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Introduction: Perioperative critical events will a�ect the quality of medical services

and threaten the safety of patients. Using scientific methods to evaluate the

perioperative risk of critical illness is of great significance for improving the quality

of medical services and ensuring the safety of patients.

Method: At present, the traditional scoring system is mainly used to predict the score

of critical illness, which is mainly dependent on the judgment of doctors. The result

is a�ected by doctors’ knowledge and experience, and the accuracy is di�cult to

guarantee and has a serious lag. Besides, the statistical prediction method based on

pure data type do notmake use of the patient’s diagnostic text information and cannot

identify comprehensive risk factor. Therefore, this paper combines the text features

extracted by deep neural network with the pure numerical type features extracted by

XGBOOST to propose a deep neural decision gradient boosting model. Supervised

learning was used to train the risk prediction model to analyze the occurrence of

critical illness during the perioperative period for early warning.

Results: We evaluated the proposed methods based on the real data of critical illness

patients in one hospital from 2014 to 2018. The results showed that the critical disease

risk predictionmodel based onmultiplemodes had faster convergence rate and better

performance than the risk prediction model based on text data and pure data type.

Discussion: Based on themachine learningmethod andmulti-modal data of patients,

this paper built a predictionmodel for critical adverse events in patients, so that the risk

of critical events can be predicted for any patient directly based on the preoperative

and intraoperative characteristic data. At present, this work only classifies and predicts

the occurrence of critical illness during or after operation based on the preoperative

examination data of patients, but does not discuss the specific time when the patient

was critical illness, which is also the direction of our future work.

KEYWORDS

critical adverse events, deep neural network, multimodal information, XGBOOST, early

recognition

1. Introduction

The occurrence of critical illness in perioperative patients will not only increase the medical

costs of patients, prolong the recovery time, and affect the rehabilitation results of patients (1, 2),

but also even lead to the death of patients. At present, the incidence of various critical events

during the perioperative period in China is as high as 12%, leading to the highest mortality rate

of hospitalized patients at 1.1%. It is often difficult to timely predict critical events under the

simple score warning system of critical events. This leads to the occurrence of critical events

that are serious or late in the course of the disease, with greater treatment difficulty and limited

intervention effect. Studies have shown that the occurrence of critical events within 30 days

after surgery can reduce the median survival time of patients by 69% (3), and the long-term

consequences of critical events have a great impact on patients’ long-term survival and quality of

life (4). A variety of critical illness events occurring during and after surgery are very common in

clinical practice. Although some critical diseases cannot be avoided in view of the current level

of medicine, their incidence rate can be significantly reduced if enough attention is given, and

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1065707
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1065707&domain=pdf&date_stamp=2023-01-26
mailto:yibin1974@163.com
https://doi.org/10.3389/fpubh.2022.1065707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1065707/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chen et al. 10.3389/fpubh.2022.1065707

patients’ suffering and death rate can be greatly reduced with

the timely and correct treatment. Therefore, active risk prediction

of critical events is helpful for early detection, early warning,

diagnosis, and intervention, which is of great scientific significance

and social value.

Currently, critical illness assessment in hospitals mainly adopts

the scoring system, such as the trauma scoring system (5), Glasgow

Prognostic Score System (6), acute respiratory distress syndrome

score (ARDS Score) (7), disseminated intravascular coagulation score

(DIC Score) (8), mortality prediction model (MPM) (9), acute

physiology and chronic health evaluation II,III (APACHE II, III) (10),

simplified acute physiology score (SAPS) (11), TISS score system

(12), multiple organ dysfunction syndrome score (MODS) (13), and

sequential organ failure assessment score (SOFA) (14). Although

there aremany clinical studies on critical illness scoring systems, their

application in clinical practice is less. Because its accuracy mainly

depends on the clinical experience of doctors or experts and the

cognitive level of the disease, different experts or doctors often have

a certain deviation in the diagnosis of the same disease for the same

person. Besides, some critical care scoring systems (6, 13, 14) cannot

FIGURE 1

Critical illness risk prediction based on deep neural decision gradient boosting.

FIGURE 2

The flow of text feature extraction.

obtain the required parameters in a short time, and the calculation

is complex. Especially, the clinical information is far beyond the

processing capacity of human brains because of its high rate of

production and the large quantity of information, and the rapid

change in the patient’s condition.

Recently, artificial intelligence technology has been widely

applied in the medical field (15–25). Statistical machine-learning

methods based on sample data-driven models have also had

widespread application in prediction models for critically ill patients

(24, 26–28). It is a method that mines patient sample data through

statistical learning methods to make a disease analysis based on

the physical signs data after the processing and transformation of

the data, so as to predict critical illness. Currently, severe risk

prediction based on machine learning is divided into evaluating

with structured text data and evaluating with unstructured text data.

The study by Krittanawong et al. (29) used structured data for risk

assessment of critical illness. The patient’s disease characteristics were

obtained based on the disease feature extraction method designed

by professionals on the data set, and the patients were stratified

according to the risk level of the disease by using the machine
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FIGURE 3

Selecting the best feature.

learning method. This method has been widely studied and applied

in clinical practice. The study by Schnabel et al. (30) used the method

of big data analysis to evaluate diseases from learning features in

a large number of structured data sets. Although structured data

facilitate the development of health monitoring applications with

data mining methods, unstructured text data records important

information about patients’ diseases. The study by Yang andGaribaldi

(31) mined features of coronary artery disease from clinical record

data using a text-mining method to predict the risk of coronary

artery disease. The study by Evans et al. (32) used a natural language

processing method to identify risk features of cardiovascular disease.

With the development of computer technology, studies of AI are

no longer limited to basic algorithms, but have begun to upgrade

and integrate algorithms (33–35). Upgraded algorithms have been

applied in the fields of motion planning (36), the Internet (37), and

medicine (38).

The concept of information fusion appeared in the 1920s, and

after 60 years of development, it finally became a special technology

in the 1980s. Information fusion is an inherent feature of an

organism. It is the basis for an organism to perceive its environment

and respond to it, as well as the basic ability of an organism to

evolve and survive. The general definition of information fusion

is a process through which data obtained by multiple sensors

(including soft sensors) in chronological order are automatically

analyzed and optimized according to certain criteria, and finally, the

information for decision-making and estimation is obtained by using

computer technology. Disease risk assessment based on a simple

text data drive or numerical type drive has not fully integrated the

preoperative and intraoperative relevant data of patients and cannot

fully reflect the actual condition of patients. Using information

fusion technology to analyze, process, and fuse medical data, and

to analyze disease types and diseases, can effectively improve the

accuracy of disease prediction. Therefore, this article adopts the

machine learning method to model the risk prediction of critical

illness occurrence before and during operation for patients based

on the relevant diagnosis and treatment data of patients, so as

to build an extensible, low-cost, and effective machine-learning

critical illness event prediction solution. This article is not intended

to advocate that artificial intelligence will replace the work of

doctors, but merely to show how artificial intelligence and machine

learning can help humans to predict various critical diseases early

and minimize manual operation with a low-cost, efficient, and

accurate method.

In this article: (1) we propose a deep neural decision gradient

boosting model to predict critical illness; (2) we evaluated the

proposed methods based on the real data of critical illness; (3) critical

illness; and (4) the experimental results show that the disease risk

TABLE 1 Normal value range of patient monitoring attributes during

operation.

Number Attribute name Value interval

1 Heart rate (HR) [50, 100]

2 Systolic blood pressure (SBP) [90, 140]

3 Diastolic blood pressure (DBP) [60, 90]

4 Central venous pressure (CVP) [5, 12]

5 Respiratory rate (RR) [12, 20]

6 ETCO2 [35, 45]

7 Temperature (T) [36.2, 37.2]

8 Rectal temperature (RT) [36.5, 37.7]

9 SpO2 [95, 100]

10 Ambulatory diastolic blood pressure (ADBP) [60, 90]

11 PULSE [60, 100]

12 Mean arterial pressure (MAP) [60, 10,000]

13 Mean blood pressure (MBP) [60, 10,000]

14 Arterial systolic blood pressure (ASBP) [90, 140]

15 Systolic pressure of pulmonary artery (SPPA) [15, 30]

TABLE 2 Group experiment description.

Group name Description

G1 Structured dataset, including preoperative patient testing

and demographic information

G2 Temporal dataset and intraoperative monitoring temporal

dataset

G3 Unstructured text data

G4 G1, G2, and G3 fusion datasets, including structured,

unstructured, and monitored temporal datasets

prediction model based on multimodality has faster convergence

speed and better performance than the risk prediction model based

on text data and pure data type.

The remainder of this article is organized as follows. First, we

elaborate on the method proposed in this article. Next, this article

demonstrates the effectiveness of the method proposed in this article

from the experimental results. Finally, we conclude and outline

future work.

2. Methods

2.1. Model structure

In this study, text data and structured data were used to predict

the risk of critical illness, increasing the stability of the model. The

multimodal disease risk assessment model uses unstructured text

data and structured historical data from patients’ medical data to

analyze whether patients will suffer from critical illness. The risk

assessment model is trained by using supervised learning, with input

data represented as X, both structured and unstructured. Particularly,

structured data includes basic information about the patient (e.g.,

age, gender), preoperative examination data, and intraoperative

monitoring sequence data. Unstructured medical text data mainly
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TABLE 3 Structured data experiments results.

Illness Classifier P_Accuracy N_Accuracy Sensitivity Specificity ROC

Heart failure TS+ LR 0.55 0.89 0.19 0.98 0.75

TS+ RF 0.97 0.91 0.32 1 0.87

TS+ NB 0.28 0.92 0.56 0.79 0.71

TS+ KNN 0.3 0.89 0.28 0.9 0.59

TS+ Adaboost 0.71 0.93 0.48 0.97 0.84

TS+ XGBOOST 0.96 0.91 0.38 1 0.88

Liver failure TS+ LR 0.92 0.97 0.4 1 0.83

TS+ RF 0.91 0.97 0.34 1 0.87

TS+ NB 0.26 0.98 0.57 0.92 0.85

TS+ KNN 0.5 0.97 0.26 0.99 0.62

TS+ Adaboost 0.74 0.98 0.45 0.99 0.8

TS+ XGBOOST 0.78 0.97 0.33 1 0.89

Renal failure TS+ LR 0.69 0.96 0.34 0.99 0.88

TS+ RF 0.81 0.97 0.37 1 0.93

TS+ NB 0.17 0.96 0.33 0.91 0.82

TS+ KNN 0.27 0.96 0.2 0.97 0.58

TS+ Adaboost 0.63 0.97 0.41 0.99 0.83

TS+ XGBOOST 0.88 0.96 0.3. 1 0.94

Respiratory failure TS+ LR 0.38 0.96 0.1 0.99 0.77

TS+ RF 0.67 0.96 0.07 1 0.78

TS+ NB 0.19 0.97 0.26 0.95 0.77

TS+ KNN 0.19 0.96 0.1 0.98 0.54

TS+ Adaboost 0.32 0.96 0.19 0.98 0.77

TS+ XGBOOST 1 0.96 0.12 1 0.8

includes the chief complaint of the patient, preoperative-clinical

diagnosis, and conclusions from the patient examination (e.g.,

echocardiography-examination, electrocardiogram-examination,

chest X-ray-examination). The disease risk assessment model of

multi-modal medical data needs to extract unstructured text data

features and structured data features, and integrate the two types

of features. In this article, a multimodal disease risk assessment

model based on deep neural networks and XGBOOST is proposed

to extract text features from unstructured text data by using a deep

neural network and data-driven feature learning. The pure data type

features are extracted by using the method of feature engineering.

Specifically, the feature fusion layer is designed in the predictive

model to determine the connection parameters between structured

data features and unstructured data features and classifiers through

supervised learning. Figure 1 is the structure diagram of critical

illness risk prediction based on multi-mode data fusion. From top

to bottom, it shows the input layer of patient data, feature learning

layer, feature fusion layer, and classification output layer.

The left branch of the input layer and the feature learning layer is

unstructured text data feature learning. A deep neural network is used

to learn the features of Chinese text data. In the middle is the learning

of numerical type characteristics related to the preoperative test of

patients and population information. The XGBOOST algorithm is

used to select the medical data of pure data type and regulate the

input data. We call this tree-based feature selection (TBFS). The

sequence data and feature learning of intraoperative monitoring

of patients are on the right. The method of feature statistics and

abnormal time statistics are used to extract features of intraoperative

monitoring attributes based on the data statistical method (DSM).

The data fusion layer fuses the learned text features and structured

data features, while the full connection layer fuses the features. The

input data are the output of the deep neural network layer, the output

of XGBOOST feature selection, and the intraoperative statistical

feature quantity, while the output data are multi-mode data features.

The XGBOOST classifier is used as the classification output layer,

with the input being the multimodal data characteristics and the

output being disease risk assessment results.

2.2. Feature extraction

To predict the risk of critical illness based on the diagnosis

and treatment of patients, whether the data is structured data,

unstructured data, or time series data, data features need to be

extracted, that is, features need to be represented in the original data.

Feature representation can be divided into manual design features
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FIGURE 4

Structured data experiment results.

and data-driven feature learning. The method of manual features is

to extract the features from the original data or design the features

based on the experience accumulated by a human when completing

the task. The learning method of data-driven features uses a large

amount of data to train the feature learning algorithm and finally

obtain the representation method of the features in the original

data. In this article, the preoperative text features and numerical

features of patients were extracted in a data-driven way, and the

intraoperative monitoring data features were extracted in the way of

feature engineering combined with doctors’ experience, described in

the following paragraphs.

2.2.1. Preoperative text feature extraction
Analyzing the characteristics of medical text data plays an

important role in predicting the risk of critical illness. In this article,

we used the method of the word vector (39, 40) and deep learning

model to learn the text data features. The method of establishing

critical text characteristics based on the convolution neural network

learning model is applied to general critical risk prediction. A text

feature learning model based on a convolutional neural network

is built and applied to the risk prediction of universal critical

illness. As a data-driven feature representation learning method,

deep learning combined with word vectors can effectively obtain

the context information for text data and obtain the representation

of text features, which has great advantages in text classification,

text emotion analysis, and other natural language processing tasks.

Collobert proposed a general deep learning structure for natural

language analysis (41). Lai proposed a model of recurrent neural

network (RNN), which used word vectors to represent input data

and combined with the advantages of recurrent neural network and

Convolutional neural network (CNN), it performs well in tasks of text

classification, text emotion classification (42). Santos used character

vectors and trained word vectors to design a deep convolutional

neural network for the classification of emotion in a short text.

The above research shows that the combination of word vectors

and deep learning methods has great advantages in text analysis

(43). The text data analysis of the diagnosis of the patient needs

to be normalized. The text diagnosis data related to all patients

were cleaned and preprocessed. The processed data were used as a
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TABLE 4 Temporal data experiments results.

Illness Classifier P_Accuracy N_Accuracy Sensitivity Specificity ROC

Heart failure DSM+ LR 0.87 0.95 0.64 0.99 0.91

DSM+ RF 0.99 0.97 0.79 1 0.99

DSM+ NB 0.63 0.94 0.61 0.95 0.83

DSM+ KNN 0.63 0.93 0.53 0.95 0.74

DSM+ Adaboost 0.94 0.98 0.86 0.99 0.99

DSM+ XGBOOST 0.97 0.98 0.88 1 0.99

Liver failure DSM+ LR 0.78 0.97 0.36 1 0.85

DSM+ RF 1 0.97 0.43 1 0.99

DSM+ NB 0.33 0.98 0.5 0.95 0.84

DSM+ KNN 0.29 0.96 0.17 0.98 0.57

DSM+ Adaboost 1 1 0.95 1 0.99

DSM+ XGBOOST 0.97 1 0.9. 1 0.99

Renal failure DSM+ LR 0.6 0.96 0.3 0.99 0.9

DSM+ RF 1 0.98 0.67 1 0.99

DSM+ NB 0.16 0.97 0.68 0.76 0.78

DSM+ KNN 0.22 0.95 0.16 0.96 0.56

DSM+ Adaboost 1 0.99 0.9 1 0.99

DSM+ XGBOOST 1 0.99 0.86 1 0.99

Respiratory failure DSM+ LR 0.77 0.97 0.4 0.99 0.89

DSM+ RF 1 0.96 0.17 1 0.98

DSM+ NB 0.06 0.98 0.84 0.41 0.72

DSM+ KNN 0.12 0.96 0.09 0.97 0.52

DSM+ Adaboost 0.94 0.99 0.78 1 0.99

DSM+ XGBOOST 1 0.98 0.53 1 0.99

corpus and trained by word2vec to obtain word vectors, as shown in

Figure 2.

The preoperative clinical text data of all patients were digitally

represented with word vectors by preprocessing methods, which

were divided into the training set and test set, and input depth

neural network for training and testing, and finally extracted

text features. In this paper, we used deep pyramid convolutional

neural networks (DPCNN) to extract the features. DPCNN (44)

is a low-complexity word-level deep convolutional neural network

architecture for text categorization that can efficiently represent

long-range associations in text. The specific structure is shown in

Figure 1. The first layer performs text region embedding, which

generalizes commonly used word embedding to the embedding of

text regions covering one or more words. It is followed by stacking

of convolution blocks (two convolution layers and a shortcut)

interleaved with pooling layers with stride 2 for down sampling.

The final pooling layer aggregates internal data for each document

into one vector. It uses max pooling for all pooling layers. DPCNN

can effectively extract the features of long-distance relationship in

the text, with low complexity and to better effect than the previous

CNN structure.

2.2.2. Preoperative data type attribute reduction
feature extraction

There are many preoperative test attributes for patients. The

greater the number of attributes in the critical illness diagnosis using

themachine learningmethod, themore complicated the construction

of the prediction model will be, and the more time will be spent

in the subsequent model training. Besides, since the attributes of

critical illness are interrelated and mutually restricted, it is crucial

to screen out the attributes with the most information. Therefore, in

the construction of the critical illness prediction model, the attribute

reduction of data in the dataset should be carried out to reduce the

dimension of the attribute and the complexity of the data. Attribute

reduction selects the most representative part of attribute features

from the feature set of original collected patient data through certain

methods. As the number of attribute features increases, the accuracy

of the final result will be affected. Therefore, attribute reduction

needs to filter out the redundant feature information to improve

the accuracy of the target result on the premise that the data is

true. In this article, the XGBOOST algorithm is used to select the

feature importance of the preoperative structural test data as shown

in Figure 3.
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FIGURE 5

Temporal data experiment results.

2.2.3. Feature extraction of intraoperative
monitoring data

The role of structured data from intraoperative monitoring in the

risk assessment of critical illness cannot be ignored. Therefore, this

article converts intraoperative monitoring data into corresponding

fixed features through the method of feature engineering. The

methods used in the model include statistical outliers and statistical

characteristics of patient monitoring attributes. Specifically, the

outliers are the amount of time that the patient’s monitoring attribute

data is out of the normal range (measured in minutes), the normal

range is shown in Table 1, and the statistical characteristics include

the maximum, minimum, mean, variance, standard deviation,

kurtosis, and skewness of each attribute.

µ =
1

T

T
∑

i= 1

xi.

σ 2
=

T
∑

i=1

1

T
(xi − µ)2.

Skewness (X) = E

[

(

X − µ

σ

)3
]

=
1

T

T
∑

i=1

(xi − µ)3

σ 3
.

Kurtosis (X) = E

[

(

X − µ

σ

)4
]

=
1

T

T
∑

i=1

(xi − µ)4

σ 4
.

2.3. Classification of the model

XGBOOST (45) is used to predict critical illness, which

is an integrated learning method proposed by Chen based on

GBDT (46). The improvement of the XGBOOST algorithm to

the GBDT algorithm is that the second derivative is used to

calculate the objective function in the process of model optimization.

Furthermore, the regularization term is added to the objective

function to prevent the algorithm from over-fitting in the training

process. Moreover, the XGBOOST algorithm uses the idea of a

random forest for reference in the training process and does not

use all samples in the iteration process or every iteration. The

generalization ability of themodel is effectively improved by sampling

all the features of the samples and training some of the features of

the samples. Different patients have different test and intraoperative

monitoring data and if the inspection attribute of each patient’s data

is missing, XGBOOST can solve the model of missing value. As such,
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TABLE 5 Unstructured data experiments results.

Illness Classifier P_Accuracy N_Accuracy Sensitivity Specificity ROC

Heart failure DPCNN+ LR 0.97 0.97 0.82 1 0.97

DPCNN+ RF 0.97 0.97 0.81 1 0.96

DPCNN+ NB 0.89 0.98 0.84 0.98 0.97

DPCNN+ KNN 0.9 0.97 0.83 0.99 0.9

DPCNN+ Adaboost 0.97 0.97 0.82 1 0.97

DPCNN+ XGBOOST 0.97 0.97 0.81 1 0.97

Liver failure DPCNN+ LR 0.86 0.98 0.62 1 0.97

DPCNN+ RF 0.86 0.98 0.64 1 0.94

DPCNN+ NB 0.6 1 0.9. 0.97 0.97

DPCNN+ KNN 0.75 0.99 0.67 0.99 0.83

DPCNN+ Adaboost 0.95 0.98 0.62 1 0.95

DPCNN+ XGBOOST 0.9 0.98 0.67 1 0.96

Renal failure DPCNN+ LR 0.88 0.98 0.66 0.99 0.97

DPCNN+ RF 0.86 0.98 0.7 0.99 0.95

DPCNN+ NB 0.7 0.99 0.82 0.98 0.97

DPCNN+ KNN 0.82 0.99 0.75 0.99 0.87

DPCNN+ Adaboost 0.88 0.98 0.69 0.99 0.97

DPCNN+ XGBOOST 0.84 0.98 0.69 0.99 0.96

Respiratory failure DPCNN+ LR 1 0.96 0.02 1 0.85

DPCNN+ RF 0.63 0.97 0.29 0.99 0.83

DPCNN+ NB 0.51 0.51 0.96 1 0.85

DPCNN+ KNN 0.49 0.97 0.36 0.98 0.67

DPCNN+ Adaboost 0.55 0.96 0.19 0.99 0.83

DPCNN+ XGBOOST 0.67 0.96 0.19 1 0.86

this article chose XGBOOST as the classifier of the model as shown in

Figure 1.

3. Experiment

3.1. Data description and preprocessing

The data for this experiment were from real critical patients in a

hospital from 2014 to 2018, including 609 patients with heart failure,

171 patients with hepatic failure, 253 patients with kidney failure, 194

patients with respiratory failure, and 4,223 patients in the control

group. Each patient sample contained ∼200 descriptive indicators

including age, gender, examination, and surgical information. There

are different indicators in different critical cases. Additionally, for

the electronic patient records recorded in the preoperative and

postoperative repeated inspection and examination data, we only

selected the valid data from the last preoperative test and examination

of the patient to construct the dataset. If the data item from the

test or examination closest to the operation was null, the test and

examination values within 2 weeks were extracted in chronological

order for filling. If the patient did not perform a test or examination

index, the value is filled. For example, if the surgical date of a

patient is 28/10/2019, the results of the most recent (26/10/2019)

test and examination before 28/10/2019 are extracted. If the test and

examination value is null, the values of the test and examination

within 2 weeks are extracted in chronological order for filling.

Numerical test data were normalized, and all index attribute values

were converted to the interval (0, 1). For the textual check conclusion

data, in this article, the textual data was cleaned and the character

symbol was removed. Since the indexes of intraoperative monitoring

for different critical cases are different, this article first calculates the

indexes of intraoperative monitoring for such critical cases through

statistical methods. The largest number of the first n indicators were

selected as analysis indicators (the number of n was determined

according to different critical cases, see the Section 3).

3.2. Experiments and results

We used three datasets, i.e., the structured data set,

the unstructured data set, and the multi-modal data set.

The experiment was divided into four groups, as shown in

Table 2.

G1: Structured dataset. An algorithm based on the tree model

was used to extract the feature attributes, and the machine
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FIGURE 6

Unstructured data experiment results.

learning classifier was used to judge whether the patient was in

critical condition.

G2: Temporal dataset. The abnormal time and monitoring

statistics were extracted based on the feature engineering, and the

prediction was made based on the machine learning classifier.

When extracting features of unstructured data from the G3

and G4 datasets, word vector representation was obtained through

training, and feature representation of text was learned through a

convolutional neural network.

In this article, the cross-validation method was used to train

the model. Patient data were divided into training (70%), validation

(20%), and test data set (10%). Furthermore, we compared the logistic

regression, Gaussian Naïve Bayes, k-nearest neighbor, random forest,

and Adaboost classifier values, commonly used in the medical field,

in the experiment.

3.2.1. Experiment 1: Structured data experiments
and results

The first experiment was conducted based on the preoperative

structured data of patients. The experimental results are as

follows. P_Accuracy is the abbreviation of positive accuracy,

N_Accuracy is the abbreviation of Negative accuracy, and TS is the

abbreviation of TBFS. The experimental results are shown in Table 3

and Figure 4.

3.2.2. Experiment 2: Temporal data experiments
and results

In the second experiment, the data statistical model was used

to conduct the experiment based on the patient’s intraoperative

temporal data. The experimental results are shown in Table 4 and

Figure 5.

3.2.3. Experiment 3: Unstructured data
experiments and results

The third experiment was conducted using the unstructured

text data of patients. First, text feature extraction was performed

based on DPCNN, and then critical illness prediction was performed

based on different classifiers. See Table 5 and Figure 6 for specific

experimental results.

3.2.4. Experiment 4: Multimodal data experiments
and results

Finally, the experiment was carried out by fusing the

characteristics of structured numerical type, unstructured text,

and intraoperative monitoring data. DTD is the abbreviation

of DPCNN + TBFS + DSM. See Table 6 and Figure 7 for the

experimental results.

According to the structured experimental results in Table 3,

the sensitivity of all the models was lower, but the ROC value
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TABLE 6 Multimodal data experiments results.

Illness Classifier P_Accuracy N_Accuracy Sensitivity Specificity ROC

Heart failure DTD+ LR 0.87 0.95 0.64 0.99 0.91

DTD+ RF 1 0.98 0.87 1 0.99

DTD+ NB 0.72 0.95 0.65 0.96 0.9

DTD+ KNN 0.62 0.93 0.54 0.95 0.74

DTD+ Adaboost 0.98 0.99 0.92 1 0.99

DTD+ XGBOOST 0.99 0.99 0.91 1 0.99

Liver failure DTD+ LR 0.82 0.98 0.47 1 0.88

DTD+ RF 1 0.99 0.78 1 0.99

DTD+ NB 0.45 0.98 0.66 0.96 0.93

DTD+ KNN 0.28 0.96 0.14 0.98 0.56

DTD+ Adaboost 1 1 0.97 1 0.99

DTD+ XGBOOST 1 1 0.9 1 0.99

Renal failure DTD+ LR 0.85 0.97 0.64 0.99 0.94

DTD+ RF 1 0.99 0.88 1 0.99

DTD+ NB 0.37 0.96 0.51 0.94 0.87

DTD+ KNN 0.33 0.95 0.2 0.97 0.58

DTD+ Adaboost 0.99 1 0.98 1 0.99

DTD+ XGBOOST 1 1 0.95 1 1

Respiratory failure DTD+ LR 0.83 0.97 0.34 1 0.92

DTD+ RF 1 0.96 0.21 1 0.98

DTD+ NB 0.18 0.98 0.67 0.86 0.85

DTD+ KNN 0.23 0.96 0.12 0.98 0.55

DTD+ Adaboost 0.94 0.99 0.81 1 0.99

DTD+ XGBOOST 1 0.98 0.63 1 0.99

of the XGBOOST model was higher than that of the other

models. Furthermore, due to a large number of missing values

in the dataset, the LR model was filled with the value of −1

to process the missing values, which is worse than the tree

model. Therefore, based on preoperative patient test data, the

tree model is more suitable for surgical patients with a missing

value. The experimental results from the intraoperative monitoring

time series data in Table 4 show that the performance of each

model was better than that of the preoperative prediction model,

but the sensitivity was still low. As shown in Table 5, non-

structural textual data based on preoperative examination can be

used to predict postoperative heart failure. The preoperative text

included preoperative diagnostic information and electrocardiogram

examination conclusions for patients. Furthermore, both the

electrocardiogram and the preoperative diagnosis of the positive

patient contain information about the patient’s heart disease,

and the preoperative diagnosis and electrocardiogram examination

conclusions of a negative patient are normal, so prediction of heart

failure based on the text was very effective. In order to further

integrate the patient diagnostic information, in this article, all

diagnostic information of patients was integrated, as shown in Table 6

and Figure 8. It can be concluded that the prediction effect after

fusion was better. The preoperative and intraoperative diagnostic

data of patients can improve the prediction of critical illness.

4. Discussion and conclusion

The prediction of critical events in the perioperative period is

a complex process. Whether serious adverse events occur during or

after an operation depends entirely on the experience accumulation

and judgment of doctors. The predictions of experienced doctors

have high accuracy but the predictions of inexperienced doctors

have low accuracy. Therefore, based on a machine learning method

and multi-modal data of patients, this article built a prediction

model for critical adverse events in patients so that the risk of

critical events can be predicted for any patient directly based on

the preoperative and intraoperative characteristic data. First, the

preoperative patient data were preprocessed, and the patient data

was divided into numerical structured data and text unstructured

data. Then, through the fusion of text features extracted by a deep

neural network and pure numerical type features extracted by feature

engineering, the risk prediction model was trained by the method of

supervised learning, and analyzed whether the perioperative patients
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FIGURE 7

Multimodal data experiment results.

FIGURE 8

Model performance comparison.

are at risk of critical illness and give an early warning. The proposed

model in this article was based on the data of critically ill patients in

a Class A tertiary hospital and it is not suitable for direct promotion

and application without multi-center data verification. However, the

model can be learned and extended according to different data sets

of critical events. There are also the following directions for further

research in future work. In different stages of the perioperative

period, different critical diseases have different effects on patients.
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At present, this work only classifies and predicts the occurrence of

critical illness during or after an operation based on the preoperative

examination data of patients, but does not discuss the specific time

when the patient was at risk for critical illness. This is the direction of

our future work.
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