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Introduction: The concentrations of particulate and gaseous Polycyclic

Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of

Delhi in di�erent seasons (winter, summer, and monsoon).

Methodology: The samples were collected using instrument air metric

(particulate phase) and charcoal tube (gaseous phase) and analyzed through

Gas chromatography. The principal component and correlation were used to

identify the sources of particulate and gaseous PAHs during di�erent seasons.

Results and discussion: The mean concentration of the sum of total PAHs

(TPAHs) for particulate and gaseous phases at all the sites were found to

be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84

ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59

ng/m3), whereas in the monsoon season the concentration was least (68.15

± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis

(PCA) results revealed that seasonal variations of PAHs accounted for over

86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons,

respectively. The strong and positive correlation coe�cients were observed

between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and

DahA (0.821), which indicated the common source emissions of PAHs. In

addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and

IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the

particulate phase PAHs. The carcinogenic health risk values for gaseous and

particulate phase PAHs at all sites were calculated to be 4.53 × 10−6, 2.36 ×

10-5 for children, and 1.22 × 10−5, 6.35 × 10−5 for adults, respectively. The

carcinogenic health risk for current results was found to be relatively higher

than the prescribed standard of the Central Pollution Control Board, India (1.0

× 10−6).
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Introduction

In the last few decades, urban air pollution has become

a serious environmental problem, especially in developing

countries, including India (1–4). Widespread industrialization,

rapid urban planning, and a large increase in the number of

vehicles with a high population density have been responsible

for a deterioration in the ambient air quality (5–8). Among air

pollutants, polycyclic aromatic hydrocarbons (PAHs) are among

the most important due to their impact on both health and

climate (9–11).

Polycyclic aromatic hydrocarbons are a group or class of

hydrocarbons with multiple aromatic rings fused in various

configurations that appear to have a universal presence in the

environment and are the first atmospheric pollutants whose

carcinogenic and mutagenic nature has been assessed (12, 13).

Several studies reported that incomplete combustion of fossil

fuels contributed to approximately 60% of the global emission of

PAHs (14–16). The emission of PAHs to the atmosphere comes

from both natural and anthropogenic sources. The emission

of PAHs from natural sources is combustion from forest

fires and volcanic eruptions (17, 18), whereas anthropogenic

sources are due to incomplete combustion of fossil fuels

(coal, wood oil, diesel, and petrol) at high temperatures (12,

19–22). Several studies reported that high concentrations of

PAH were also found in petroleum products, coal tar, crude

oil, creosote, and roofing tar (23–25). The partitioning of

PAHs into a particular gaseous phase is determined by the

molecular weight of the compounds as well as themeteorological

parameters (26).

The principal sources of PAHs are the incomplete

combustion of fuels and other organic substances, which

contribute in the range of 70–90% (27). Many studies

have pointed out that the levels, human exposure, and

composition may vary by geographical area (12, 28).

PAHs are the products of incomplete combustion and

domestic activities, which contribute to ∼ 60% of global

emissions of PAHs into the environment (29). Naturally,

PAHs can be eliminated by hydrolysis, biodegradation,

and photolysis so that the concentration of PAHs in

the environment is always maintained in dynamic

equilibrium (27).

Currently, the widespread distribution of PAHs in the

atmosphere is of great concern to scientists, which has led

to their critical study for proper monitoring of concentration

and release into the environment (30). Bioaccumulation

of PAHs is highly influenced by the particle phases in

the atmosphere and their partitioning between the gaseous

phases (13, 31, 32), and the most dominant forms of

PAHs that exist in the environment are the particulate and

gaseous phases (33). The most common PAHs associated

with particulates were pyrene, phenanthrene, acenaphthylene,

and fluoranthene, which were associated with diesel and

gasoline exhaust particles. PAHs with a low ring structure

exist only in the gaseous form (33–35), while PAHs with a

high ring structure are mainly associated with the particulate

form, which adsorbs on the surface of particles in large

amounts (36).

Several studies reported that PAHs are considered to be

carcinogenic and mutagenic agents (32, 37), even in India with

a high concentration of PAHs with potential exposure risks

(38–40). Moreover, long-term exposure to PAHs may cause

damage to our human cell lines, cardiopulmonary mortality,

and pulmonary tissue damage (14, 29, 41). In addition, a

variation in the health risks caused by PAHs has been seen

among different age groups and different genders. Several

studies showed that the risks of cancer caused by PAHs are ∼

4.83 times higher in adults than those in children through the

inhalation pathway due to their longer exposure time and the

larger body weight (42). In addition, several literature studies

associated PAHs with various diseases, including cardiovascular

diseases, bone marrow diseases, immune system suppression,

liver diseases, reproductive diseases, and cancer (18, 43,

44).

Based on the aforementioned assessment of PAH levels,

especially in the gaseous phase in the urban ambient atmosphere,

fuel consumption from transport (driven by petrol and diesel)

is attributed as a predominant source of PAHs (10). Few

studies in the literature have assessed particulate-phase PAHs,

resulting from the gaseous phase, and their correlation is

limited in the scientific literature. Therefore, this current

study aimed to evaluate the different levels of particulate-

and gaseous-phase PAHs in the urban city of Delhi, with

the following objectives: (a) to compare particulate- and

gaseous-phase PAHs in different seasons, (b) to determine

the source apportionment of PAHs using different statistical

analyses, and (c) to estimate the health risk assessment of

particulate- and gaseous-phase PAHs with exposure to different

age groups.

Methods and materials

Sampling area

In this study, five topographical sites in Delhi were identified

for the study of PAH concentration in ambient air. These

sites included JNU, Mukherjee Nagar, Rohini, Anand Vihar,

and CP. The basis of this selection included land use and

its pattern of coverage, the number of automobiles, the

presence of electricity, and safety. The details of sampling

coordination and meteorological parameters are presented

in Supplementary Tables 1, 2. In total, 96 samples were

collected from each monitoring station for particulate and

gaseous emissions.
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Monitoring of particulate-phase and
gaseous-phase PAHs

For the particulate-phase PAHs, an air sampler (Airmetrics

Minivol) was used for sampling. This device was operated with

a reusable battery, a 24-h backup, and a low consumption rate.

It maintains a 5 L/min flow rate to ensure steady performance

throughout the sampling period of the impactors, which are

fitted at 1.5m above the second floor of household apartments

at every chosen location. The air sampler collected PM2.5 on a

47-mm polytetrafluoroethylene (PTFE) filter sheet (45).

The gaseous phase of PAHs was collected on an absorbent

tube (ORBOTM) with a polyurethane foam (PUF) plug and glass

cassettes with XAD-2 resin. Most scholars claim that this resin

shows greater efficiency in the separation of naphthalene (46).

The fluidity rate of the samples was taken using a rotameter

(accuracy ±1%). Then, the samples were covered with a silver

foil, stored in a very clean screw-capped vial using a Teflon

cap liner, and then placed in refrigerated containers (4◦C

temperature) for further transport.

Ambient air samples through both XAD-2 and the filter were

kept at room temperature to warm them. The resin from the

XAD-2 tubes was placed in 4-ml screw-top vials. The front and

back sections of the XAD-2 resin were placed in different vials

and labeled front and back with a marker. The PTFE filter was

first used to cut the samples into small pieces, and they were

also placed in separate 4-ml screw-top vials. In each vial, 2ml

of methyl chloride was added and shaken for 2min. Laboratory

and field blanks were also extracted in the same way. From

each vial containing XAD resin or filter, 1ml of the extract was

transferred to an autosampler vial for further analysis by gas

chromatography/mass spectrometry (GC/MS). The analysis was

carried out on a Bruker 450GC (gas chromatograph) equipped

with a DB-5 capillary column (30m × 0.25mm × 0.25µm film

thickness). According to the procedures listed by the National

Institute for Occupational Safety Health (NIOSH)Method 5515,

the analysis of PAHs in air samples was performed (47). The

details for the extraction and chemical analysis method are

presented in Supplementary Table 1.

Method validation

Several studies suggested the calculation and validation

methods for PAH concentration, which include various

parameters such as linearity, recovery, precision, limits of

detection (LOD), and limits of qualification (LOQ). In this

study, linearity was estimated through spiked calibration levels,

ranging between 10 and 500 ng/l. To estimate the recovery

accuracy, three spiked blank samples were prepared at different

concentration levels of 25, 50, and 200 ng/l. LOD and LOQ

were calculated according to the sample PAH concentration

at a signal-to-noise ratio of 3–10. The amount of PAHs

in particulate- and gaseous-phase samples was estimated by

interpolating the peak areas of each PAH to the internal standard

peak area in the sample (Supplementary Figures 1, 2).

Principal component analysis

Principal component analysis (PCA) is one of the important

tools that changes a set of observations of possibly linked

variables into a set of values that are not linked. In this study,

PCAwas performed at five differentmonitoring stations inDelhi

to determine the relationship between PAHs and to identify the

causes of ambient air pollution. The PCA process was used to

identify the source contribution based on the variability of the

measured element in a large number of samples. PCA results

indicate which factors can explain the main part of the data

variance (24). PCs are the eigenvectors of a covariance matrix

or a correlation matrix, and each PC extracts a maximal share

of the total variance. A PC with an eigenvalue greater or equal

to 1 is considered statistically significant (48). In this study,

factor loading, the percentage variance, and the cumulative

percentage are explained by each factor and each component for

the data obtained. In addition, the following sources of PAHs

have been incorporated from various literature sources that use

the PCA method to increase the accuracy of emission source

identification (24, 48, 49).

Health risk calculation

In this study, B(a)P is considered as a reference to calculate

the toxicity equivalent factor (TEF) of all PAHs. The toxicity

equivalent concentration (TEQ) of PAH equation broadening

performed for health risk assessment can be calculated as

described below (33, 35, 50):

TEQs =
∑

Ci × TEFi (1)

Here,

Ci = level of PAHs.

TEFi is the amount of toxic equivalence of samples.

Health assessments were carried out in previously published

studies (10, 33).

The incremental lifetime cancer risk (ILCR) was estimated as

the risk of exposure to chemicals suspected to have carcinogenic

effects based on the USEPA standard models (51–53). ILCR

was calculated based on the corresponding lifetime average

daily dose (LADD) of PAHs by considering two different age

groups: children (age 6 years) and adults (age 52 years). LADD

indicates the amount of PAH intake per kilogram of body weight

per day. LADD and ILCR were estimated in Equations 2 and

3, respectively.

LADD (mg kg−1day−1) = (Cs× IR× CF × EF × ED) /

(BW × AT)Cancer risk (ILCR) (2)
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Cancer risk = LADD× CSF (Slope Factor) (3)

where Cs is the total of converted amount of PAHs based on

toxic equivalents of BaP (ng m−3) using the toxic equivalency

factor (TEF) value. IR is the air inhalation rate (m3 day−1) (53),

CF is the unit conversion factor (1 × 10−6 mg kg−1), EF is

the exposure frequency (day year−1), and ED is the exposure

duration (day years−1) (54). ED is the value for children (6

years) and adults (52 years). BW represents body weight (kg)

(53). AT represents the carcinogen averaging time (days) (55),

and CSF represents the inhalation cancer slope factor (3.85mg

kg−1 day−1).

Statistical analyses

Statistical analyses, such as factorial analysis and correlation,

were performed using Statistical Package for the Social Sciences

(SPSS) version 26.0 (SPSS, Inc., Chicago, IL, USA). Factorial

analysis and correlation were performed to identify the

correlated variables in different seasons for both particulate- and

gaseous-phase PAHs in the ambient atmosphere.

Results and discussion

Seasonal variation in particulate- and
gaseous-phase PAHs

In this study, 14 out of the 16 PAHs were identified as

having a higher molecular weight associated with the particulate

phase, while low molecular weight PAHs (acenaphthylene and

acenaphthene) were not detectable in particulate-phase PAHs.

Similarly, 8 out of the 16 PAHs were identified as having a low

molecular weight associated with the gaseous phase, while high

molecular weight PAHs [Chr, B(a)A, B(k)F, B(b)F, B(a)P, IcdP,

DahA, and B(ghi)P] were not detectable in gaseous-phase PAHs.

The amount of total PAHs (TPAHs; particulate and gaseous

phases) in all areas was higher in the winter season (165.14

± 50.44 and 65.73 ± 16.84 ng/m3) than in the summer

season (134.08 ± 35.0 and 43.43 ± 9.59 ng/m3), whereas

in the monsoon season, the concentration was lower (68.15

± 18.25 and 37.63 ± 13.62 ng/m3), as similar results were

obtained in Delhi (India) by Singh et al. (56). A study

conducted in eastern India reported a much higher average

annual PAH concentration, ranging from 797.9 ± 39.1 to

1,015.1 ± 42.7 ng/m3 compared to the present study (57).

Gaseous-phase PAHs showed less significant variation during

the different seasons due to more local sources of origin,

whereas particulate-phase PAHs might be local but could

translocate away from the emission site. Some barometric

factors also played a significant role in controlling the

concentration of PAHs in all areas; at the same time, area-specific

emission sources might have influenced their concentration

in the surrounding atmosphere (10, 58, 59). Several studies

reported a much lower TPAH concentration compared to

the present study, such as 70.4 ng/m3 in Italy (60), 39.5

ng/m3 in La Plata, Argentina (59), and 20.9–65.4 ng/m3 in

Spain (61).

The availability of more PAHs in the sample over

Anand Vihar during the winter was due to the lower

amount of photochemical destruction, the restricted mixing

layer, and the continuous production of the temperature

inversion layer. During the hot season and monsoon, a

higher amount of photochemical destruction and mixture

layers in the atmosphere might result in a lower PAH

concentration in the samples, and also humidity and

precipitation might play an important role during the

monsoon period (10).

In the winter season, particulate-phase TPAHs were found

to be higher as compared to gaseous-phase PAHs in the winter

season. It ranged from 91.99 ± 6.51 (JNU) to 210.94 ±

14.30 ng/m3 (Anand Vihar) for particulate-phase PAHs but

from 41.40 ± 1.19 (JNU) to 82.37 ± 8.0 ng/m3 (Mukherjee

Nagar) for gaseous-phase TPAHs in the winter season. In the

summer season, the amount of particulate-phase TPAHs was

reported to be higher as compared to gaseous-phase PAHs.

It ranged from 74.64 ± 5.03 (JNU) to 163.61 ± 9.17 ng/m3

(Mukherjee Nager) for particulate-phase PAHs but from 30.53

± 1.90 (Anand Vihar) to 57.47 ± 2.51 ng/m3 (Mukherjee

Nagar) for gaseous-phase PAHs. Further, in the monsoon

season, it ranged from 36.34 ± 2.80 (JNU) to 81.70 ± 5.84

ng/m3 (Mukherjee Nager) for particulate-phase PAHs, whereas

it ranged from 17.97 ± 2.25 (JNU) to 52.06 ± 6.51 ng/m3

(Rohini) for gaseous-phase PAHs. The trend of the maximum

concentration of the particulate phase was in the following

order: Mukherjee Nagar > Anand Vihar > CP > Rohini >

JNU during the winter season. Apart from the summer season,

a pattern for the highest amount of the particulate phase was

in the sequence of Rohini > Mukherjee Nagar > Anand Vihar

> CP > JNU and that of gaseous-phase PAHs was in the

sequence of Mukherjee Nagar > CP > JNU > Rohini >

Anand Vihar. The mean TPAHs level at all monitoring stations

has presented for summer, monsoon, and winter seasons in

Figures 1, 2.

The level of particulate-phase PAHs was observed to be

relatively higher at Mukherjee Nagar and Anand Vihar sites

than at the other monitoring sites. The Anand Vihar site is

considered to be an interstate bus terminal, which indicates

higher vehicular emission sources. Additionally, other PAH

emission sources in Delhi certainly had large seasonal variations,

including residential biofuel burning and open burning of

biomasses (62). Excessive traffic during the winter period

due to fog and haze was also responsible for increasing the

atmospheric level of PAHs during winter (63). The recorded

TPAH concentration was low in summer due to photochemical

degradation and dispersion of PAHs in Delhi (64), whereas
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FIGURE 1

Seasonal variation of particulate PAHs at di�erent monitoring stations.

FIGURE 2

Seasonal variation of gaseous PAHs at di�erent monitoring stations.

the highest concentration was observed in the winter season

as a common phenomenon in many urban residential

areas (65).

PCA for annual PAHs

Principal component analysis for annual PAHs was

calculated as a mean value for all seasons during the

sampling period, as presented in Supplementary Tables 3,

4 for particulate- and gaseous-phase PAHs. Annually, for

the particulate phase, six principal components (PCs) were

extracted, while for the gaseous phase, three factors were

extracted at different sites. In this study, a high factor loading

for these PAHs was obtained in PC-1 for particulate-phase

PAHs [B(a)P, B(k)f, B(g,h,i)P, and endo(cd)pyrene]. The present

result indicated that PC-1 (eigenvalues 5.61) of particulate-

phase PAHs represented gasoline sources. A similar result

reported gasoline emission sources for B(a)P, B(k)F, B(g,h,i)P,

and endo(cd)pyrene (66). Another study in east-central India

reported higher PAH rings associated with diesel emission and

coal combustion sources (57). Several researchers suggested

that diesel emissions from vehicles had a high factor loading for

fluorene, phenanthrene, anthracene, and pyrene (67), whereas

Zhao et al. (68) proposed that fluorene and phenanthrene

with a high factor loading of benzo (b & k) fluoranthene

indicated diesel-driven vehicles. Several studies reported

that diesel emissions from road traffic were associated with

low and medium molecular weight (three to four rings)

PAHs (69).

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1070663
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Singh et al. 10.3389/fpubh.2022.1070663

In this study, a high factor loading for these PAHs has

been obtained in PC-4 for particulate-phase PAHs. Thus, it

was witnessed that PC-4 of particulate-phase PAHs represented

diesel-driven sources. Annual PCA revealed for the gaseous

phase that Nap, Acy, Ace, and Flu were dominant species in the

first factor, which indicated natural sources of emission for all

seasons. The initial factor for most of the total variance (35.0%)

was high loading with B(b)P, B(k)P, B(a)P, IcdP, DahA, and

B(ghi)P for the particulate phase, whereas the gaseous phase

accounted for the total variance (34.4%) with Nap, Acy, Ace,

and Flu. The first factor with B(b)P and B(ghi)P confirmed that

vehicle emission from traffic was one of the significant sources

of the PAHs in all three seasons for the particulate phase (70).

The second factor accounted for 23.17% of the total variance,

where Anth and Pyr were identified. This factor accounted

for natural gas sources (71). It reflected a substantial influence

of low molecular weight PAHs with low rings (three to four

rings PAHs). Several studies reported that high-loading Phe was

associated with either unburned petroleum from vehicles or coal

combustion (72, 73). A study was conducted on the gaseous

phase reported that the first factor accounting for the majority of

the total variance (25%) was highly loaded with BaP and DahA,

while factor 2 was a high-loading factor with Phe and Flt (24).

PCA for seasonal PAHs

Principal component analysis for particulate-phase PAHs

extracted three factors for all seasons (summer, monsoon, and

winter). The seasonal variations of PAHs accounted for more

than 86.9%, 84.5%, and 94.5% for the summer, monsoon, and

winter seasons, respectively, as a similar result in Changsha,

China, was reported for 85.8% and 89.9% of the total data

variance in the summer and autumn samples, respectively, for

the particulate phase (74), while this study accounted for 83.6%,

75.5%, and 82.4% for gaseous phase samples in the three seasons.

It was reported that similar PCA results in Japan accounted for

88.6% of the variance with a high loading of all PAHs, which

indicated traffic emission (49).

In the summer season, for the particulate phase, the first

factor illustrated 71.8% of the total variance, which indicated

the loading of higher molecular weight PAHs, such as B(k)P

B(a)P, DahA, and B(ghi)P. Transport was validated to be a

significant contributor to higher PAHs. The loadings of lighter

PAH (Acy, Ant, and Flu) for the particulate phase and Nap,

Acy, and Flu for the gaseous phase were also higher for this

factor, which accounted for natural gas sources (46). The second

factor accounted for 18.4% of the total variance, with a finding

of loading for Chry PAH as dominant, which may have been

emitted from petrol and CNG vehicles for particulate-phase

PAHs, whereas the gaseous phase accounted for 21.5% of the

total variance and dominant species were Chry and B(a)P, which

may have been emitted due to gasoline emission (75, 76).

During the monsoon season, the first factor demonstrated

51.7% of the total variance, which indicated the loading of

higher PAH [such as DahA, BghiP, and B(a)P] for the particulate

phase and PAHs such as Anth and Phen for the gaseous

phase, respectively (Table 1). This study indicated that diesel

and gasoline emission sources were significant sources (66). The

second factor explained 17.8% and 24.0% of the total variance for

particulate- and gaseous-phase PAHs, respectively, during the

sampling period. The loading of higher PAHs Nap [B(a)P, and

B(k)P] for the particulate phase and Nap, Acy, and Ace for the

gaseous phase were the dominant species attributed to natural

gas sources (24).

During the winter, the first factor accounted for 36.3%

and 26.35% of the total variance for particulate- and gaseous-

phase PAHs, respectively (Table 2). The higher molecular weight

PAHs had reduced the loading concentration for gaseous-phase

and particulate-phase PAHs. This factor was also dominated

by Nap and Ace for gaseous-phase PAHs and Anth, Flt, and

Chr for particulate-phase PAHs, which indicated a natural gas

combustion source (71). The second factor accounted for 31.73%

of the total variance for particulate-phase PAHs, and Phen and

Pyr were dominant, which may have been emitted from diesel

sources. The results obtained from PC-2 demonstrated that the

low molecular weight (Phen) indicated a petrochemical source

(77, 78). For the third factor, high molecular weight PAHs

[B(b)F, B(a)P, and DahA] were dominant components, which

accounted for 26.5% of the total variance for particulate-phase

PAHs. Many researchers suggested that these species originated

from vehicular sources, especially from diesel emissions (20, 79).

Hence, the results of PCA revealed that themajor source of PAHs

was found to be vehicular emissions (diesel and gasoline) as well

as wood burning (biomass burning).

Correlation analysis for PAHs

Pearson’s correlation was used to provide the correlation

coefficients needed for data analysis, with a significant level of

p < 0.05. The correlation of the total particulate- and gaseous-

phase PAHs is presented in Tables 3, 4. A strong significant

positive correlation was observed between B(ghi)P and DahA

(0.92), B(a)P and IcdP (0.85), and B(a)P and DahA (0.821).

The highest molecular weight was linked with particulate-phase

PAHs and was released mainly from vehicular emissions. In

addition to this, the correlation between Nap and Flu, Flu and

Flt, and B(a)P and IcdP showed a moderate to high positive

correlation ranging from 0.68 to 0.75 for particulate-phase

PAHs. For the gaseous phase, a strong and positive correlation

coefficient of 0.678 was observed between Acy and Nap, Nap

and Ace. The lowest molecular weight emission was found in

the gaseous phase as an indicator of petroleum sources (78).

Furthermore, the correlation between Phe and Flu, Phe and

Pyr, and Flu and Ant showed a low-to-moderate correlation
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TABLE 1 Result of factor analysis with varimax rotation for particulate phase PAHs at di�erent seasons.

PAH Summer Monsoon Winter

1 2 3 1 2 3 1 2 3

Nap −0.061 0.799 −0.582 0.720 −0.020 −0.589 −0.44 −0.73 0.25

Acy 0.826 0.396 −0.373 – – – – – –

Ace −0.945 0.306 0.086 – – – – – –

Flu 0.864 −0.270 0.344 0.462 −0.528 – – – –

Phe −0.894 0.297 −0.313 −0.529 0.421 0.572 0.01 0.94 0.21

Ant 0.948 0.316 0.028 0.850 0.216 0.368 0.95 −0.14 −0.24

Flt 0.836 0.546 −0.025 0.484 −0.677 0.244 0.94 −0.16 −0.14

Pyr 0.708 0.590 0.349 −0.789 −0.280 −0.182 −0.45 0.86 −0.10

B(b)A 0.971 −0.050 0.114 −0.170 0.810 −0.086 −0.87 −0.06 0.46

Chry 0.192 0.908 0.366 −0.960 −0.021 −0.238 0.89 0.04 −0.37

B(b)F −0.763 0.482 0.430 0.319 0.807 −0.398 0.02 −0.69 0.70

B(k)F 0.996 −0.038 0.043 −0.286 −0.122 0.825 0.31 −0.94 0.11

B(a)P 0.981 0.050 −0.182 0.917 0.287 0.132 0.07 0.19 0.97

IcdP 0.960 −0.094 −0.263 −0.934 0.190 −0.158 0.38 −0.14 0.88

DahA 0.947 −0.282 −0.142 0.973 0.041 0.107 0.55 0.54 0.59

BghiP 0.972 −0.081 0.201 0.928 0.112 0.121 0.66 0.46 0.57

Initial Eigenvalues 11.500 2.950 1.320 7.25 2.50 2.09 4.72 4.13 3.44

% of variance 71.88 18.47 8.25 51.7 17.83 14.90 36.29 31.74 26.48

Cumulative % 71.88 90.35 98.35 51.77 69.60 84.50 36.29 68.03 94.50

Bold values indicate a strong correlation.

ranging from 0.28 to 0.50 for gaseous-phase PAHs. A weak

correlation of these gaseous-phase PAHs showed negligible

sources of emissions.

Toxicity of PAHs

Emission sources of air pollutants, especially PAHs, play a

significant role in understanding and determining their potential

in environmental and human health assessment. This study

estimated the potential toxicity of human exposure to all selected

sites in Delhi in terms of total TEFs. Total TEQ values at all

sites were calculated to be 38.39 and 0.55 ng/m3 for particulate-

and gaseous-phase PAHs, respectively. The largest contributor

to the total risk of particulate-phase PAHs was estimated to be

D(ahA) (43.66–45.42%), followed by B(a)P (34.62–44.31%) at

all sites, which was similar to the study conducted in Pakistan

for D(ah)A (42.52–80.91%) followed by B(a)P (4.42–35.51%) in

all cities (80). The maximum TEQ value for particulate-phase

PAHS was attributed by D(ahA) at JNU (7.46), Mukherjee Nagar

(20.94), Anand Vihar (18.99), and CP (18.28). Similar TEQ

values at Anand Vihar and CP for particulate-phase PAHs were

highly predominant in traffic areas, which indicated a similar

source of emission driven by diesel- and gasoline-powered

vehicles, whereas Mukherjee Nagar was considered to have a

high population density and local emission sources such as wood

and charcoal burning for cooking contributed to higher PAH

concentrations. The current study focused on evaluating the

health risk assessment in terms of LADD and cancer risk due

to exposure to both particulate-phase and gaseous-phase PAHs.

Average LADD values for children and adults were calculated

as 3.17 × 10−6, 1.65 × 10−6 and 1.18 × 10−6, 6.12 × 10−6

for particulate-phase and gaseous-phase PAHs, respectively. In

the gaseous phase, LADD values were reported to be relatively

higher for adults than for children. The reason could be that

gasoline was a significant source of gaseous-phase PAHs and

adults are usually exposed to these for longer periods. In the

particulate phase, the LADD value was higher for children, as a

major source of particulate-phase PAHs was biomass burning,

including wood burning in outdoor and indoor premises, to

which children were more exposed. JNU observed minimum

LADD values compared to other sites due to less movement of

transport inside the campus. Cancer risk for children and adults

at all sites was estimated for gaseous-phase and particulate-phase

PAHs. The average value for cancer risk for children and adults

were found to be 4.53 × 10−6, 2.36 × 10−5 and 1.22 × 10−5,
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TABLE 2 Result of factor analysis with varimax rotation for gaseous phase PAHs at di�erent seasons.

PAH Summer Monsoon Winter

1 2 3 1 2 3 1 2 3

Nap 0.636 −0.222 0.667 −0.264 0.754 0.380 0.778 0.198 0.424

Acy 0.659 −0.273 0.488 −0.340 0.832 −0.337 0.531 0.681 −0.166

Ace 0.441 −0.133 0.348 −0.178 0.686 −0.133 0.748 0.188 0.246

Flu 0.720 −0.499 −0.187 0.081 0.117 0.960 0.328 0.171 −0.591

Phen 0.585 0.110 −0.695 0.875 0.041 −0.099 0.194 0.583 −0.399

Anth 0.552 −0.148 −0.619 0.910 0.251 −0.081 −0.507 0.514 0.303

Flt −0.179 0.359 0.100 0.772 0.181 0.150 −0.371 0.674 −0.046

Pyr 0.593 0.553 −0.175 0.677 0.281 −0.106 −0.374 0.393 0.670

BaA 0.280 0.789 0.212 – – – −0.124 0.175 −0.013

Chr 0.332 0.815 0.139 – – – −0.700 0.207 −0.332

Initial Eigenvalues 2.77 2.14 1.81 2.87 1.92 1.24 2.63 1.85 1.43

% of variance 27.69 21.45 18.10 35.89 24.01 15.58 26.33 18.53 14.30

Cumulative % 34.17 63.08 79.40 51.77 69.60 84.50 36.29 68.03 94.50

Bold values indicate a strong correlation.

6.35 × 10−5 for particulate-phase and gaseous-phase PAHs,

respectively, which indicated that the values were found to be

much higher than the prescribed standard (1.0× 10−6). Similar

results were reported for children and adults, with 3.5 × 10−5

and 1.17× 10−5 for the hot season and 3.30× 10−5 and 1.10×

10−5, respectively, for the hot and cold seasons (7).

Conclusion

This study analyzed seasonal variations, source

identification, and toxicity of PAHs in urban sites. The

concentration of TPAHs (particulate and gaseous phases)

in all monitoring sites was higher in the winter season

(165.14 ± 50.44 and 65.73 ± 16.84 ng/m3) than in the

summer season (134.08 ± 35.0 and 43.43 ± 9.59 ng/m3),

whereas in the monsoon season, the concentration was

lower (68.15 ± 18.25 and 37.63 ± 13.62 ng/m3). The main

source of PAH emission was manmade sources, including

the burning of wood and stubble burning during the winter

from the neighboring states like Punjab and Haryana. Some

emission sources of PAHs in Delhi certainly had large seasonal

variations, including residential biofuel burning and open

burning of biomass. To identify the source apportionment of

PAHs through statistical tools, this study used PCA analysis

and revealed that natural gas combustion was significantly

attributed to the particulate-phase PAHs during the winter

season, followed by diesel-driven vehicles in the ambient

atmosphere of Delhi. During the summer season, vehicular

emission was a major contributor of particulate-phase PAHs,

followed by gasoline. In the case of the gaseous phase, PAH

dominant species B(a)P and Chry may have been emitted

from gasoline emission. This study can contribute to a better

understanding of the monitoring of both particulate- and

gaseous-phase PAHs in the ambient atmosphere of the

urban area.

The current study focused on evaluating the health risks

in terms of LADD and cancer risk due to exposure to both

particulate- and gaseous-phase PAHs. Average LADD values for

children and adults were calculated to be 3.17 × 10−6, 1.65 ×

10−6 and 1.18 × 10−6, and 6.12 × 10−6 for particulate- and

gaseous-phase PAHs, respectively. The average value of cancer

risk for particulate- and gaseous-phase PAHs were found to be

4.53 × 10−6 and 2.36 × 10−5 for children but 1.22 × 10−5

and 6.35 × 10−5 for men at all monitoring sites, respectively,

which indicated much higher values than the prescribed

standard (1.0 × 10−6) by CPCB. The carcinogenic health risk

for this study was reported to be relatively higher than the

prescribed standard values (1.0 × 10−6). This study confirmed

that the PAH levels in the ambient atmosphere of Delhi

could not be neglected, and this study would be enlightening

among the scientists, researchers, and government to address

the issues along with policy formulation. Furthermore, this

study can enhance policymakers with appropriate scientific

solutions, such as imposing a ban on the burning of steeples,

examining the quality of petroleum (petrol and diesel), and

setting antipollution measures, whereas the issue of health

risk assessment and recognition of factors affecting pollution

is crucial and essential. Further, more comprehensive studies

are required in this area. Thus, the results of this study
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TABLE 3 Correlation of PAH species in the particulate phase PAHs.

Nap Acy Ace Flu Phe Ant Flt Pyr B(a)A Chry B(b)F B(k)F B(a)P IcdP DahA B(ghi)P

Nap 1

Acy 0.598∗∗ 1

Ace 0.041 −0.175 1

Flu 0.688∗∗ 0–0.734∗ 0.210 1

Phe 0.079 0.088 0.010 0.414∗ 1

Ant −0.007 0.532∗∗ 0.328 −0.513∗∗ −0.415∗∗ 1

Flt 0.348∗ 0.305 0.387 0.638∗∗ 0.211 0.174 1

Pyr −0.102 0.050 0.784 −0.039 0.331∗ −0.264 −0.125 1

B(a)A −0.034 −0.322 0.066 −0.056 −0.386∗∗ −0.240 −0.499∗∗ 0.295∗ 1

Chry −0.191 0.510∗∗ 0.838 −0.385∗ 0.196 0.038 −0.013 0.275 −0.079 1

B(b)F 0.029 0.397∗ 0.989
∗ −0.587∗∗ −0.422∗∗ 0.134 −0.484∗∗ 0.107 0.689∗∗ 0.262 1

B(k)F −0.120 0.351 −0.246 −0.512∗∗ 0–0.718∗∗ 0.305∗ −0.155 −0.248 0.450∗∗ 0.215 0.637∗∗ 1

B(a)P −0.233 0.056 −0.466 −0.463∗ −0.552∗∗ 0.078 −0.304∗ 0.310∗ 0.620∗∗ 0.205 0.614∗∗ 0.731∗∗ 1

IcdP −0.241 0.336 −0.751 −0.515∗∗ −0.331∗ 0.026 −0.224 0.259 0.425∗∗ 0.507∗∗ 0.523∗∗ 0.756∗∗ 0.851
∗∗ 1

DahA −0.056 0.351 −0.908 −0.506∗∗ −0.494∗∗ 0.423∗∗ −0.054 0.300∗ 0.289∗ 0.156 0.413∗∗ 0.567∗∗ 0.821
∗∗ 0.638∗∗ 1

B(ghi)P −0.097 0.356 0.598 −0.476∗ −0.473∗∗ 0.495∗∗ −0.035 0.294∗ 0.326∗ 0.153 0.456∗∗ 0.558∗∗ 0.753
∗∗ 0.591∗∗ 0.922

∗∗ 1

∗∗Correlation is significant at the 0.01 level (two-tailed).
∗Correlation is significant at the 0.05 level (two-tailed).

Bold values indicate a strong correlation.
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TABLE 4 Correlation of PAH species in the gaseous phase PAHs.

Nap Acy Ace Flu Phen Anth Flt Pyr BaA Chr

Nap 1

Acy 0.619
∗∗ 1

Ace 0.591
∗∗ 0.481∗∗ 1

Flu 0.196 0.343∗∗ 0.257∗ 1

Phen −0.054 0.048 0.041 0.227 1

Anth −0.057 0.129 −0.132 0.258 0.462∗∗ 1

Flt −0.066 0.076 −0.162 0.078 0.124 0.293∗ 1

Pyr −0.115 −0.165 −0.080 −0.197 0.351∗∗ 0.301∗ −0.015 1

BaA 0.056 −0.011 0.017 −0.032 0.129 0.170 −0.100 0.011 1

Chr −0.407∗∗ −0.186 −0.286 −0.080 0.195 0.007 0.398∗ 0.471∗∗ 0.060 1

∗∗Correlation is significant at the 0.01 level (two-tailed).
∗Correlation is significant at the 0.05 level (two-tailed).

Bold values indicate a strong correlation.

emphasize the need for continuous monitoring of particulate-

and gaseous-phase PAHs in the ambient air of Delhi, whereas

the chances of exposure to the population are high for PAHs,

which cause health risks such as cancer.
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