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Comparing a family structure to a company, one can often think of parents

as leaders and adolescents as employees. Stressful family environments and

anxiety levels, depression levels, personality disorders, emotional regulation

di�culties, and childhood traumamay all contribute to non-suicidal self-injury

(NSSI) behaviors. We presented a support vector machine (SVM) basedmethod

for discovering the key factors among mazy candidates that a�ected NSSI in

adolescents. Using SVM as the base learner, and the binary dragonfly algorithm

was used to find the feature combination that minimized the objective

function, which took into account both the prediction error and the number

of selected variables. Unlike univariate model analysis, we used a multivariate

model to explore the risk factors, which better revealed the interactions

between factors. Our research showed that adolescent education level, anxiety

and depression level, borderline and avoidant personality traits, as well as

emotional abuse and physical neglect in childhood, were associated with

mood disorders in adolescents. Furthermore, gender, adolescent education

level, physical abuse in childhood, non-acceptance of emotional responses, as

well as paranoid, borderline, and histrionic personality traits, were associated

with an increased risk of NSSI. These findings can help us make better use of

artificial intelligence technology to extract potential factors leading to NSSI

in adolescents from massive data, and provide theoretical support for the

prevention and intervention of NSSI in adolescents.
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non-suicidal self-injury, mood disorders, artificial intelligence, support vector
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Introduction

Non-suicidal self-injury (NSSI) is a common psychiatric

behavioral problem that threatens adolescents’ health. NSSI

refers to behaviors that do not aim at suicide, intentionally

and directly harm their body tissues and are not recognized by

society and culture (1). Common types of NSSI include cutting,

scratching, hitting, knocking, and burning themselves (1). In

2013, the Diagnostic and Statistical Manual of Mental Disorders

(5th edition) (DSM-5) classified NSSI as a separate disorder

and established strict diagnostic criteria. Currently, suicide has

become the third leading cause of death among adolescents (10–

19 years old) worldwide, and NSSI is an important prerequisite

for adolescent suicide and one of the strongest predictors of

future suicide (2), adding a huge medical and economic burden

to society. Furthermore, NSSI is associated with other adverse

outcomes, such as cognitive impairment, poor interpersonal

relationships, and violent crimes (3). NSSI has become an

important global adolescent mental health problem. Currently,

there are still many clinical challenges in the identification and

intervention of NSSI (4). However, understanding the factors

associated with NSSI is essential for conducting clinical risk

assessment and therapeutic interventions.

The incidence of NSSI is higher in adolescents than in

any other age group (5). Lim et al. (6) conducted a systematic

review of 66 studies and showed that the lifetime and 12-

month incidence of NSSI were 22.1 and 19.5%, respectively. In

addition, there were differences in the incidence of NSSI among

different regions and ethnic groups. Studies have shown that

Caucasians have the highest incidence of NSSI (7). Zubrick et al.

(8) surveyed 2,967 adolescents in Australia in 2013–2014 and

found that the 12-month incidence of NSSI in adolescents was

about 8%. Brunner et al. (9) investigated 12,068 adolescents

from 11 countries in Europe in 2014 and found that the lifetime

incidence of self-injury was 27.6%, ranging from 17.1 to 38.6% in

each country. A recent meta-analysis study showed that the 12-

month incidence of NSSI among adolescents was higher in low-

and middle-income countries than in high-income countries

(6). In recent years, the incidence of NSSI among adolescents

in China has been on the rise, and surveys in different cities

and regions have shown that the prevalence of NSSI among

adolescent ranges from 5.4 to 33.8% (10). Moreover, the onset

age of adolescent NSSI behavior is mainly concentrated in early

adolescence (12–14 years old). The incidence of NSSI peaks

in mid-adolescence (15–16 years old), and then decreases in

late adolescence (18 years old) (11). Notably, the early onset of

NSSI creates greater disease vulnerability. Studies have shown

that individuals with NSSI onset younger than 12 years old

tend to develop severe NSSI behaviors (12). Moreover, NSSI

in early adolescence may predict the onset of mental disorders

in late adolescence. Therefore, identifying risk factors for NSSI

in adolescents is important for the early identification and

prevention of NSSI behaviors.

Earlier studies have shown that NSSI behavior is the end

product of interactions between genetic, biological, psychiatric,

psychological, social and cultural factors (13). The potential

causes of NSSI include individual and environmental factors

(14). Individual factors include mental illness, personality traits,

and emotional regulation abilities. Depressive disorder and

borderline personality disorder are the most common co-

morbidities in the adolescent with NSSI. Depressive symptoms

are important predictors of NSSI behavior in adolescents (15).

In addition, NSSI is considered to be a precursor of borderline

personality disorder in a socio-biological developmental model

(16). NSSI behaviors are associated with adolescents’ personality

traits. Studies have shown that adolescents with NSSI show

higher levels of impulsivity than those without NSSI (17)

and have higher scores on all subscales of the Barratt

Impulsivity Scale (18). Furthermore, emotional regulation

plays an important role in adolescents’ NSSI behavior (19).

On the other hand, the family environment is the most

important growth environment for adolescents and plays an

important role in the development of adolescents’ characters

and behaviors. Family systems theory pointed out that family

functions affected the physical and mental health of family

members (20), and had an important impact on individual

emotional and behavioral problems (21). Research indicated

that poor family function mediated the link between childhood

adversity and NSSI in adolescents (22). In addition, adolescents

with pathological family relationships and disharmonious

relationships with their parents have a higher risk of self-harm

(23). Furthermore, experiencing adverse life events (parental

abuse or neglect) in childhood (24), parental divorce (25),

family death (26), and witnessing parental violence (27) have

all been associated with NSSI behaviors in adolescents. Notably,

improving family relationships may reduce NSSI in later

childhood who experience adverse life events in childhood.

Therefore, understanding the family environment of Chinese

adolescents with NSSI is beneficial to explore the influence of

family factors on adolescents with NSSI, thereby improving

family relationships and functions.

Feature selection is a key preprocessing mechanism in

data mining tasks, which avoids the interference of irrelevant

variables by finding the optimal feature subset from the given

dataset (28). With the development and enrichment of artificial

intelligence technology, researchers have developed a large

number of feature selection methods (29), including three

categories of filter (30), wrapper (31), and embedding (32). The

ensemble algorithm based on the decision tree model, such

as random forest (33), evaluates the importance of features

according to the improvement of purity. Principal component

analysis (34, 35) and its improvements (36) are also commonly

used methods of dimensionality reduction. The feature is

transformed into a set of line-independent variables through

orthogonal transformation, so that a large number of variables

can be represented by a few principal components. The least
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absolute shrinkage and selection operator (LASSO) (37, 38) and

ridge regression methods (39) take the features’ weight as a

regularization term while considering the accuracy of multiple

linear regression to reduce the number of selected features.

In this paper, inspired by the LASSO method, we proposed a

support vector machine (SVM) based feature selection method

to find the key indicators of NSSI. We used a binary state

vector to represent the selected indicator, took the average

error rate of the SVM classifier 10-fold cross-validation as the

objective function, and the other part of the objective function

was the number of selected indicators. The binary dragonfly

algorithm was used to optimize the state vector to minimize the

objective function.

Currently, most studies on adolescent NSSI in China have

explored the effect of a single factor on NSSI behavior or

explored the correlation between two factors, and no studies

have yet analyzed the effect of individual and family factors on

adolescent NSSI behavior. Thus, we present a support vector

machine (SVM) based method to discover the key factors

among individual and family factors influencing adolescent

NSSI, providing a theoretical basis for the prevention and

intervention of adolescent NSSI.

Methods

Participants

We conducted this cross-sectional research from June 2020

to April 2021 in China. Adolescents aged 10–24 years were

recruited. Rather than age 10–19 years, the definition of 10–24

years corresponds more closely to adolescent growth and the

general understanding of this life stage, facilitating expanding

research (40). What’s more, an expanded and broader definition

of the adolescent is critical to the development of social

policies and service systems (40). Adolescents diagnosed with

mood disorders (i.e., depressive disorder, depressive episode

of bipolar disorder, and unspecified behavioral and mood

disorders originating in childhood and adolescence) according

to the International Classification of Diseases-10 (ICD-10) were

recruited from the psychological ward and outpatient clinic

of a tertiary hospital in Changsha, China. After eliminating

participants with suicidal ideation and attempts within the past

12 months, participants with mood disorders were divided into

two groups based on the DSM-5 criteria of NSSI: with and

without NSSI groups. Typical developmental (TD) adolescents

studying in primary school, middle school, or university were

recruited. All participants or parents signed an informed

consent form. Adolescents were excluded if they: (1) suffered

from severe somatic disorders; (2) had cognitive impairment,

audiovisual impairment, etc.; (3) suffered from other severe

mental illnesses. The research was approved by the medical

ethics committee of the Second Xiangya Hospital of Central

South University (MD20200309).

Measures

Sociodemographic information

The surveys included self-reported information on

sociodemographic characteristics including adolescents’

characteristics (i.e., gender, age, ethnicity, education level,

grade) and parental characteristics (i.e., education level, age).

Generalized anxiety disorder-7

The generalized anxiety disorder-7 (GAD-7), developed by

Spitzer et al. (41), is used to assess subjects’ anxiety symptoms

and severity during the last 2 weeks. The scale contains seven

items and uses a four-point Likert scale scored from 0 (not at all)

to 3 (almost every day). The higher the score, themore severe the

anxiety symptoms. A total score of 0–4 indicates no anxiety; 5–9

indicates mild anxiety; 10–13 indicates moderate anxiety; 14–18

indicates moderate to severe anxiety; and 19–21 indicates severe

anxiety. The Cronbach’s alpha co-efficient for this scale in this

study was 0.924.

Patient health questionnaire-9

The patient health questionnaire-9 (PHQ-9), developed

by Kroenke et al. (42), is used to assess subjects’ depressive

symptoms during the last 2 weeks. The scale contains 9 items,

each of which consists of four options and is scored on a four-

point scale (0 = not at all, 3 = almost every day). The higher

the score, the more severe the depression. A total score of <5

means no depression, 5–9 mild depression, 10–14 moderate

depression, 15–19 moderate to severe depression, and ≥20

severe depression. The Cronbach’s alpha co-efficient of internal

consistency was 0.927.

Personality diagnostic questionnaire-4+

The personality diagnostic questionnaire-4+ (PDQ-

4+), developed by Hyler et al. (43), is a self-administered

questionnaire for screening personality disorders, which

was consistent with the DSM-IV criteria for the 10 officially

recognized and two proposed Axis II personality disorders.

Yang, a Chinese scholar (44), translated the PDQ-4 into Chinese.

Moreover, another Chinese scholar translated the PDQ-4+ into

Chinese and revised it for the Chinese cultural context, resulting

in a Chinese version of the PDQ-4+ with good reliability and

validity (45). In this study, we used the Chinese version of

the PDQ-4+ (45). The higher the score, the more consistent

the personal characteristic description. The Cronbach’s alpha

co-efficient of this scale in the present study was 0.921.
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Di�culties in emotion regulation scale

The difficulties in emotion regulation scale (DERS),

developed by Gratz and Roemer in 2004 (46), is a self-report

questionnaire used to assess subjects’ difficulties in emotion

regulation. The scale contains 36 items and six subscales (non-

acceptance of emotional responses, difficulties in engaging in

goal-oriented behaviors, difficulties in controlling impulses,

lack of emotional awareness, restricted access to emotional

regulation strategies, and lack of emotional clarity). The scale

uses a five-point Likert scale scored from 1 (almost never) to

5 (almost always). The higher the score, the more difficult to

regulate emotion. The Cronbach’s alpha co-efficient for this scale

in this study was 0.941.

Childhood trauma questionnaire-short form
(CTQ-SF)

Subjects’ trauma experience in childhood was assessed by

childhood trauma questionnaire-short form (CTQ-SF), which

was developed by Bernstein et al. (47) and translated into

Chinese by Fu et al. (48). The scale represents a 28-item

retrospective self-report questionnaire which contains five

subscales: emotional (EN) and physical neglect (PN), emotional

(EA), sexual (SA) and physical abuse (PA) (49). Each item is

scored on a five-point Likert scale from 1 (never true) to 5 (very

often true). The Cronbach’s alpha co-efficient of this scale in the

present study was 0.793.

Statistical analysis

Univariate analyzes

Multiple groups were compared using Chi-square tests.

Meanwhile, non-parametric Kruskal-Wallis tests and pairwise

comparisons were used. α < 0.05.

Multivariate analysis

Related works

Data mining and data analysis through information

technology to obtain potential value can better guide people’s

production and life. In order to reduce the noise contained

in the data and improve the reliability of data mining, lots of

feature selection algorithms have been proposed and adopted for

diagnosis, classification, and categorization in recent years. The

tree model computes variable importance by finding the optimal

partitioning features that vary purity, information gain, or gain

rate, and leads to different decision tree generation schemes,

such as iterative dichotomy 3 (ID3) (50), C4.5 (51, 52) and

Classification and Regression Trees (CART) (53). Our previous

work proposed the mixed correlation co-efficient to measure the

linear or non-linear correlation between two variables and used

it to study the user participation mechanism in virtual tourism

communities (54). As a common tool for big data mining,

machine learning algorithms have been more and more widely

used in the clinical and medical fields, such as COVID-19 (55–

57), Crohn’s disease (58), and schizophrenia diagnosis (59–61).

Support vector machine

Support vector machine (SVM) was proposed by Cortex and

Vapnik (62) in the 1990s, and quickly became the mainstream

technology in machine learning methods due to its excellent

performance in text classification. SVM can avoid the curse of

dimensionality and overfitting in solving pattern recognition

tasks with a small number of samples, non-linearity, and high

dimensionality. The principle of support vector classification

(SVC) is to find an optimal classification hyperplane, that

is, it can tolerate the local disturbance of training samples

while distinguishing samples of different categories. As shown

in Figure 1A, although multiple hyperplanes can distinguish

samples, only the red hyperplane located in the middle of

the two classes has the best robustness and is considered the

optimal division hyperplane. For the training set
{

xi, yi
}

record

the positive sample as yi = 1 and the negative sample as

yi = −1, then the hyperplanes (ω, b) is required to hold the

following equations:

{
ωTxi + b ≥ +1, yi = +1

ωTxi + b ≤ −1, yi = −1
, (1)

and the optimal division hyperplanes in Figure 1B can be

written as ωTxi + b = 0. The optimization goal is to maximize

the distance γ = 2
‖ω‖ between the support samples and the

hyperplane larger, that is:

max
ω,b

γ , such that yi

(

ωTxi + b
)

≥ 1, i = 1, 2, . . . ,m. (2)

In fact, it is difficult to find a hyperplane that can accurately

divide the two classes into practical problems. In Figure 2,

a slack variable can be introduced to allow SVC to make

misclassification of a few samples, and the corresponding

optimization function is given by:

min
ω,b

‖ ω ‖2

2
+ C

m
∑

i=1

max
(

0, 1− yi

(

ωTxi + b
))

, (3)

Where ‖ω‖ =

√

∑

ω2
i is the l2 norm, and C is the penalty

co-efficient, The larger C is, the fewer training samples do not

satisfy the constraints. Equation (3) is equivalent to Equation (2)

when C → ∞.

Binary dragonfly algorithm

The Dragonfly Algorithm (DA) (63) is an intelligent

optimization algorithm that finds the optimal solution of the
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FIGURE 1

Hyperplanes in sample space: (A) There are multiple hyperplanes in the sample space that can accurately classify samples; (B) The optimal

division hyperplanes.

FIGURE 2

Support vector and optimal hyperplane with slack variable.

objective function by imitating the group behavior of dragonflies

to find food and avoid natural enemies. The binary Dragonfly

Algorithm (BDA) is the discrete form of DA that represents

the position of the dragonfly as a vector with elements 0 or

1 (64). The behavior of a dragonfly colony includes five main

behaviors: namely separation, alignment, cohesion, attraction,

and distraction, which are used to update the position of each

dragonfly. The mathematical model of these behaviors can be

described as follows:

Separation. The purpose of separation is to prevent adjacent

dragonflies from colliding, that is, two dragonflies are not

allowed to exist in the same position at the same time. Thus,

we have:

Si = −

M
∑

j=1

(

X − Xj
)

, (4)

where X is the position of a dragonfly in feature space,

and there are M dragonflies nearby, and their coordinates are

marked as Xj.

Alignment. Alignment requires that the velocity of each

dragonfly match its swarm or sub-swarm, preventing falling

behind or leaving the swarm. That is, velocity V should equal

the average speed of the nearby dragonflies:

Vi =
1

M

M
∑

j=1

Vj, (5)

Cohesion. Cohesion prevents the group from being

dissolved, it allows dragonflies to move toward the center of the

group, that is:

Ci =
1

M

∑M

j=1
(X − Xj), (6)

Attraction. Dragonflies need to eat in order to survive, so

they are attracted to food. At the same time, the dragonfly in the

swarm flew toward the leading dragonfly Xpb closest to the food

Xf . This process can be defined as:

Fi =
1

2

[(

Xpb − Xi

)

+
(

Xf − Xi

)]

, (7)

Distraction. In order to avoid predation, dragonflies need

a distraction to stay away from natural enemies. Similar to the
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attraction process, Xpw means the position of the dragonfly

closest to the enemy Xe is also considered. Distraction can be

expressed mathematically as:

Ei =
1

2

[

(

Xpw + Xi
)

+
(

Xf − Xe

)]

, (8)

We use the iterative algorithm defined in Equation 9

to update the coordinate vector of the dragonfly to guide

the dragonfly to find the food, and 1Xi represents the

stepping direction.

Xd
i (t + 1) =







1− Xd
i (t) , rand < TF

(

Xd
i (t + 1)

)

Xd
i (t) , rand ≥ TF

(

Xd
i (t + 1)

)

Xd
i (t + 1) = α1Si + α2Vi + α3Ci + α4Fi + α5Ei, (9)

TF (1X) =
|1X|

√

1X2 + 1
,

where Xd
i represents the d-th position of the i-th dragonfly,

rand is a random number uniformly distributed in the interval

[0, 1]. αi, i = 1, 2, 3, 4, 5 are the weights of five behaviors, which

are set as 0.2 as default.

SVM-based feature selection method

In order to select key features from given data sets, a novel

SVM-based selector is designed in this section, and its brief

flowchart is given in Figure 3. The most important thing is to

define “good” as the selected combination of features. A set of

“good” features needs to have the following three characteristics.

First, it canminimize the error of themodel on the validation set.

Second, the model obtained from this set of features has better

robustness to the data set, that is, it is not easy to be attacked

by individual outlier samples. Finally, choose as few metrics

as possible. Combining the above requirements, we define the

following objective function:

O
(

S, data
)

=

[

1

K

∑

Err
(

S, datai
)

]

e
−

|S|
|O| , (10)

where datai is a sub-dataset obtained by resampling the

original dataset data by K-fold cross-validation method. The

SVM is used as the base classifier and training with the training

data, Err
(

S, datai
)

is the prediction error on the corresponding

validation set. S is the selected feature and |S| represents the

number of S. |O| means the number of all candidate features.

Then, the feature selection task is transformed into finding a

combination of features that minimizes the objective function.

This optimization problem can be implemented by BDA, that

is, expand S with one-hot encoding as Ŝ, which is an |O|-

dimensional vector, each element in Ŝ is 0 or 1, where Ŝi = 0

means that S does not select the feature xi, otherwise Ŝi = 1

means S contains a feature xi. Considering Ŝ as the position

of the dragonfly, BDA updates Ŝ by imitating the movement

trajectory of the dragonfly. We gave the pseudo-code of this

feature selection algorithm in Algorithm 1.

Input: dataset =
{

X
j
i ,Yj

}

, threshold KK for

iterations and EE for object function;

Step 1. Resample the dataset and obtain m

sub-datasets datasetm =
{

X
j
i,m,Yj,m

}

. Randomly

generate a set of feature indicators

Sl =
{

Sli

}

, and initialization kk = 0.

Step 2. Calculate the object function

Om

(

Sl , datasetm

)

by Equation (10).

Step 3. Update the feature indicator Sl by

Equation (9), and record the number of

iterations kk = kk+ 1.

Step 4. If: kk < KK and Om > EE, Return to

Step 2. Else: Jump out of the iteration

and go to Step 5.

Step 5. Obtain the local best feature indicator

Sm = Om

(

Sl , datasetm

)

.

Step 6. Calculate the accuracy Scm of tenfold

cross validation on dataset
{

SmX
j
i ,Yj

}

, and

calculate the average number of selected

features M = 1
m

∣

∣Sm
∣

∣.

Step 7. Local best feature indicator Sm selects

the features by voting SV =
∑

m

(

Scm • Sm
)

.

Step 8. Find the M components with the highest

votes in SV, and let Si=















1, SVi ∈ SD

0, , SVi /∈ SD .

Output: Selected Feature indicators S = {Si}.

Algorithm 1. SVM-based feature selection.

In addition, the experiments are independently repeated

on multiple sub-datasets through the bootstrapping sampling

technique, making the selected features more robust. Denote

the variable combination that minimizes the objective function

on the sub-dataset datai as Si, and the average classification

accuracy on K-fold cross-validation is Acci. A voting algorithm

is used to add up the features selected on each sub-data set.

In fact, these votes are not equal. The weight of each vote

is determined by Acci, which means that the combination of

selected variables that makes the classification accuracy higher

will be more favored. Finally, our SVM-based selector can obtain

theMmetrics with the most votes, and defaultM = mean
(∣

∣Si
∣

∣

)

,

which is the average number of selected features in sub-datasets,

to avoid adding more hyperparameters.

Result

Sample characteristics

Ultimately, we included 186 adolescents with mood

disorders, 137 of whom had NSSI behaviors and 49 of whom

did not. We also enrolled 96 typically developing adolescents.
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FIGURE 3

The flowchart of proposed SVM based feature selector.

A total of 77 males and 205 females were included in this study,

with amale-to-female ratio of∼1:3, which was close to the male-

to-female incidence ratio of NSSI (65). Comparisons between

groups revealed that the differences between the three groups

were statistically significant in terms of adolescent age, education

level, and parental age, while differences in parental education

levels were not significant. Sociodemographic characteristics

were shown in Table 1.

Groups di�erences in influencing factors

Our result showed that with NSSI group scored highest

on all psychological/behavioral problems except for the sexual

abuse score, followed by without NSSI and TD groups. The non-

parametric Kruskal-Wallis tests revealed significant differences

between the three groups for psychological and behavioral

variables, including anxiety, depression, personality traits,

emotion regulation ability, and childhood trauma (Table 2).

Specifically, the average anxiety and depression levels were

moderate to severe (>14) and severe (>19) in themood disorder

with NSSI group, moderate (>10) and moderate to severe

(>15) in the mood disorder without NSSI group, and mild

in the TD group. Furthermore, the PDQ-4+ scores indicated

that adolescents in the mood disorder with NSSI group may

have paranoid (4.175 ± 1.499 >4), borderline (7.700 ± 1.858),

avoidant (6.401 ± 1.572), and obsessive-compulsive (6.182

± 2.381) personality traits, whereas adolescents in the mood

disorder without NSSI group may have borderline (6.041 ±

2.267), avoidant (5.918 ± 1.923), and obsessive-compulsive

(5.592 ± 2.571) personality traits, while the TD group did not

indicate any personality traits. Post-hoc pairwise tests showed

that compared with the mood disorder with NSSI group, the

mood disorder without NSSI group scored significantly lower

on PHQ-9, borderline, physical abuse, awareness, clarity, and

impulse scores; the TD group scored significantly lower on

all study variables except for sexual abuse score. Moreover,

compared with the mood disorder without NSSI group, the TD

group scored significantly lower on all study variables except

for physical abuse and neglect, sexual abuse, and awareness.

Furthermore, when the mood disorder (both with and without

NSSI) and TD groups were compared, there were significant

differences between the two groups on all indicators except

sexual abuse (Table 2).

Identify adolescents with the mood
disorder

Since adolescents with NSSI are often accompanied

by mood disorders, identifying indicators that distinguish

mood disorders from TD adolescents lays the foundation

for further prediction of NSSI behavior. Hyperparameters

in the SVM-based selector were set to default, with penalty

co-efficient C = 1. The 10 dragonfly positions were randomly

initialized in BDA, the personal learning rate was set as
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TABLE 1 Sociodemographic characteristics of participants.

Mood disorder group TD group

(n = 96)

x2/F

(P-value)
With NSSI

group

(n = 137)

Without

NSSI group

(n = 49)

Gender (n, %) 9.936 (0.019)

Male 27 (19.70) 18 (36.73) 32 (33.33)

Female 110 (80.29) 31 (63.27) 64 (66.67)

Age

(years, mean± SD)

15.569± 2.244 17.265± 3.205 20.375± 3.854 83.872

(<0.001)

Ethnic (n, %) 10.316 (0.006)

Han nationality 117 (85.40) 46 (93.88) 93 (96.88)

Others 20 (14.60) 3 (6.12) 3 (3.12)

Adolescent education level (n, %) 39.728

(<0.001)

≤Middle school 5 (3.65) 1 (2.04) 4 (4.17)

High school 55 (40.16) 12 (24.49) 6 (6.25)

≥College 77 (56.20) 36 (73.47) 87 (89.58)

Mother age

(years, mean± SD)

42.693± 4.736 44.408± 4.651 46.833± 5.625 34.497

(<0.001)

Father age

(years, mean± SD)

45.503± 4.710 48.346± 4.401 49.198± 5.417 29.549

(<0.001)

Mother education level (n, %) 3.206 (0.524)

≤Middle school 64 (46.72) 18 (36.73) 50 (52.08)

High school 42 (30.66) 17 (34.69) 25 (26.04)

≥College 31 (22.62) 14 (28.58) 21 (21.88)

Father education level (n, %) 1.111 (0.893)

≤Middle school 56 (40.88) 18 (36.73) 40 (41.67)

High school 43 (31.39) 16 (32.65) 33 (34.38)

≥College 38 (27.73) 15 (30.62) 23 (23.95)

NSSI, non-suicidal self-injury.

0.4, and the group learning rate was 0.7. The objective

function gradually decreased with the training process

and converged after 150 iterations, and the shaded area

represented the variance of 100 independent replicates

(Figure 4A). The average number of selected features

was 7.17, and the votes for each feature were plotted in

Figure 4C.

It could be seen that adolescent education level, anxiety,

and depression level, borderline and avoidant personality

disorder, emotional abuse, and physical neglect were the

seven characteristics that received the most votes on the

100 sub-datasets, and were thought to be highly correlated

with identifying mood disorders (Figure 4C). To further

illustrate the effectiveness of the selector, we verified the

classification performance on the resampling sub-dataset using

all features and filtered features, respectively. The distribution

of classification accuracy was depicted in Figure 4B, which

showed that only seven features were selected, but the

prediction accuracy was even slightly improved, indicating

that using only these selected features was sufficient to

distinguish the mood disorder group from the TD group

while avoiding the interference of irrelevant variables. We also

compared different classification algorithms (Table 3), which

demonstrated that SVM performed better in classification tasks.

Most machine learning models could accurately distinguish

between the mood disorder and TD groups, whereas LASSO

got disoriented by failing to describe non-linear associations.

Random forests implied feature selection and achieved better

results than KNN and SVM when all original features

were used.

Identify adolescents with NSSI

The second part was to discover key factors in identifying

NSSI. Similar to the mood disorders above, an SVM-based

feature selector was optimized with BDA for 150 steps, and

the decay of the objective function was plotted in Figure 5A.

We also calculated the voting in 100 independent replicates

(Figure 5C), where gender, adolescent education level, paranoid,

borderline, and histrionic personality disorders, physical abuse,

and non-acceptance of emotional responses were highlighted in

red. Females were more likely to have NSSI than males, and

the occurrence of NSSI behaviors was negatively correlated with

their educational level. Special personality traits (e.g., paranoid,

borderline, and histrionic) can help distinguish between NSSI

behavior in patients with mood disorders. We demonstrated

that using the selected seven key indicators to predict the

occurrence of NSSI behavior was more accurate than using

all indicators, proving the rationality of feature selection

(Figure 5B).

We also compared other machine learning approaches

to distinguishing NSSI from mood disorders (Table 4).

Distinguishing mood disorders in adolescents with and

without NSSI was a more difficult task, and the accuracy of

all machine learning algorithms we considered was about

66–76%, although feature selection still improved prediction

precision. In 1,000 independent repeated experiments, the

average accuracy of SVM on the original features was 73.45%,

with the highest accuracy of 87.39%, which was higher than

KNN and Logistic regression, indicating that SVM retained

some advantages in high-dimensional non-linear classification

tasks. Our experiments also showed that the decision tree

model was prone to overfitting, resulting in poor classification

accuracy. The random forest model avoided this problem

by constructing multiple decision trees. In addition, the

random forest used important features instead of all features

for prediction by limiting the number of nodes, and the

regularization term in LASSO also played a role in feature

selection, which had a better performance than the SVM
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TABLE 2 Groups di�erences and pairwise comparison of influencing factors.

Mood disorder group TD group

(n = 96)

x2/F

(P-value)

Post-hoc comparison

With NSSI

group

(n = 137)

Without NSSI

group

(n = 49)

GAD-7 14.088± 4.733 12.571± 5.410 4.865± 4.127 124.344 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

PHQ-9 19.015± 5.277 15.939± 5.898 5.875± 4.837 153.116 (<0.001) With NSSI > without NSSI > TD, mood disorder

> TD

PDQ-4+

Paranoid 4.175± 1.499 3.347± 1.985 2.312± 1.932 48.757 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Borderline 7.700± 1.858 6.041± 2.267 2.635± 2.377 143.956 (<0.001) With NSSI > without NSSI > TD, mood disorder

> TD

Histrionic 4.292± 1.919 4.041± 2.04 3.010± 2.472 19.821 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, Mood disorder > TD

Avoidant 6.401± 1.572 5.918± 1.923 2.864± 2.737 87.707 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Obsessive-compulsive 6.182± 2.381 5.592± 2.571 3.667± 2.592 46.231 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

CTQ-SF

Physical abuse 7.043± 3.035 6.367± 3.474 5.427± 1.068 33.958 (<0.001) With NSSI > without NSSI, with NSSI > TD,

without NSSI > TD a , mood disorder > TD

Emotional abuse 12.372± 4.408 11.041± 4.811 6.719± 2.192 111.007 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Sexual abuse 5.700± 0.428 5.449± 1.566 5.635± 1.621 2.076 (0.354) With NSSI > without NSSI > TD a , mood

disorder > TD a

Physical neglect 9.518± 3.163 8.775± 3.039 8.364± 2.884 8.302 (0.016) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD a , mood disorder > TD

Emotional neglect 17.212± 5.448 15.327± 4.963 11.958± 5.714 45.306 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

DERS

Awareness 18.124± 4.901 15.898± 4.301 15.958± 4.085 14.445 (0.001) With NSSI > without NSSI, with NSSI > TD,

without NSSI > TD a , mood disorder > TD

Clarity 15.146± 3.561 13.469± 4.300 11.385± 3.094 55.570 (<0.001) With NSSI > without NSSI > TD, mood disorder

> TD

Non-acceptance 19.650± 5.578 18.122± 5.861 12.917± 4.936 70.120 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Impulse 21.036± 6.227 17.918± 6.452 12.708± 5.216 81.967 (<0.001) With NSSI > without NSSI > TD, mood disorder

> TD

Goals 20.139± 3.960 19.163± 4.524 14.063± 4.460 81.577 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Strategies 30.766± 6.217 27.898± 7.092 18.739± 7.325 108.033 (<0.001) With NSSI > without NSSI a , with NSSI > TD,

without NSSI > TD, mood disorder > TD

Total 124.861± 20.890 112.469± 21.396 85.770± 21.879 114.391 (<0.001) With NSSI > without NSSI > TD, mood disorder

> TD

NSSI, non-suicidal self-injury; TD, typical developmental; GAD-7, Generalized Anxiety Disorder-7; PHQ-9, Patient Health Questionnaire-9; PDQ-4+, Personality Diagnostic

Questionnaire-4+; CTQ-SF, Childhood Trauma Questionnaire-Short Form; DERS, Difficulties in Emotion Regulation Scale.

Mean± SD.
aP > 0.05.
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FIGURE 4

(A) Objective function of the training process for identifying mood disorders; (B) The distribution of classification accuracy for identifying mood

disorders; (C) Feature voting for identifying mood disorders; *selected feature.

method using all features. Our SVM-based method combined

the above two advantages, which not only retained the high

classification accuracy of SVM, but also avoided the attack of

unimportant or harmful variables on the prediction model.

Compared with other machine learning methods, the average

accuracy was improved by 1%, and the highest accuracy could

exceed 90%.

Discussion

In this paper, we proposed an SVM-based feature selection

method for identifying influencing factors on adolescents with

NSSI. An objective function was designed to describe how

“good” the feature combinations, which required both higher

accuracy and fewer features. Bootstrapping sampling made the

features obtained by the selector more robust and might not

be disturbed by abnormal samples. In addition, our findings

proved that using only a few selected features can achieve higher

accuracy than using all features, indicating that these selected

features were critical for accurate classification, and that the

unselected features interfered with the model. Furthermore, as

a powerful machine learning technique, SVM exhibited better

performance than other statistical methods. Our study showed

that adolescent’s anxiety and depression levels, borderline

and avoidant personality traits, experiencing emotional abuse

and physical neglect in childhood, and education level were

associated with mood disorders in adolescents; adolescent’s
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TABLE 3 Average classification accuracy of di�erent algorithms for

identifying mood disorders.

Algorithms Accuracy

K-nearest neighbor 89.44%

Logistic regression 86.50%

LASSO 88.41%

Elastic net 77.65%

Ridge regression 75.75%

Decision tree 84.96%

Random forests 89.79%

SVM with all features 89.28%

SVM with selected features 90.60%

LASSO, least absolute shrinkage and selection operator; SVM, support vector machine.

gender, paranoid and histrionic personality traits, suffering

physical abuse in childhood, emotion non-acceptance, and their

education level were associated with an increased risk of NSSI.

We found that adolescents in the mood disorder with NSSI

group scored higher on psychological symptoms and childhood

trauma than the without NSSI and TD groups, while the mood

disorder group scored significantly higher on almost variables

than the TD group. These findings supported the point that

there were significant differences in psychological behavior

between adolescents with and without NSSI. Not only that,

adolescents with and without NSSI with mood disorders shared

similar psychological and behavioral characteristics, but these

characteristics were more prominent in adolescents with NSSI.

Overall, adolescents with NSSI and mood disorders have similar

but independent risk factors. However, in the overall sample of

this study, univariate analyzes found no statistically significant

differences in most variables between the mood disorder groups

with and without NSSI.

In this study, the reporting rate of NSSI in female adolescents

was higher than that in male adolescents, and multivariate

analysis also showed that male was a protective factor for NSSI

behavior in adolescents, which was consistent with the results

of a recent meta-analysis (3). Previous studies have shown that

the gender difference in clinical samples was larger than that

in community samples, and the difference gradually decreases

with age. In addition, there were differences in the patterns

and motivations of NSSI among adolescents of different genders

(66). Females were more likely to engage in cutting, scratching,

and biting as means of NSSI, while males were more likely

to burn, hit and bang. Moreover, female adolescents engaged

in NSSI mainly for emotional regulation and self-control,

while male adolescents were more eager to generate impulsive

pleasure. The reasons for gender differences in adolescent NSSI

may include (3): (a) biological factors: hormonal (e.g., androgens

and estradiol) differences between males and females may

influence gender involvement in NSSI; (b) differences in male

and female emotion regulation strategies: research has shown

that females were more likely than males to engage in emotion

regulation strategies, and NSSI was considered an emotion

regulation strategy.

The results of both univariate and multivariate analyzes

showed that anxiety and depression levels were associated

with NSSI in adolescents, which was consistent with previous

research. Foreign studies have reported that there was a

bidirectional correlation between anxiety, depression and NSSI.

The higher the score of the anxiety and depression scale,

the greater the likelihood of NSSI. Conversely, NSSI will

increase anxiety and depression (67). Using a latent growth

curve modeling, scholars suggested that lifetime depression

predicted the longitudinal course of NSSI from grade 10 to 12,

with depressed adolescents showing greater and more stable

NSSI engagement over time than non-depressed adolescents

(68). In addition, studies have shown the mediating role

of depression on other factors (i.e., peer acceptance and

frequent nightmares) and NSSI behavior in adolescents (69,

70). Furthermore, post-traumatic stress disorder, dissociative

disorders, obsessive-compulsive disorders, eating disorders,

sleep disorders, and substance use disorders were also common

co-occurring disorders in adolescents with NSSI (1, 71).

Adolescent NSSI is associated with specific personality

traits. Personality is a stable and lasting characteristic of

a person’s mental activity, especially in emotional activity

and volitional behavior. Individuals with personality disorders

were frequently diagnosed as being at risk for suicide, which

suggested that personality pathology may reflect important

individual differences in predicting suicide attempts (72).

Previous studies showed that several personality disorder

dimensions (i.e., paranoid, antisocial, borderline, histrionic, and

dependent) emerged as risk factors for suicidal attempts based

on univariate models (72). However, Jenkins et al. (72) found

borderline personality disorder severity uniquely predicted

suicidal attempts over other personality disorder severity based

on multivariate models, which was similar to our findings.

Specifically, borderline personality disorder is one of the most

common co-morbidities of adolescent NSSI (71). Studies have

shown that ∼61% of adolescents with borderline personality

disorder engaged in at least one NSSI behavior (73). More

than that, NSSI was considered a precursor to the development

of borderline personality disorder under the sociobiological

developmental model (16). A review based on seven longitudinal

studies showed a longitudinal association between NSSI and

borderline personality disorder symptoms in adolescents (16).

Furthermore, emotion regulation was one of themotivations

for NSSI (74), which was consistent with our findings. The

previous study has demonstrated that emotion regulation

ability is negatively associated with NSSI behavior (75). In

adolescence, adaptive internal emotion regulation has limited

efficacy; therefore, adolescents lack effective coping strategies

in dealing with negative emotions and are more likely to

adopt NSSI behaviors to alleviate negative emotions, which
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FIGURE 5

(A) Objective function of the training process for identifying NSSI; (B) The distribution of classification accuracy for identifying NSSI; (C) Feature

voting for identifying NSSI; *selected feature.

results in impaired social relationships and increased negative

emotions, forming a vicious cycle. Emotional regulation ability

is developed during the emotional interactions with caregivers

in the early stage of children’s growth. Parents’ denigration

or contempt behaviors and frequent negative emotions against

children will weaken children’s emotional regulation ability and

disrupt the development of normal emotional regulation ability

(76). Therefore, effective emotion regulation strategies should be

carried out based on adolescents and their parents in order to

achieve a virtuous cycle of emotion regulation.

Another important finding was that physical abuse in

childhood significantly increased the risk of NSSI in adolescents.

Studies have demonstrated that childhood abuse and neglect

(both physical and emotional) were positively associated with

self-injurious behavior and that the incidence of NSSI increased

with greater levels of abuse and neglect (77, 78). The American

scholar demonstrated that childhood physical and sexual abuse

was strongly associated with adolescent NSSI and that the

frequency of NSSI increased with the frequency of abuse (79).

Moreover, the incidence of NSSI was higher in females than in

males when exposed to high levels of sexual abuse, emotional

neglect, and physical abuse (80). However, sexual abuse did

not show significance in our study. Furthermore, we speculated

that since China has fully implemented 9-year compulsory

education, educational attainment to some extent implies the age

of adolescents. Due to NSSI, they may interrupt their studies,

resulting in lower educational attainment. Therefore, parents

and health managers should pay attention to the healthy growth

of children and reduce the occurrence of childhood abuse

and trauma.

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1049069
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2022.1049069

TABLE 4 Average classification accuracy of di�erent algorithms for

identifying NSSI.

Algorithms Accuracy

K-nearest neighbor 72.51%

Logistic regression 73.01%

LASSO 74.25%

Elastic net 64.50%

Ridge regression 66.64%

Decision tree 73.08%

Random forests 74.91%

SVM with all features 73.45%

SVM with selected features 75.74%

LASSO, Least absolute shrinkage and selection operator; SVM, support vector machine.

Our research focused on improving people’s mental health

based on artificial intelligence technology and discovered key

indicators that affect NSSI in adolescents. Unlike univariate

model analysis, we used a multivariate model to explore the risk

factors, which better revealed the interactions between factors.

However, sampling methods may limit the generalizability of

study results. The majority of participants were outpatients,

and the results may differ from inpatients or non-treatment

seeking populations. Moreover, this study was cross-sectional,

which could not infer the causal relationships between factors

and NSSI behaviors in adolescents with mood disorders.

Data from this survey were obtained from questionnaires

and recall bias was unavoidable. Future studies could use

a longitudinal study design to follow up on risk factors

for adolescent NSSI behavior. It is worth noting that from

family promotion to collective or company, our proposed

SVM-based selector can also be used as a data-driven

technique to improve the mental health of members and

employees, find the key causes of employee mental health

problems, and help companies reduce possible employee mental

health problems.
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