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Introduction: Acute kidney injury (AKI) is a prevalent complication of

coronavirus disease 2019 (COVID-19) and is closely linked with a poorer

prognosis. The aim of this study was to develop and validate an easy-to-use

and accurate early predictionmodel for AKI in hospitalized COVID-19 patients.

Methods: Data from 480 COVID-19-positive patients (336 in the training set

and 144 in the validation set) were obtained from the public database of the

Cancer Imaging Archive (TCIA). The least absolute shrinkage and selection

operator (LASSO) regression method and multivariate logistic regression

were used to screen potential predictive factors to construct the prediction

nomogram. Receiver operating curves (ROC), calibration curves, as well as

decision curve analysis (DCA) were adopted to assess the e�ectiveness of the

nomogram. The prognostic value of the nomogram was also examined.

Results: A predictive nomogram for AKI was developed based on arterial

oxygen saturation, procalcitonin, C-reactive protein, glomerular filtration rate,

and the history of coronary artery disease. In the training set, the nomogram

produced an AUC of 0.831 (95% confidence interval [CI]: 0.774–0.889) with

a sensitivity of 85.2% and a specificity of 69.9%. In the validation set, the

nomogram produced an AUC of 0.810 (95% CI: 0.737–0.871) with a sensitivity

of 77.4% and a specificity of 78.8%. The calibration curve shows that the

nomogram exhibited excellent calibration and fit in both the training and

validation sets. DCA suggested that the nomogram has promising clinical

e�ectiveness. In addition, the median length of stay (m-LS) for patients

in the high-risk group for AKI (risk score ≥ 0.122) was 14.0 days (95%

CI: 11.3–16.7 days), which was significantly longer than 8.0 days (95% CI:

7.1–8.9 days) for patients in the low-risk group (risk score <0.122) (hazard

ratio (HR): 1.98, 95% CI: 1.55–2.53, p < 0.001). Moreover, the mortality

rate was also significantly higher in the high-risk group than that in the

low-risk group (20.6 vs. 2.9%, odd ratio (OR):8.61, 95%CI: 3.45–21.52).
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Conclusions: The newly constructed nomogram model could accurately

identify potential COVID-19 patients who may experience AKI during

hospitalization at the very beginning of their admission and may be useful for

informing clinical prognosis.

KEYWORDS
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Introduction

In December 2019, Wuhan, China, reported the emergence

of new coronavirus-associated pneumonia brought on by the

novel SARS-CoV-2 infection (1, 2). On February 12, 2020, the

World Health Organization (WHO) formally identified it as

coronavirus disease 2019 (COVID-19), and on March 11, 2020,

it was deemed a global pandemic. As of March 30, 2022, 227

countries and territories have been affected worldwide, with

cumulatively more than 485 million cases confirmed, with over

6 million deaths (3). The main clinical feature of COVID-19

is acute respiratory symptoms (1, 2, 4, 5). Depending on the

severity of the disease, patients can present with mild infections

with no symptoms; moderate infections with symptoms such as

fever, cough, and dyspnea; or even severe infections with acute

respiratory distress syndrome (ARDS) (6, 7).

Although COVID-19 is a respiratory illness, it often results

in multisystem damage that further progresses to multiple organ

failure (MODS) and even, in severe cases, to patient death (4–

7). The kidney is an important target organ for COVID-19

infection, and viral invasion causes acute kidney injury (AKI)

through direct attack, an inflammatory storm, and inflammatory

cell infiltration (8–10). The global incidence of COVID-19

in combination with AKI ranges from 0. 5 to 80%, and the

incidence of AKI in the intensive care unit (ICU) ranges from

6 to 80% (11). The incidence of AKI significantly increases after

COVID-19 infection (10, 12, 13). Studies have revealed that,

compared to those hospitalized for non-COVID-19 reasons,

COVID-19-infected hospitalized patients have an increased

prevalence of AKI (31.0 vs. 18.0%) (14). A meta-analysis of

13,137 patients showed that the incidence of AKI in patients with

COVID-19 was 17% (11). While, two observational studies that

included 6,477 and 5,216 patients, respectively, revealed that the

incidence of AKI among hospitalized COVID-19 patients was

as high as 32 and 37% (15, 16). AKI increased the frequency

and risk of mechanical ventilation in COVID-19 patients and

lengthened their hospital stays. In addition, close to half of AKI

patients did not have full recovery of renal function to baseline

on discharge (16). Moreover, the incidence of AKI is linked

with hospital mortality in patients with COVID-19 infection and

is an independent risk factor for poor prognosis in critically

ill patients (10, 12, 13, 17). A study that included 3,099 adult

patients in critical condition who had COVID-19 showed that

20.6% of patients had to undergo kidney replacement therapy

(KRT) for severe AKI within 14 days of entry to the intensive

care unit. On day 28, the overall mortality rate for these patients

was 54.9%, and up to 63.3% by the time of the last follow-up

(17 days). Even among patients who were eventually discharged

with a cure, there were still 33.6% of them dependent on KRT

at discharge, and more than 50% of these patients still relied

on KRT for the following 2 months (18). An autopsy study

of patients who died from COVID-19 revealed that AKI was

observed in 93.9% of patients, and 62% of patients experienced

acute tubular necrosis of a different degree (14). Therefore, early

clinical identification of patients who are at high risk for AKI

could optimize the allocation of medical resources and enhance

intervention management, thereby improving prognosis and

reducing mortality.

Hence, we aimed to apply a new method to establish and

validate a simple-to-use and effective early prediction model

for AKI in hospitalized COVID-19 patients based on clinical

characteristics, past medical history, clinical symptoms, signs,

and key laboratory biochemical indicators. The model could

help clinicians to screen patients with COVID-19 for the risk

of AKI to identify and intervene in the early development of

AKI. Furthermore, we investigated the prognostic differences

between patients with high- and low-risk AKI based on

predictive models.

Methods

Data collection and study design

Data from 480 COVID-19-positive patients were obtained

from the public database of the Cancer Imaging Archive (TCIA)

(collection of COVID-19-NY-SBU). This collection of patients

was acquired at Stony Brook University with associated clinical

data. AKI was defined as: (1) An increase in serum creatinine

of 0.3 mg/dL within 48 h; (2) A rise in serum creatinine that

is known or suspected to have happened within the previous

7 days, increasing it to 1.5 times baseline (or 50% above

baseline); (3) Urine volume <0.5 ml/kg/h for 6 h. The inclusion

criteria are as follows: (1) Age ≥18 years (weight ≥ 35Kg); (2)
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Laboratory-confirmed COVID-19 [positive polymerase chain

reaction (PCR)]; (3) Expected hospital stay longer than 48 h; (4)

With complete clinical information and laboratory test results.

The exclusion criteria are as follows: (1) The Previous history of

confirmed COVID-19. (2) The patient has received prophylactic

treatment for COVID-19 within the last 30 days. (3) Patients

with underlying renal disease such as chronic renal failure or

post-transplantation or those on continuous renal replacement

therapy, hemodialysis, or peritoneal dialysis. (4) Other diseases

that may affect kidney function, such as tuberculous kidney

disease, immune nephritis, and kidney tumors. (5) Presence of

other serious diseases that damage life expectancy, such as acute

myocardial infarction, cerebral hemorrhage, and pulmonary

embolism. (6) Pregnancy and breastfeeding. The following

information was collected for each patient: (1) general clinical

characteristics of age, gender, and smoking history; (2) past

medical history of hypertension, coronary artery disease (CAD),

chronic obstructive pulmonary disease (COPD), and other

lung diseases; (3) home medication history of an angiotensin-

converting enzyme inhibitor (ACEI), angiotensin receptor

blocker (ARB), antibiotics, and non-steroidal anti-inflammatory

drugs (NSAID); (4) clinical symptoms of fever, cough, dyspnea,

vomiting, diarrhea, and abdominal pain; (5) signs of oral

temperature, arterial oxygen saturation (SaO2), respiratory rate,

heart rate, systolic blood pressure, and mean blood pressure;

(6) laboratory indicators of leukocyte count, neutrophils

count, lymphocytes count, aspartate aminotransferase (AST),

alanine aminotransferase (ALT), procalcitonin (PCT), C-

reactive protein (CRP), sodium, potassium, chloride, lactate,

blood urea nitrogen (BUN), serum creatinine (SCR), glomerular

filtration rate (GFR), and glucose. All cohort patients were

randomly divided into two sets at a ratio of 7:3: the training set

was used to construct the prediction model, and the validation

set was used to evaluate the performance of themodel. The study

was approved by the Ethics Committee of Yantai Yuhuangding

hospital and conducted in accordance with the ethical principles

of the Declaration of Helsinki. As all of the data in this work

were retrieved from free online databases, informed consent

was waived.

Element selection and construction of
the nomogram

The least absolute shrinkage and selection operator (LASSO)

regression method was utilized in the training set in order

to eliminate potentially predictive elements for AKI. LASSO

regression analysis was performed to gain refinement of the

model by constructing a penalization function, and applicable

to regression analysis of high-dimensional data with multiple

covariates. In the process of parameter selection, the LASSO

regression automatically shrinks the regression coefficients of

41 parameters using the penalty parameter lambda (λ). The

larger the value of lambda (λ), the more the coefficients of the

parameters shrink to zero. Consequently, some parameters are

eliminated due to the narrowing of their coefficients to near zero,

while the remaining parameters are ultimately selected. Cross-

validation was adopted to validate the adjustment parameter

lambda (λ) appropriateness for the LASSO regression. The

lambda (λ) parameter with minimum criteria of mean-squared

error was selected to screen the potential predictive elements.

Factors screened in LASSO regression were subsequently

analyzed in a multivariate logistic regression model to identify

significant predictors of AKI in hospitalized COVID-19 patients.

To avoid overfitting, elements in the multivariate logistic

regression model with a p-value < 0.1 were used to construct

the prediction nomogram.

Validation of the nomogram

Boost bootstrapping validation (1,000 bootstrap resamples)

was used to evaluate the predictive effectiveness of the

nomogram model in both the training- and validation sets.

The performance metrics include the receiver operating curves

(ROC), calibration curves, as well as decision curve analysis

(DCA). The ROC and corresponding area under the curve

(AUC) were utilized to quantify the discriminatory ability of the

AKI nomogram. The AUC can be calculated by the integration

of the area under the line segments, it ranges from 0.5 to 1.0,

with 0.5 indicating a random and 1.0 indicating a perfectly

differentiated. To evaluate the nomogram’s identification and

calibration, calibration curves were constructed. The Hosmer–

Lemeshow test was performed to estimate the goodness-of-fit

of the nomogram. To assess the nomogram model’s clinical

applicability and overall benefit, decision curve analysis (DCA)

was utilized. DCA is an efficacious approach to the evaluation of

the clinical benefits of alternative models, and when employed

in nomograms, it can quantify the net benefits by performing at

variable threshold probabilities. The DCA plotted the all-patient

treatment scenario and the no-patient treatment scenario as two

reference curves. The net benefit was calculated by deducting

false-positive patients from true-positive patients, weighted by

the potential damage of going untreated vs. the detrimental

effects of going needless treatment. When the decision curve

reveals that the nomogram is of greater benefit than the

all-patient treatment scenario and the no-patient treatment

scenario, it would indicate that the nomogram is clinically valid.

Nomogram-based risk-group
stratification

Based on the nomogram, risk scores for AKI were calculated

for each patient, and patients were then divided into high- and
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FIGURE 1

The flowchart of the study procedure. Abbreviations: LASSO, least absolute shrinkage and selection operator; ROC, receiver operating

characteristic; DCA, decision curve analysis.

low-risk cohorts based on the optimal cutoff value determined

by the Youden index from the ROC analysis of the training

set. Differences in length of stay and last status (discharged or

deceased) of patients in the high- and low-risk cohorts were

compared in both training and validation sets, respectively.

Statistical analysis

The categorical variables were compared using Pearson’s

chi-square test and presented as percentages (%). For continuous

variables, the Shapiro-Wilk test was used to test for normality,

if the variables were normally distributed, the mean (standard

deviation) was used for statistical description and the t-test was

used for comparison between groups; otherwise, the medians

[interquartile ranges (IQRs)] was used for statistical description

and the Mann–Whitney U-test was used for comparison

between groups. The median length of stay (m-LS) was

calculated using the Kaplan-Meier approach, and the log-rank

test was utilized to compare differences between high-risk and

low-risk groups. The Cox proportional hazards model was used

to determine the hazard ratio (HR) and its associated 95%

confidence interval (CI). The mortality rate was compared by

Fisher’s exact or chi-squared tests, and odds ratios (ORs) with

95% CIs were calculated by logistic regression models. Statistical

analysis was performed with the SPSS program (V22.0, Inc.,

Chicago, IL, USA) and R project (version 4.1.3, “glmnet”

packages for LASSO logistic regression analysis, “forestplot”

packages for plot forest, “hmisc” package for plot nomogram,

“calibration curves” package for plot calibration curves, “pROC”

package for plot ROC curves and calculate AUCs, and “stdca”

package for DCA). A p-value < 0.05 (two-sided) was considered

statistically significant.

Results

Characteristics of patients

In total, 480 patients with COVID-19-positive were included

in this study; 336 were randomized into the training set, while

the remaining 144 were randomized into the validation set. The

flowchart of the study procedure was present in Figure 1. The

baseline characteristics of the two sets of patients were essentially

balanced. The incidence of AKI was 17.7% (85 of 480) in the
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TABLE 1 Baseline characteristics of patients in training set, validation set and all populations.

Characteristic All patients (n = 480) Training set (n = 336) Validation set (n = 144) P value

Age

≥60 224 (46.7%) 153 (45.5%) 71 (49.3%) 0.448

<60 256 (53.3%) 183 (54.5) 73 (50.7%)

Gender

Male 300 (62.5%) 204 (60.7%) 96 (66.7%) 0.217

Female 180 (37.5%) 132 (39.3%) 48 (33.3%)

Smoking

Yes 123 (25.6%) 82 (24.4%) 41 (28.5%) 0.350

No 357 (74.4%) 254 (75.6%) 103 (71.5%)

Hypertension

Yes 236 (49.2%) 173 (51.5%) 63 (43.8%) 0.120

No 244 (50.8%) 163 (48.5%) 81 (56.2%)

Diabetes

Yes 130 (27.1%) 87 (25.9%) 43 (29.9%) 0.370

No 350 (72.9%) 249 (74.1%) 101 (70.1%)

CAD

Yes 58 (12.1%) 40 (11.9%) 18 (12.5%) 0.855

No 422 (87.9%) 296 (88.1%) 126 (87.5%)

COPD

Yes 18 (3.8%) 11 (3.3%) 7 (4.9%) 0.402

No 462 (96.2%) 325 (96.7%) 137 (95.1%)

OLD

Yes 72 (15.0%) 44 (13.1%) 28 (19.4%) 0.074

No 408 (85.0%) 292 (86.9%) 116 (80.6%)

Malignancies

Yes 37 (7.7%) 29 (8.6%) 8 (5.6%) 0.247

No 443 (92.3%) 307 (91.4%) 136 (94.4%)

ACEI

Yes 72 (15.0%) 47 (14.0%) 25 (17.4%) 0.343

No 408 (85.0%) 289 (86.0%) 119 (82.6%)

ARB

Yes 72 (15.0%) 53 (15.8%) 19 (13.2%) 0.468

No 408 (85.0%) 283 (84.2%) 125 (86.8%)

Antibiotic

Yes 139 (29.0%) 92 (27.4%) 47 (32.6%) 0.244

No 341 (71.0%) 244 (72.6%) 97 (67.6%)

NSAID

Yes 39 (8.1%) 305 (90.8%) 136 (94.4%) 0.177

No 441 (91.9%) 31 (9.2%) 8 (5.6%)

Fever

Yes 395 (82.3%) 277 (82.4%) 118 (81.9%) 0.896

No 85 (17.7%) 59 (17.6%) 26 (18.1%)

Cough

Yes 402 (83.8%) 281 (83.6%) 121 (84.0%) 0.914

No 78 (16.3%) 55 (16.4%) 23 (16.0%)

Dyspnea

Yes 370 (77.1%) 252 (75.0%) 118 (81.9%) 0.095

No 110 (22.9%) 84 (25.0%) 26 (18.1%)

(Continued)
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TABLE 1 (Continued)

Characteristic All patients (n = 480) Training set (n = 336) Validation set (n = 144) P value

Vomiting

Yes 89 (18.5%) 64 (19.0%) 25 (17.4%) 0.663

No 391 (81.5%) 272 (81.0%) 119 (82.6%)

Diarrhea

Yes 191 (39.8%) 141 (42.0%) 50 (34.7%) 0.137

No 289 (60.2%) 195 (58.0%) 94 (65.3%)

Abdominal pain

Yes 65 (13.5%) 49 (14.6%) 16 (11.1%) 0.308

No 415 (86.5%) 287 (85.4%) 128 (88.9%)

T

(◦C) 37.50 (37.00, 38.30) 37.60 (37.10, 38.40) 37.40 (37.00, 38.10) 0.157

SaO2

94.00 (91.00, 96.00) 94.00 (91.00, 96.00) 93.00 (91.00, 96.00) 0.209

PR

(#/min) 20.00 (18.00, 24.00) 20.00 (18.00, 24.00) 20.00 (18.00, 25.00) 0.811

HR

(#/min) 100.00 (88.00, 112.00) 100.00 (88.00, 113.00) 99.00 (88.00, 111.00) 0.484

SBP

(mmHg) 125.00 (113.00, 142.00) 125.00 (112.00, 142.00) 125.00 (113.00, 141.00) 0.944

MAP

(mmHg) 91.00 (84.00, 99.00) 91.00 (82.00, 98.00) 91.00 (85.00, 99.00) 0.469

Leukocytes

(#/volume) 6.83 (5.22, 8.81) 6.69 (5.21, 8.72) 7.44 (5.50, 9.10) 0.108

Neutrophils

(#/volume) 5.27 (3.84, 7.14) 5.12 (3.76, 6.98) 5.69 (4.08, 7.33) 0.071

Lymphocytes

(#/volume) 0.93 (0.67, 1.25) 0.93 (0.66, 1.25) 0.94 (0.67, 1.25) 0.985

AST

(U/volume) 42.00 (29.00, 64.00) 42.00 (30.00, 63.00) 42.00 (28.00, 66.00) 0.715

ALT

(U/volume) 33.00 (22.00, 55.00) 33.00 (22.00, 55.00) 33.00 (21.00, 55.00) 0.731

PCT

(moles/volume) 0.16 (0.10, 0.29) 0.16 (0.10, 0.30) 0.16 (0.09, 0.28) 0.768

CRP

(moles/volume) 8.60 (3.80, 14.20) 8.60 (4.00, 14.40) 8.70 (3.60, 14.00) 0.663

Sodium

(moles/volume) 136.00 (133.00, 138.00) 136.00 (133.00, 138.00) 136.00 (133.00, 139.00) 0.312

Potassium

(moles/volume) 4.10 (3.80, 4.40) 4.10 (3.80, 4.40) 4.20 (3.80, 4.50) 0.164

Chloride

(moles/volume) 97.00 (94.00, 99.00) 97.00 (94.00, 99.00) 98.00 (94.00, 99.00) 0.403

Lactate

(moles/volume) 1.40 (1.10, 1.80) 1.40 (1.10, 1.80) 1.50 (1.10, 1.80) 0.514

Bicarbonate

(moles/volume) 24.00 (22.00, 25.00) 24.00 (22.00, 25.00) 24.00 (22.00, 26.00) 0.183

BUN

(Continued)
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TABLE 1 (Continued)

Characteristic All patients (n = 480) Training set (n = 336) Validation set (n = 144) P value

(mass/volume) 13.00 (10.00, 20.00) 13.00 (9.00, 20.00) 14.00 (11.00, 21.00) 0.368

SCR

(mass/volume) 0.91 (0.72, 1.16) 0.89 (0.70, 1.13) 0.98 (0.77, 1.27) 0.043

GFR

(ml/min) 0.91 (0.72, 1.16) 0.89 (0.70, 1.13) 0.98 (0.77, 1.27) 0.213

Glucose

(mass/volume) 120.00 (107.00, 151.00) 120.00 (106.00, 147.00) 121.00 (110.00, 159.00) 0.181

AKI 17.7% 16.1% 21.5% 0.151

Abbreviations: CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; OLD, other lung diseases including asthma; ACEI, angiotensin converting enzyme inhibitor;

ARB, Angiotensin receptor blocker; NSAID, non-steroidal anti-inflammatory drug; T, temperature; SaO2, artery oxygen saturation; PR, respiration rate; HR, heart rate; SBP, systolic blood

pressure; MAP, mean blood pressure; AST, aspartate aminotransferase; ALT, alanine aminotransferase; PCT, procalcitonin; CRP, C-reactive protein; BUN, blood urea nitrogen; SCR, serum

creatinine; GFR, glomerular filtration rate.

FIGURE 2

Feature selection using the least absolute shrinkage and selection operator (LASSO) Cox regression model. (A) LASSO coe�cient profiles of the

41 features. (A) coe�cient profile plot was produced against the log (λ) sequence. (B) Selection of tuning parameter (λ) in the LASSO regression

using 10-fold cross-validation via minimum criteria. At the optimal values log (λ), where features are selected, two dotted vertical lines were

drawn at the optimal scores by minimum criteria and 1-s.e. criteria.

overall population, 16.1% (54 of 336) in the training set, and

21.5% (31 of 144) in the validation set, respectively (Table 1).

Supplementary Table 1 compares the baseline characteristics of

patients with AKI and those without AKI. For the whole cohort,

there were slightly more patients aged <60 years (256, 53.3%)

than those aged ≥60 years (224, 46.7%). There were 300 male

patients (62.5%), which was more than the number of female

patients (180, 37.5%). The majority of patients presented with

infectious and respiratory symptoms, of which 395 (82.3%)

patients presented with fever, 402 (83.8%) with cough, and 370

(77.1%) with dyspnea, while there was a relatively low frequency

of gastrointestinal symptoms. Of those 480 patients, 21 patients

received kidney replacement therapy, and 14 received kidney

transplants. For patients receiving kidney replacement therapy,

the mortality rate was 52.4% (11 of 21) and the mean length

of stay was 39 days (only for discharged patients). For patients

receiving received a kidney transplant, the mortality rate was

0.00% with a mean length of stay was 14.6 days. The baseline
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FIGURE 3

Results of multivariate logistic regression analysis in the training

set. Factors with p-values < 0.1 were screened for constructing

the nomogram model. Abbreviations: CAD, coronary artery

disease; SaO2, artery oxygen saturation; ALT, alanine

aminotransferase; PCT, procalcitonin; CRP, C-reactive protein;

GFR, SCR, serum creatinine; GFR, glomerular filtration rate.

information for patients, including laboratory indicators, is

detailed in Table 1.

Feature selection

Feature selection was performed in the training set, and

41 parameters were included in the LASSO logistic regression

analysis for predictor screening. The coefficient profile plot was

produced against the log (λ) sequence (Figure 2A). Minimum

criteria are used to select the tuning parameter (λ) for the

LASSO regression utilizing 10-fold cross-validation. The results

show that the optimal value of tuning parameter λ in the

LASSO logistic regression was 0.026 when the mean-squared

error reached its minimum value. Ten parameters with non-zero

coefficients were screened: hypertension history, CAD, diabetes,

SaO2, ALT, lactate, PCT, CRP, SCR, and GFR (Figure 2).

Construction of the nomogram and
performance examination

The parameters screened in the LASSO regression were

utilized for the multivariate logistic regression model analysis,

and the results demonstrated that only SaO2 and GFR were

independent predictors of the occurrence of AKI (SaO2,

OR:0.930, 95% CI: 0.881–0.982, P = 0.008; GFR, OR:0.973,

95% CI: 0.956–0.990, P = 0.002) (Figure 3). However, to avoid

overfitting of the nomogram model, parameters with p <

0.1 were selected for model construction. Finally, a predictive

nomogram model for the occurrence of AKI in hospitalized

COVID-19 patients based on CAD, SaO2, PCT, CRP, and GFR

was constructed (Figure 4, Supplementary Table 2). Based on the

nomogram, the point scale scores for these five independent

FIGURE 4

The nomogram was developed in the training set. It included

five factors: glomerular filtration rate (GFR), artery oxygen

saturation (SaO2), procalcitonin (PCT), C-reactive protein (CRP),

and history of coronary artery disease (CAD). The nomogram

plot provides a visual way to predict the risk of AKI for COVID-19

patients.

variables could be calculated for each patient, and their sum was

the total point value. The ROC curve showed that the nomogram

had favorable discrimination for AKI, with an AUC of 0.831

(95% CI: 0.774–0.889), a sensitivity of 85.2%, and a specificity

of 69.9% (Figure 5A), which was significantly better than those

of SCR and BUN (Supplementary Figure 1A). The calibration

curves visually revealed favorable accordance between the

prediction of the nomogram and the actual observations

(Figure 5B). The Hosmer–Lemeshow test demonstrated a nice

goodness-of-fit of the nomogram, with no significant differences

observed (p = 0.247). DCA showed that the nomogram

had a nice overall net benefit in the threshold probability

range of 16–63%, and was superior to those of SCR and

BUN (Supplementary Figure 1C), indicating that the model has

promising clinical effectiveness (Figure 5C).

Validation of the nomogram

Next, we evaluated the effectiveness of the model in the

validation set. Consistent with the results of the training set,

the nomogram yielded a favorable AUC of the ROC curve

of 0.810 (95% CI: 0.737–0.871), with a sensitivity of 77.4%

and specificity of 78.8% (Figure 5D), better than those of SCR

and BUN (Supplementary Figure 1B). The calibration curve and

Hosmer–Lemeshow test suggested that the nomogram had good

calibration and fit in the validation set (p = 0.247) (Figure 5E).

Moreover, DCA visually revealed that the nomogram had an

overall net benefit within a wider threshold probability in

the validation set (Figure 5F, Supplementary Figure 1D). These
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FIGURE 5

Validation of the discrimination power of the nomogram in the training and validation sets. (A,D) ROC curve analysis of the nomogram in the

training and validation sets (AUC, 0.831 and 0.810, respectively); (B,E) Calibration plot of the nomogram in the training and validation sets, The

black dashed diagonal line indicates the perfect prediction of the ideal model. The solid black line represents the performance of the

nomogram, and the closer the fit to the diagonal line, the more accurate the prediction. The gray dashed line represents the performance of the

model trained after bootstrapping validation (1,000 bootstrap resamples), which corrects the overfitting situation; (C,F) DCA analysis of the

nomogram in the training and validation sets. The y-axis represents the net benefit, the x-axis represents the threshold probability. The red line

represents the nomogram, and the blue and orange lines represent the all-patient treatment scenario and the no-patient treatment scenario,

respectively. Abbreviations: ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis.

results suggest that the nomogram functions well and has

excellent predictive power for the validation set.

Nomogram-based risk stratification

Based on the nomogram constructed in the training set,

the probability of occurrence of AKI was calculated for each

patient. Using the optimal cutoff value of 0.122 obtained from

the ROC analysis of the training set, the two sets of patients

were subsequently classified into high- and low-risk groups. In

the training set, there were 205 patients in the low-risk group

and 131 patients in the high-risk group. The median length of

stay (m-LS) for patients in the high-risk group was 14.0 days

(95%CI: 11.3–16.7 days), which was significantly longer than 8.0

days (95% CI: 7.1–8.9 days) for patients in the low-risk group,

which was (HR:1.98, 95%CI: 1.55–2.53, p < 0.001) (Figure 6A).

Similarly, in the validation set, we also observed a significantly

longer length of stay in the high-risk group than in the low-risk

group (m-LS: 17.0 days vs. 8.0 days, HR: 2.10, 95% CI: 1.45–3.05,

p < 0.001) (Figure 6B). In addition, we found that the mortality

rate was higher in the high-risk group. In the training set, there

were 27 patients in the high-risk group having a last status of

death, with a mortality of 20.6%, compared to 2 (2.9%) in the

low-risk group in the training set (OR: 8.61, 95% CI: 3.45–21.52,

p < 0.001). The results from the validation set corroborated

this finding, where the last status was deceased in 14 (23.3%)

and 2 (2.4%) patients in each of the high- and low-risk groups,

respectively, with statistically significant differences (OR: 12.48,

95% CI: 2.72–57.33, p = 0.001). These results indicate that the

nomogram model can be applied to predict the prognosis of

hospitalized COVID-19 patients (Table 2).

Discussion

In this study, we developed a predictive nomogram model

for acute kidney injury in hospitalized COVID-19 patients based
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FIGURE 6

Kaplan-Meier curves for the length of stay of high-risk patients and low-risk patients based on the optimal segmentation threshold obtained

from the ROC analysis in the training set (A) and the validation set (B). Abbreviations: m-LS: median length of stay.

on SaO2, PCT, CRP, GFR, and the history of CAD. It is an

easy-to-use, well-performing nomogram model with promising

discrimination, predictive accuracy, and clinical practical utility.

In addition, the risk score based on the nomogram was related

to the length of stay and the last status of the patient. This is the

first nomogram model to predict AKI in COVID-19 inpatients

at an early stage. It is conducive to the early identification of

high-risk patients with AKI to provide early intervention and

treatment, and it can effectively and reasonably optimize the

allocation and utilization of hospital beds as well as medical

resources, thereby alleviating the shortage of medical resources

and improving patient prognosis.

Acute kidney injury is a group of clinical syndromes

characterized by a rapid decline (hours to days) in kidney

function (19) and is a common complication in patients

hospitalized with COVID-19 (8–10, 12, 13, 17). Patients may

present with urinary abnormalities, for example, proteinuria and

hematuria, elevated blood creatinine and urea nitrogen, and

even positivity for SARS-CoV-2 in urine tests (1, 2, 10, 13).

According to previous studies, ∼40% of patients with COVID-

19 had proteinuria on admission, ∼10% had elevated blood

creatinine during the course of the disease, ∼21% had elevated

blood urea nitrogen, ∼43% had persistently elevated blood urea

nitrogen, ∼63% had proteinuria, and ∼26.9% had hematuria

(20, 21). The incidence of AKI varied by medical center, race,

statistical size of the sample, and severity of disease in the

included population. For example, According to a study of

138 Wuhan residents who were diagnosed with COVID-19,

the incidence of AKI was 3.6%, while the incidence of AKI

in critically ill patients was 8.3% (2). Of 1,099 patients with

COVID-19, Guan et al. (4) reported an incidence of AKI of

0.5%, with 5 of 17 (2.9%) critically ill patients developing AKI.

In addition, another Chinese study enrolled 710 patients with

COVID-19, 52 of whom were critically ill adults, with an AKI

rate of 29% (21). An Italian study showed a 15% incidence

of AKI in COVID-19 patients (22), and the results of another

study of 5,700 patients with COVID-19 in New York reported

an AKI incidence reaching as high as 22.2% (23). Altogether,

the incidence of AKI in patients with COVID-19 ranges from

0.1 to 56.9%, while it reaches 77% in patients with severe

COVID-19 (2, 4, 11, 21–23). Analyzing the previous evidence,

the following information can be obtained. First, kidney injury

is not uncommon in patients with COVID-19 (especially those

with severe disease). Second, the incidence of AKI has been

inconsistent, which is mainly related to the sample size and

study population, and the incidence of AKI is higher in severe

and critical COVID-19 patients. Most importantly, COVID-19

complicated with AKI is an independent risk factor for poor

prognosis (11, 21–23). Among patients who died from COVID-

19, the incidence of AKI was as high as 37.5%, which was

significantly higher than the 15% of surviving cases (24). The

mortality rate of COVID-19 patients complicated with AKI was

reported to be 67% (95% CI: 39.8–86.2%), and the risk of death

was 13 times that of patients without AKI (OR = 13.3, 95%

CI: 6.1–29.2) (25). In addition, the severity of AKI is associated

with patient prognosis, and patients with the late-stage disease

have a significantly higher risk of death (2, 8, 10, 12). Therefore,

early assessment of AKI risk is important to guide physicians

to intervene early and prevent AKI, protect renal function, and

avoid progression of the patient’s condition.
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A nomogram may provide a quantitative and pragmatic

predictive tool for risk stratification of COVID-19 patients for

the development of AKI during hospitalization. In this study,

GFR, SaO2, PCT, CRP, and history of CAD were selected by

LASSO and multivariate regression for the construction of

the predictive nomogram model of AKI. These factors have

been demonstrated to correlate with the development of AKI

in previous studies. An early Chinese study including 701

patients with COVID-19 showed that patients were more likely

to develop AKI if their admission baseline SCR levels were

higher (11.9 vs. 4%) (21). Data from a retrospective study

of 306 patients from Sweden demonstrated that decreased

baseline renal function increases the risk of developing AKI

during hospitalization in COVID-19 patients. The risk ratios

for experiencing AKI in patients with an eGFR between 30

and 59 ml/min and an eGFR <30 ml/min were 2.94 (95%

CI: 1.17–7.34) and 9.93 (95% CI: 2.32–42.5), respectively (26).

An international multicenter study of 939 patients identified

that poor respiratory function (lower oxygen saturation and

PaO2/FiO2 ratio) was a risk factor for the development of

AKI (27). In addition, studies have shown that inflammatory

indicators, such as C-reactive protein (27) and procalcitonin

(28); underlying diseases, such as hypertension, diabetes, and

chronic kidney disease; as well as coronary artery disease, are

correlated with the occurrence of AKI (29, 30). There are also

predictive models (scores or biomarkers) for AKI in COVID-

19 patients that have been reported in previous studies. Gustavo

et al. (31) investigated the capability of urinary kidney stress

biomarkers (UKSB), including neutrophil gelatinase-associated

lipocalin (NGAL) and tissue inhibitor of metalloproteinases-

2 (TIMP-2) multiplied by insulin-like growth factor binding

protein 7 (IGFBP7), for the early detection of AKI in 51

critically ill COVID-19 patients. The results showed that the

AUCs of the ROC for NGAL and TIMP-2 × IGFBP7 predicting

the occurrence of AKI during the entire hospitalization of

patients were 0.706 (95% CI: 0.559–0.854) and 0.682 (95% CI:

0.535–0.829), respectively, with corresponding sensitivities and

specificities of 54.5, 76.9, 40.0, and 88.4%. Naomi et al. (32)

reported the application of serum biomarkers (SB), including

serum NGAL and serum creatinine, for the prediction of

AKI in 52 COVID-19 patients, with AUCs of 0.81 and 0.87,

respectively. A prediction model for AKI based on proteinuria

and hematuria yielded an AUC of 0.64 (95% CI: 0.62–0.67)

in a large cohort study containing 5,980 COVID-19 patients;

moreover, the predictive capability of the model was improved

when creatinine and the presence of CKD were incorporated

(33). In addition, studies have validated the predictive value

of other indicators, such as D-dimer and albumin/creatinine

ratio, for AKI in hospitalized COVID-19 patients (34). However,

these predictive models (biomarkers) have some disadvantages.

First and foremost, their performance has not been validated,

which leads to a lack of confidence in their reproducibility

and utility. Second, they focused only on a particular type
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or class of indicators, which may present only a partial

characterization of the patient’s disease. Third, some models

were constructed based on small sample sizes, such as the UKSB

model and the SB model, which may not be representative

of the whole cohort population. In contrast, in the present

study, we screened indicators on the basis of seven dimensions

of admission information for the construction of a predictive

nomogram model of AKI during hospitalization based on a

training set with 366 COVID-19 patients. Importantly, we

verified the effectiveness of the nomogram in both training

and validation cohorts and found that the nomogram displayed

promising identification, goodness-of-fit, discriminative power,

and clinical effectiveness.

We also investigated the predictive value of the model for

patient prognosis. The mortality rate of patients in the high-

risk group was higher than that of patients in the low-risk

group; furthermore, the mortality rate of high-risk patients was

greater than that of low-risk patients, with a hazard ratio of 1.98

for the training set and 2.10 for the validation set. This may

be because high-risk patients are susceptible to the occurrence

of AKI, while previous studies have demonstrated a higher

mortality rate in COVID-19 patients with AKI (35). Regardless,

the nomogram model could identify patients with a potentially

poor prognosis at the beginning of their admission, which is

helpful for the formulation of individualized treatment strategies

and the arrangement of appropriate care and treatment at an

early stage.

The study has several limitations. First, it is a public

database-based study, and the results may have been influenced

by confounding factors beyond our control. Second, although

the model performed well in the validation set, we did not

evaluate its performance in an independent external validation

cohort. Third, the length of stay and last status of patients

are influenced by other factors, especially treatment measures;

therefore, relying on the model alone to predict prognosis

is not sufficient. In addition, some other indicators, such as

virus load or virus-related indicators, red blood cell count, and

hemoglobin concentration, may have some correlation with the

occurrence of AKI; however, we were unable to investigate these

further due to the limitations of data availability, which may

affect the reliability and stability of our conclusions. Moreover,

due to the limitations of data availability, the difference in

special treatment during hospitalization, such as hemodialysis

technology, between high-risk and low-risk groups was not

analyzed. Hence, the predictive capability for AKI and the

prognostic value of the model needs to be verified in actual

clinical practice.

Conclusion

We constructed a nomogram for the early prediction of AKI

in hospitalized COVID-19 patients. The model demonstrated

favorable performance on the basis of the AUCs of ROC,

calibration curves, and decision curve analysis. Furthermore,

the nomogram exhibited promising predictive values for a

prognosis for the length of stay and last status of patients.

The nomogram model is helpful to reasonably and effectively

optimize the allocation and utilization of medical resources at

an early stage to provide appropriate care and intervention

management for patients, thereby improving prognosis and

reducing mortality.
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30. Dereli N, Babayigit M. O Menteş, F Koç, Ari O, E Dogan, et al. Are
we aware of COVID-19-related acute kidney injury in intensive care units?
European review for medical and pharmacological. Sciences. (2022) 26:1753–60.
doi: 10.26355/eurrev_202203_28245

31. Casas-Aparicio G, Alvarado-de la Barrera C, Escamilla-Illescas D,
Leon-Rodriguez I, Del Rio-Estrada PM, Calderon-Davila N, et al. Role
of urinary kidney stress biomarkers for early recognition of subclinical
acute kidney injury in critically Ill COVID-19 patients. Biomolecules. (2022)
12:275. doi: 10.3390/biom12020275

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1047073
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1047073/full#supplementary-material
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1001/jama.2020.1585
https://wwwworldometersinfo/coronavirus/
https://wwwworldometersinfo/coronavirus/
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMcp2009575
https://doi.org/10.1056/NEJMcp2009249
https://doi.org/10.1016/S2213-2600(20)30229-0
https://doi.org/10.1038/s41581-021-00452-0
https://doi.org/10.3390/ijms22158081
https://doi.org/10.1016/j.ekir.2020.06.013
https://doi.org/10.1016/j.nefro.2021.09.002
https://doi.org/10.3390/ijms23042242
https://doi.org/10.1681/ASN.2020050744
https://doi.org/10.1016/j.kint.2020.05.006
https://doi.org/10.2215/CJN.09610620
https://doi.org/10.1007/s00134-020-06153-9
https://doi.org/10.1681/ASN.2020060897
https://doi.org/10.1016/S0140-6736(19)32563-2
https://doi.org/10.1016/j.tmaid.2020.101831
https://doi.org/10.1016/j.kint.2020.03.005
https://doi.org/10.3390/jcm9051548
https://doi.org/10.1016/S0140-6736(20)31189-2
https://doi.org/10.1016/S2213-2600(20)30079-5
https://doi.org/10.1136/jclinpath-2020-207023
https://doi.org/10.1007/s40620-021-01022-0
https://doi.org/10.1038/s41598-022-07490-z
https://doi.org/10.1159/000517581
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.26355/eurrev_202203_28245
https://doi.org/10.3390/biom12020275
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1047073

32. Pode Shakked MHSdeO. Cheruiyot I, Benoit JL, Plebani M,
Lippi G, et al. Early prediction of COVID-19-associated acute kidney
injury: are serum NGAL and serum Cystatin C levels better than serum
creatinine? Clin Biochem. (2022) 102:1–8. doi: 10.1016/j.clinbiochem.2022.0
1.006

33. McAdams MC Li M, Xu P, Gregg LP, Patel J, Willett DL, et al. Using dipstick
urinalysis to predict the development of acute kidney injury in patients with
COVID-19. BMC Nephrol. (2022) 23:50. doi: 10.1186/s12882-022-02677-y

34. Yildirim C, Ozger HS, Yasar E, Tombul N, Gulbahar
O, Yildiz M, et al. Early predictors of acute kidney injury in
COVID-19 patients. Nephrology. (2021) 26:513–21. doi: 10.1111/nep.1
3856

35. Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA,
et al. Outcomes among patients hospitalized with COVID-19 and acute
kidney injury. Am J Kidney Dis. (2021) 77:204–15e1. doi: 10.1053/j.ajkd.2020.0
9.002

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1047073
https://doi.org/10.1016/j.clinbiochem.2022.01.006
https://doi.org/10.1186/s12882-022-02677-y
https://doi.org/10.1111/nep.13856
https://doi.org/10.1053/j.ajkd.2020.09.002
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Development and validation of a nomogram for the early prediction of acute kidney injury in hospitalized COVID-19 patients
	Introduction
	Methods
	Data collection and study design
	Element selection and construction of the nomogram
	Validation of the nomogram
	Nomogram-based risk-group stratification
	Statistical analysis

	Results
	Characteristics of patients
	Feature selection
	Construction of the nomogram and performance examination
	Validation of the nomogram
	Nomogram-based risk stratification

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


