the prefecture-level city

correlations during the period 2014–2017 and calculated the

sensitivity of the influenza incidence to air pollutants in

prefecture-level cities. Figure 7 shows that there was a significant

geographical correlation between the influenza incidence and

air pollutants in China. The degree of correlation relating to

the distribution characteristics of each element was relatively

consistent, with a large proportion of cities evidencing moderate

or stronger correlations. Cities with very strong correlation

levels were mainly located in the Beijing-Tianjin-Hebei region,

the Yangtze River Delta, and the eastern part of the southwestern

region. The strong correlation between NO2 concentrations

and the influenza incidence occurred in the largest number

of cities (320), and conversely, the smallest number of cities

(288) evidenced strong correlations between levels of O3 and

the influenza incidence. This finding is consistent with the

results of the sensitivity ranking of sub-elements using gray

correlation analysis.

Results synthesis and sensitive division

The entropy weighting method was performed to determine

the weights of three methods (integrated Spearman’s correlation

coefficients, linear regression analysis, and gray correlation

analysis, and Table 2). We applied formula (6) to measure the

combined sensitivity and spatial divergence results (Table 4).

The sensitivity scores for CO, NO2 and SO2 were the highest,

and the influenza incidence was most sensitive to changes in

the concentrations of these three pollutants, with influenza most

likely to occur when their concentrations increased.

Using the natural breaks classification method, we

delineated the scores for the prefecture-level cities into three

levels (0, 0.60], [0.61, 1.23], and [1.24, 1.67], which respectively
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FIGURE 6

Scatter fitting of the influenza incidence and air pollution in typical sensitive provinces during 2014-2017. (A) Regression fitting of PM2.5 and

incidence rates in Guangdong Province in 2016. (B) Regression fitting of PM2.5 and incidence rates in Fujian Province in 2016. (C) Regression

fitting of PM10 and incidence rates in Guangxi Province in 2016. (D) Regression fitting of PM10 and incidence rates in Guizhou Province in 2017.

(E) Regression fitting of SO2 and incidence rates in Shanghai Province in 2016. (F) Regression fitting of SO2 and incidence rates in Fujian

Province in 2016. (G) Regression fitting of NO2 and incidence rates in Guangdong Province in 2016. (H) Regression fitting of NO2 and incidence

rates in Hebei Province in 2017. (I) Regression fitting of CO and incidence rates in Fujian Province in 2016. (J) Regression fitting of CO and

incidence rates in Shaanxi Province in 2017. (K) Regression fitting of O3 and incidence rates in Anhui Province in 2015. (L) Regression fitting of

O3 and incidence rates in Guangdong Province in 2015.
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FIGURE 7

The spatial distribution of the degree of gray association between the influenza incidence and six types of air pollutants in China during the

period 2014-2017. (A) PM2.5. (B) PM10. (C) SO2. (D) NO2. (E) CO. (F) O3.

FIGURE 8

Sensitivity-based zones relating to the influenza incidence and

air pollution in China.

corresponded to hypersensitive, medium-sensitive, and low-

sensitive areas. Figure 8 shows that the influenza incidence was

sensitive to changes in the concentrations of air pollutants in

most regions of China. Hypersensitive areas were mainly located

in the southeastern part of northeastern China, the coastal areas

of the Yellow River Basin, the Beijing-Tianjin-Hebei region

and surrounding areas, and the Yangtze River Delta, revealing

a “Y” shaped distribution. Influenza is most likely to occur

when air pollutant levels rise in these areas. The impacts of

TABLE 4 The overall score for each index obtained using the entropy

weighting method.

Elements Correlation

coefficient

Regression

coefficient

Gray

correlation

coefficient

Overall

score

PM2.5 0.35 0.00 0.87 0.13

PM10 0.00 0.00 0.89 0.08

SO2 1.00 0.01 0.80 0.22

NO2 0.90 0.03 1.00 0.24

CO 0.56 1.00 0.96 0.93

O3 0.33 0.01 0.00 0.05

changes in the concentration of air pollutants on the influenza

incidence in medium-sensitive areas, such as eastern coastal

areas, Guangxi and Guizhou Provinces, were not strong. Lastly,

in low-sensitive and non-sensitive areas, the impacts of changes

in the concentration of air pollutants on the influenza incidence

were weaker and more dispersed.

Discussion

Discussion of the data

Several weaknesses should be acknowledged in our data.

First, the data on influenza used in this study were sampled data,
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and entailed a certain rate of under-reporting, which influenced

the results to some extent (54). Second, we observed differences

in statistical capacities across regions and during different years

as well as missing data for some periods or regions because of

adjustments made in administrative divisions. These problems

may have led to deviations between the results obtained and the

empirical conditions. Third, the results of the sensitivity analysis

of the influenza incidence in relation to air pollutants were

correlated with the quantity and quality of the data. Large cities

not only have large populations and infected persons, but they

also have strong and accurate statistical and reporting capacities.

Consequently, the results of the analyses of cities for which more

basic data were available tended to be more accurate. But the

accuracy of the study results can support the national study due

to the sufficient amount of data.

Discussion of the results

Our findings point to a spatial interpretation of influenza,

and are closely aligned with those of previous epidemiological

and pathological studies (22, 25, 26, 55–62). Most of the other

research results indicated that there was a certain correlation

between exposure to air pollutants and disease. When pollutants

are absorbed into the blood and tissues, they will have a

greater impact on the defense function of the respiratory

tract in humans, inducing an inflammatory response in the

airways, which could also cause a decrease in the levels of

interferon and hemagglutinin inhibitors. These are possible

biological mechanisms that increase the risk of influenza-like

cases associated with air pollutants (63).

In this study, we observed that the influenza incidence

was most sensitive to SO2, CO and NO2. The underlying

mechanism could be that SO2 stimulates peripheral nerve

receptors in the smooth muscles of the upper and bronchial

upper airways, weakening their blockage by the respiratory

tract and thus predisposing them to influenza virus infection

(23). Inhalation of a certain concentration of CO will reduce

the capacity of the blood to absorb oxygen, while changes in

the dissociative properties of oxyhemoglobin further reduce

the delivery of oxygen to tissues. Consequently, the body’s

ability to exchange pollutants with oxygen becomes weaker,

making it more susceptible to infection by the influenza virus

(25). When nitrogen oxides enter the alveoli, they can form

irritants, such as HNO2 and HNO3, which can cause a variety

of respiratory diseases, thus increasing the risk of contracting

influenza (24). In addition, PM2.5 and PM10, which are small-

sized atmospheric particulate matter, facilitate the attachment

of viral droplets to condensation nuclei, thus facilitating the

long-range transmission of influenza viruses (64).

The results of this study show that influenza is negatively

correlated with the concentration of O3 and may have

a specific correlation with the bactericidal characteristics

of O3. However, epidemiological studies indicate that a

negative correlation cannot verify the effect of the interaction

between the two entities under consideration because they

were generated at different times. The concentration of

O3 tends to be higher in summer, and lower in fall and

winter, when a higher incidence of influenza has been

observed. Furthermore, long-term ozone inhalation has

been associated with increased morbidity and mortality

caused by respiratory diseases (65). Moreover, some

environmental pollutants may have a lagging effect on

human health (66). Therefore, the scientific community should

engage in in-depth research to explore the complexity of

pathogenic mechanisms.

In addition, we found a large variability in the weights

of the three methods using the entropy weighting method,

with the regression analysis method weighing 0.77. This may

be attributed to the smaller original data for the regression

analysis method and the larger standard deviation of the data

distribution during the standardization process, resulting in

more informative data. According to the definition of the

entropy weighting method, the greater the data fluctuation and

information, the greater the weight assigned (44). This may

slightly affect the accuracy of research results.

Planning responses and policy
suggestions

A novel contribution of this study is its provision of evidence

from China that can inform environmental health theories on

the relationship between the air environment and human health.

Its findings also have important policy implications for guiding

the planning and development of healthy cities in China and

promoting the construction of a healthy China. Government

agencies should consider the following suggestions.

First, we recommend the addition of special planning for

influenza and other infectious diseases to the current planning

system. Components of this special planning should include

establishing a transport system for influenza patients, setting

up influenza isolation and treatment facilities, and developing

an influenza research system and an early warning system

for influenza.

Second, more attention should focus on the Pearl River

Delta, the eastern part of China, the Beijing-Tianjin-Hebei

region, and other areas with higher incidences of influenza

as well as specific cities, such as Beijing, Handan, Zhuhai,

Zhongshan, and Huizhou. Efforts should also focus on areas and

times of high influenza prevalence.

Third, the distribution of medical institutions should be

optimized to facilitate equitable distribution of high-quality

medical resources in key high-incidence areas. Additional

influenza-specific medical and vaccination points should be set

up during the first and fourth quarters of the year when influenza

is highly prevalent and people are susceptible to infection.
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Fourth, innovations in air-quality eco-compensation

programs are needed. A list of enterprises that emit polluting

gases, such as SO2, CO, and NO2, should be developed. More

attention should also be paid to the sources of emissions that

increase concentrations of PM2.5 and PM10 (67, 68). The

rate of air quality should be established as a binding indicator

for atmospheric assessments, and assessments of the weights

of SO2, CO and NO2 concentrations should be conducted

more frequently. Furthermore, coefficients of ecological

compensation should be optimized, and compensation amounts

for curbing the three sensitive pollutant emissions should

be increased.

Fifth, in light of the results of our delineation of zones

according to the sensitivity of the influenza incidence to

changes in the concentrations of air pollutants, we recommend

refining prevention and pollution control measures through

the formulation of targeted influenza prevention and control

strategies tailored for hypersensitive, medium-sensitive, low-

sensitive, and insensitive areas. Special guidelines and pollution

control should be strategically implemented in hypersensitive

areas This strategy encompasses the establishment of county-

level special planning for influenza prevention and control

and strict control of chemical raw material manufacturing,

non-ferrous metal smelting industries, petroleum processing

industries, chemical reagent manufacturing, and other

industries associated with high CO, SO2 and NO2 emissions.

The location of highly pathogenic industrial spaces close to

densely populated areas should be avoided, and low-pollution

urban industrial development models should be selected. Efforts

should focus on reducing the presence of polluting enterprises

with high emissions and high pathogenicity and increasing the

introduction and planning of new environmentally friendly

industries. A strategy of promoting reasonable layouts and

appropriate prevention and control should be pursued in

medium-sensitive areas. Specifically, the layout of polluting

buildings should be planned reasonably, so that they are located

downwind of the city and away from the urban area to reduce

the contribution of air pollutants to the influenza incidence.

The focus should simultaneously be on the layout of medical

buildings, according to the influenza incidence. Prevention-

oriented, root-cause prevention and control strategies should

be implemented in low-sensitive areas. Accordingly, residents

should be actively vaccinated against influenza before the

peak influenza season to prevent the emergence and spread of

influenza at the source, and possible influenza susceptibility

factors in the natural and built environment should be explored.

Lastly, a national influenza risk index should be developed,

and the influenza surveillance and early warning system in

China should be improved. The six air pollutants should

be incorporated as key factors and signals of danger into

the influenza classification and warning model, and warning

thresholds should be set. Changes in influenza incidence rates,

key incidence periods, and key incidence areas under scenarios

such as increased pollution and improved pollution should be

projected, and early warning programs should be introduced.

Research limitations

This study had some limitations. First, the effects of

the natural and socio-economic factors, such as temperature,

precipitation, and populationmovement, on influenza incidence

sensitivity factors were not considered, and the specific causes

and effects need to be further explored in the context of other

natural and social factors. Second, the lagged effect of influenza

on changes in air pollutants was not considered because we

used monthly data, whereas the lagged effect of influenza on air

pollutants is generally measured in days.

Conclusion

Influenza outbreaks are a major public health issue

worldwide, posing a huge threat to human life and health.

We used a top-down approach to analyze the spatiotemporal

characteristics of the influenza incidence and air pollutants in

China and identified and quantified the relationships between

the influenza incidence and parameters of air pollutants within

different methodological models. Three main conclusions were

derived from this study.

First, high incidences of influenza were concentrated in

Beijing as well as in Hubei, Anhui, Zhejiang, and Guangdong

Provinces. Air pollutants tended to be concentrated in the area

east of the Hu line.

Second, the influenza incidence showed a strong

spatial correlation and associated sensitivity to changes in

concentrations of air pollutants. Sensitivity was highest in the

Yangtze River Delta, the Beijing-Tianjin area, and other areas.

The influenza incidence was most sensitive to CO, NO2, and

SO2 levels, with the occurrence of influenza being most likely in

areas with elevated concentrations of these three pollutants.

Third, we delineated three sensitivity zones at the national

level: hypersensitive, medium-sensitive, and low-sensitive areas

according to the combined sensitivity scores obtained for

each prefecture-level city. Hypersensitive areas were roughly

distributed in a “Y” shaped curve, mainly in the southeastern

part of the northeastern China, in coastal areas of the Yellow

River Basin, in the Beijing-Tianjin-Hebei region, and in the

Yangtze River Delta.

A set of prospects is presented below. First, the scope

and sites of research could be appropriately narrowed down

in future studies to focus on the association between the

micro-scale influenza incidence and air pollutants. Second,

more control variables should be incorporated into future

studies to explore whether there are any crossover effects of

air pollutants with meteorological factors, or with population
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movements, on the influenza incidence. Third, the impact of the

lag effect requires investigation using lagged non-linear models

and machine learning. Lastly, it is necessary to construct a

comprehensive spatial and temporal risk assessment system and

a comprehensive diagnostic model for influenza to assess the

environmental risk levels of influenza occurrence nationwide

and to develop risk zoning for influenza and other more

infectious diseases.
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