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In this article, a fractional-order di�erential equation model of HBV infection

was proposedwith a Caputo derivative, delayed immune response, and logistic

proliferation. Initially, infection-free and infection equilibriums and the basic

reproduction number were computed. Thereafter, the stability of the two

equilibriums was analyzed based on the fractional Routh–Hurwitz stability

criterion, and the results indicated that the stability will change if the time delay

or fractional order changes. In addition, the sensitivity of the basic reproduction

number was analyzed to find out the most sensitive parameter. Lastly, the

theoretical analysis was verified by numerical simulations. The results showed

that the time delay of immune response and fractional order can significantly

a�ect the dynamic behavior in the HBV infection process. Therefore, it is

necessary to consider time delay and fractional order in modeling HBV

infection and studying its dynamics.

KEYWORDS

HBV model, time delay, fractional order, stability, Hopf bifurcation

Introduction

Hepatitis B virus (HBV) can attack the liver and cause both acute and chronic

diseases and further lead to fibrosis, cirrhosis, or even cancer. It is estimated that 296

million people have chronic hepatitis B, and 1.5 million new infections are reported

each year; 820 000 people died of hepatitis B infections in 2019 (1). Therefore, HBV has

become a major public health problem affecting human health (2).

Mathematical modeling and analysis of infectious viruses help understand

the infection mechanism and realize the disease progression (3–5). Furthermore,

mathematical modeling can also provide new insights to find the key factors

to treat infectious diseases (6). In 1996, the basic ordinary differential equation

(ODE) model of HBV infection was established with uninfected cells, infected

cells, and free viruses (7). This is an early mathematical model for studying the

spread of viruses. As research progresses, the mathematical modeling of virus

transmission has become more and more complicated. For instance, Peter et al.

(3) established a deterministic ODE model with six compartments to study the

transmission dynamics of measles and obtained the best fit using available data,
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which could help health workers in decision-making and

policymakers to frame policies to eradicate the spread of measles

in Nigeria. Mayowa et al. (5) divided the population into

six classes and formulated a six-compartmental deterministic

model to investigate the effect of vaccination on the dynamics

of tuberculosis in a given population. All the aforementioned

mathematical models are based on ordinary differential

equations with bilinear incidence rate.

Subsequently, a large number of dynamic models were

proposed to describe and analyze virus infection according to

different biological mechanisms (8–13); for example, because

hepatocytes have the ability to regenerate, the models are

constrained by the number of healthy and infected hepatocytes.

Li et al. (10) developed a logistic growth model of HBV.

Moreover, in order to characterize the time of a body’s immune

response after the virus infection of target cells, time delay

has been considered. Therefore, Zhang et al. (13) proposed

a susceptible-vaccinated-exposed-infectious-removed (SVEIR)

epidemic model with two time delays and constructed a

Lyapunov function to discuss the asymptotic stability of the

positive equilibrium point. Babasola et al. (14) modeled the

spread of COVID-19 with a convex incidence rate incorporated

with a time delay and proved that delay can destabilize the

system and lead to periodic oscillation.

In recent years, a fractional derivative for describing

memory, history, and heredity effects in modeling physical,

chemical, financial, and biological systems has received

increasing attention (15–28). For example, Diethelm (29) used

a fractional-order model to simulate the dynamics of a dengue

fever outbreak. The results showed that the simulation accuracy

of the fractional-order model is much higher than that of

the integer-order derivative. Gilberto et al. (30) proposed a

fractional-order model to research the dynamics of influenza A

(H1N1), and the results showed that the fractional-order model

was in good agreement with real data. Similarly, Ogunrinde

et al. (27) divided the population into five classes and proposed

a fractional-order differential equation model to study COVID-

19. The basic reproduction number was calculated by the

spectral radius method, and the stability analysis of the model

was carried out by constructing the Lyapunov function. Finally,

the parameters were estimated by collected data, and the model

can offer guidance to policymakers.

In addition to the mathematical modeling of fractional

differential equations for the aforementioned infectious diseases,

there are also many studies that use the fractional-order model

to characterize the process of HBV infections (31–33). For

example, Simelane and Dlamini (33) established a fractional-

order HBV model with a saturated incidence rate by using

the Caputo fractional derivatives. Then, the basic reproduction

number was calculated, and the stability of the equilibriums

was discussed. The simulation results demonstrated that the

fractional-order model is more appropriate for modeling HBV

transmission dynamics than the integer-order model. The time

of HBV entry into the healthy liver cells and the production of

new virus particles should be taken into account; therefore, Gao

et al. (32) established a three-dimensional delayed fractional-

order HBV model, which included healthy hepatocytes, infected

hepatocytes, and free viruses, as follows:











CF
0 D

σ1
t x(t) = λ1

σ1 − µ1
σ1x(t)− β1

σ1x(t)v(t)+ δ1
σ1y(t),

CF
0 D

σ1
t y(t) = β1

σ1x(t)v(t)− (α1
σ1 + δ1

σ1 )y(t),
CF
0 D

σ2
t v(t) = c1

σ2y(t − τ )e−ρτ − γ1
σ2v(t).

(1)

This model has not considered the cytotoxic T lymphocyte

(CTL) and alanine aminotransferase (ALT) levels, which reflect

the extent of liver damage. Therefore, the items of CTL and ALT

will be considered in our established model.

However, until now, no study has been designed to

analyze the dynamics of HBV involving logistic proliferation,

time delay, and items of CTL and ALT by fractional-

order differential equations. Motivated by the aforementioned

discussion, we proposed a fractional-order differential equation

model with time delay and logistic proliferation in order to

better understand the transmission mechanism of HBV in the

human body.

The remaining part of this article is organized as follows:

Section Mathematical model deals with the formulation of

the model. Section Equilibriums and the basic reproduction

number discusses the infection-free and infection equilibriums

and the basic reproduction number. Section Equilibriums and

the basic reproduction number discusses the stability analysis

of the two equilibriums and analyzes the sensitivity of the basic

reproduction number. Section Numerical simulation gives an

account of the numerical simulations of equilibriums and the

Hopf bifurcation. Finally, Section Conclusion and discussion

comprises the conclusion and discussion.

Mathematical model

Therefore, based on our work (34), we proposed a fractional-

order differential equation model with time delay and logistic

proliferation as follows:







































dαx(t)
dt

= ξα + rαx(t)
(

1− x(t)+y(t)
Tα
max

)

− dαx(t)− bαx(t)v(t),
dαy(t)
dt

= bαx(t)v(t)− aαy(t)− kα
1 y(t − τ )z(t − τ ),

dαv(t)
dt

= kαy(t)− εαv(t)− kα
2 y(t − τ )z(t − τ ),

dαz(t)
dt

= kα
3 y(t − τ )z(t − τ )− kα

4 z(t),

dαw(t)
dt

= kα
5 + kα

6 y(t)z(t)− kα
7w(t).

(2)

where the variables x, y, v, z, and w represent the uninfected

cells, infected cells, viruses, CTL level, and ALT level,

respectively; ξ and r are the production rate and proliferation

rate of uninfected cells, respectively; Tmax is the maximum

hepatocyte count in the liver; d is the death rate of uninfected
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cells; b is the infection rate of uninfected cells to become infected

cells; a is the death rate of infected cells; k1 represents the

cure rate of infected cells by CTL; k and ε are the production

rate and death rate of free viruses, respectively; k2 represents

the clearance rate of free viruses by CTL; k3 and k4 are the

production rate and death rate of CTL, respectively; k5 is the

natural production rate of ALT; k6 is the production rate of ALT

from infected cells; k7 is the death rate; τ is time delay with the

order of α(0 < α ≤ 1); and dαx(t)
dt

,
dαy(t)
dt

, dαv(t)
dt

, dαz(t)
dt

, and
dαw(t)
dt

denote the Caputo fractional derivatives. Hence, d
αx(t)
dt

is

defined as follows:

dαxi

dt
= In−α dnx

dtn
=

1

Ŵ(n− α)

∫ t

0
(t − s)(n−α−1)x(n)(s)ds (3)

where n−1 < α < n, n ∈ N andŴ(�) is the gamma function.

When 0 < α < 1,

dαx

dt
=

1

Ŵ(1− α)

∫ t

0

x′(s)
(t − s)α

ds (4)

Based on the aforementioned model, the equilibriums and

stability analysis are discussed in Section Equilibriums and the

basic reproduction number.

Equilibriums and the basic
reproduction number

In the following paragraphs, the equilibriums and the basic

reproduction number are discussed.

Equilibriums

The method to compute the equilibrium is to set dαx(t)
dt

= 0,
dαy(t)
dt

= 0, d
αv(t)
dt

= 0, d
αz(t)
dt

= 0, and dαw(t)
dt

= 0. Hence, we

get the following equations:































ξα − dαx(t) + rαx(t)
(

1− x(t)+y(t)
Tα
max

)

− bαx(t)v(t) = 0,

bαx(t)v(t)− aαy(t)− kα1 y(t − τ )z(t − τ ) = 0,

kαy(t)− εαv(t)− kα2 y(t − τ )z(t − τ ) = 0,

kα3 y(t − τ )z(t − τ )− kα4 z(t) = 0,

kα5 + kα6 y(t)z(t)− kα7w(t) = 0.

(5)

The infection-free equilibrium E0 denotes x 6= 0,w 6= 0, y =
v = z = 0; thus, the infection-free equilibrium is as follows:

E0 =
(

x0, y0, v0, z0,w0
)

=
(

Tα
max

2rα

[

−(dα − rα)+

√

(dα − rα)2 +
4ξαrα

Tα
max

]

, 0, 0, 0,
kα5
kα7

)

Similarly, the infection equilibrium E1, which denotes x 6=
0, y 6= 0, v 6= 0, z 6= 0,w 6= 0, was computed by the

following equations:































ξα − dαx∗ + rαx∗
(

1− x∗+y∗

Tα
max

)

− bαxv=0,

bαx∗v∗ − aαy∗ − kα1 y
∗z∗=0,

kαy∗ − εαv∗ − kα2 y
∗z∗=0,

kα3 y
∗z∗ − kα4 z

∗=0,
kα5 + kα6 y

∗z∗ − kα7w
∗=0.

(6)

The previous equations were solved, and the infection

equilibrium was obtained as follows:

x∗ = − B
3A + 3

√

− q
2 +

√

q2

4 + p3

27 +

3

√

− q
2 −

√

q2

4 + p3

27 , y
∗= kα

4
kα
3
, v∗= aαkα

2 k
α
4+kαkα

1 k
α
4

bαkα
2 k

α
3 x

∗+εαkα
1 k

α
3
, z∗ =

kα

kα
2
− εα(aαkα

2−kαkα
1 )

kα
2 (b

αkα
2 x

∗+εαkα
1 )
,w∗ = kα

5
kα
7
+ kαkα

4 k
α
6

kα
2 k

α
3 k

α
7
− εαkα

4 k
α
6 (a

αkα
2−kαkα

1 )
kα
2 k

α
3 k

α
7 (b

αkα
2 x

∗+εαkα
1 )
.

where

A = bαrαkα
2

Tα
max

,B = −
[

bαkα
2 (r

α − dα − rαkα
4

Tα
maxk

α
3
)− εαrαkα

1
Tα
max

]

,

C = −
[

bαξαkα
2 + εαkα

1 (r
α − dα − rαkα

4
Tα
maxk

α
3
)− bαkα

4 (a
αkα

2+kαkα
1 )

kα
3

]

,

D = −εαξαkα
1 , p = 3AC−B2

3A2 , q = 27A2D−9ABC+2B3

27A3 .

Thus, the infection equilibrium is as follows:

E1 = (x∗, y∗, v∗, z∗,w∗)

=
(

x∗, k
α
4
kα
3
,

aαkα
2 k

α
4+kαkα

1 k
α
4

bαkα
2 k

α
3 x

∗+εαkα
1 k

α
3
, k

α

kα
2
− εα(aαkα

2−kαkα
1 )

kα
2 (b

αkα
2 x

∗+εαkα
1 )
,
kα
5
kα
7

+ kαkα
4 k

α
6

kα
2 k

α
3 k

α
7
− εαkα

4 k
α
6 (a

αkα
2−kαkα

1 )
kα
2 k

α
3 k

α
7 (b

αkα
2 x

∗+εαkα
1 )

)

Basic reproduction number

The basic reproduction number can be calculated by the

method of integral operator spectral radius given as follows:

R0 = ρ(FV−1)

Thus, the basic reproduction number of E0 is as follows:

R0 =
bαkαx0

aαεα
,

where

F =
[

bαv 0 bαx

0 kαy 0

]

,V =
[

0 aα + kα1 ze
−λτ 0

0 kα2 ze
−λτ εα

]

.

Similarly, the basic reproduction number of E1 is as follows:

R1 =
bαkαx∗

εα
(

aα + kαkα
1

kα
2

− εαkα
1 (a

αkα
2−kαkα

1 )
kα
2 (b

αkα
2 x

∗+εαkα
1 )

)
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Stability and sensitivity analyses

The local asymptotic stability of E0 and E1 is discussed in this part.

First, the Jacobi matrix was computed as follows:

Jac =





















−dα + rα − 2rαx+y
Tα
max

− rαx
Tα
max

−bαx 0 0

bαv −aα − kα1 ze
−Sατ bαx −kα1 ye

−Sατ 0

0 kα − kα2 ze
−Sατ −εα −kα2 ye

−Sατ 0

0 kα3 ze
−Sατ 0 kα3 ye

−Sατ − kα4 0

0 kα6 z 0 kα6 y −kα7





















(7)

Based on the previous Jacobi matrix, we got the characteristic determinant:

∣

∣SαI − Jac
∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sα + dα − rα + 2rαx+y
Tα
max

rαx
Tα
max

bαx 0 0

−bαv Sα + aα + kα1 ze
−Sατ −bαx kα1 ye

−Sατ 0

0 −kα + kα2 ze
−Sατ Sα + εα kα2 ye

−Sατ 0

0 −kα3 ze
−Sατ 0 Sα + kα4 − kα3 ye

−Sατ 0

0 −kα6 z 0 −kα6 y Sα + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Let Sα = λ , then the simplified characteristic determinant is as follows:

|λI − Jac| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα − rα + 2rαx+y
Tmax

rαx
Tmax

bαx 0 0

−bαv λ + aα + kα1 ze
−λτ −bαx kα1 ye

−λτ 0

0 −kα + kα2 ze
−λτ λ + εα kα2 ye

−λτ 0

0 −kα3 ze
−λτ 0 λ + kα4 − kα3 ye

−λτ 0

0 −kα6 z 0 −kα6 y λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Local asymptotic stability of the infection-free equilibrium

The characteristic determinant at the infection-free equilibrium (E0) is as follows:

|λI − Jac| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα − rα + 2rαx0
Tα
max

rαx0
Tα
max

bαx 0 0

0 λ + aα −bαx0 0 0

0 −kα λ + εα 0 0

0 0 0 λ + kα4 0

0 0 0 0 λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (λ + dα − rα +
2rαx0
Tα
max

)(λ + kα4 )(λ + kα7 )
[

(λ + aα)(λ + εα)

− bαkαx0
]

When |λI − Jac| = 0, the eigenvalues are λ1 = −dα + rα − 2rαx0
Tα
max

, λ2 = kα4 , λ3 = kα7 , λ4 =
−(aα+εα)+

√

(aα+εα)2−4(aαεα−bαkαx0)
2 ,

and λ5 =
−(aα+εα)−

√

(aα+εα)2−4(aαεα−bαkαx0)
2 .

Since d > r and R0 = bαkαx0
aαεα < 1, we have λ1,2,3,4,5 < 0. Thus,

∣

∣arg(S1,2,3,4,5)
∣

∣ > απ
2 .

Thus, we get the conclusion that when R0 = bαkαx0
aαεα < 1, E0 is locally asymptotically stable.
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Local asymptotic stability of the infection equilibrium

The characteristic determinant at the infection equilibrium (E1) is as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα − rα + 2rαx+y
Tα
max

rαx
Tα
max

bαx 0 0

−bαv λ + aα + kα1 ze
−λτ −bαx kα1 ye

−λτ 0

0 −kα + kα2 ze
−λτ λ + εα kα2 ye

−λτ 0

0 −kα3 ze
−λτ 0 λ + kα4 − kα3 ye

−λτ 0

0 −kα6 z 0 −kα6 y λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

λ + kα7
)



































(λ + A0)









(

λ2 + (aα + εα)λ + aαεα + kα1 zλe
−λτ + εαkα1 ze

−λτ
) (

λ + kα4 − kα3 ye
−λτ

)

+bαx
(

−kα + kα2 ze
−λτ

) (

λ + kα4 − kα3 ye
−λτ

)

+ kα1 k
α
3 yz

(

λ + εα
)

e−2λτ

+bαkα2 xye
−λτ









+bαv

[

rαx
Tα
max

(

λ + εα
)

(

λ + kα4 − kα3 ye
−λτ

)

− bαx

(
(

λ + kα4 − kα3 ye
−λτ

) (

kα2 ze
−λτ − kα

)

+kα2 k
α
3 yze

−2λτ

)]



































where A0 = dα − rα + 2rαx+y
Tα
max

.

For convenience, we made the following simplifications:

(

λ2 + (aα + εα)λ + aαεα + kα1 zλe
−λτ + εαkα1 ze

−λτ
) (

λ + kα4 − kα3 ye
−λτ

)

= λ3 + A1λ
2 + A2λ + A3 + A4λ

2e−λτ + A5λe
−λτ + A6e

−λτ + A7λe
−2λτ + A8e

−2λτ

where

A1 = aα + εα + kα4 ,A2 = aαεα + (aα + εα)kα4 ,A3 = aαεαkα4 ,A4 = (kα1 z − kα3 y),

A5 = εαkα1 z + kα1 k
α
4 z − (aα + εα)kα3 y,A6 = εαkα1 k

α
4 z − aαεαkα3 y,A7 = −kα1 k

α
3 yz,

A8 = −εαkα1 k
α
3 yz.

bαx
(

λ + kα4 − kα3 ye
−λτ

) (

−kα + kα2 ze
−λτ

)

+ kα1 k
α
3 yz(λ + ε)αe−2λτ + bαkα2 xye

−λτ

= A9λ + A10 + A11λe
−λτ + A12e

−λτ + A13λe
−2λτ + A14e

−2λτ

where

A9 = −bαkαx,A10 = −bαkαkα4 x,A11 = bαkα2 xz,A12 = bαkαkα3 xy+ bαkα2 k
α
4 xz + bαkα2 xy,

A13 = kα1 k
α
3 yz,A14 = εαkα1 k

α
3 yz − bkα2 k

α
3 xyz

bαv

[

rαx
Tα
max

(

λ + εα
)

(

λ + kα4 − kα3 ye
−λτ

)

− bαx

(
(

λ + kα4 − kα3 ye
−λτ

) (

kα2 ze
−λτ − kα

)

+kα2 k
α
3 yze

−2λτ

)]

= A15λ
2 + A16λ + A17 + A18λe

−λτ + A19e
−λτ + A20e

−2λτ

where

A15 =
bαrαxv

Tα
max

,A16 = bαv(
rαkα4 x

Tα
max

+
εαrαx

Tmax
+ bαkαx),A17 = bαv(

εαrαkα4 x

Tα
max

+ bαkαkα4 x),

A18 = −bαv(
rαkα

3 xy
Tα
max

+ bαkα2 xz),A19 = −bαv(
εαrαkα

3 xy
Tα
max

+ bαkα2 k
α
4 xz + bαkαkα3 xy),

A20 = −b2αxv(kα2 k
α
3 yz − kα2 k

α
3 yz).
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Thus, the characteristic determinant becomes as follows:

(

λ + k7
)











(λ + A0)

[

λ3 + A1λ
2 + A2λ + A3 + A4λ

2e−λτ + A5λe
−λτ + A6e

−λτ + A7λe
−2λτ

+A8e
−2λτ + A9λ + A10 + A11λe

−λτ + A12e
−λτ + A13λe

−2λτ + A14e
−2λτ

]

+A15λ
2 + A16λ + A17 + A18λe

−λτ + A19e
−λτ + A20e

−2λτ











=
(

λ + kα7
)

{[

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 + B5λ
3e−λτ + B6λ

2e−λτ + B7λe
−λτ + B8e

−λτ

+B9λ
2e−2λτ + B10λe

−2λτ + B11e
−2λτ

]}

where

B1 = A1 + A0,B2 = A2 + A9 + A0A1 + A15,B3 = A3 + A10 + A0A2 + A0A9 + A16,

B4 = A0A3 + A0A10 + A17,B5 = A4,B6 = A5 + A11 + A0A4,B7 = A6 + A12 + A0A5 + A0A11 + A18,

B8 = A0A6 + A0A12 + A19,B9 = A7 + A13,B10 = A8 + A14 + A0A7 + A0A13,B11 = A0A8 + A0A14 + A20.

For further simplification, we derived the following assignment:

C1 = B1+k7,C2 = B2 + k7B1,C3 = B3 + k7B2,C4 = B4 + k7B3,C5 = k7,C6 = B5,C7 = B6 + k7B5,

C8 = B7 + k7B6,C9 = B8 + k7B7,C10 = k7B8,C11 = B9,C12 = B10 + k7B9,C13 = B11 + k7B10,C14 = k7B11.

The characteristic determinant is as follows:

H(λ; τ )=λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ + C5 + (C6λ

4 + C7λ
3 + C8λ

2 + C9λ + C10)e
−λτ

+(C11λ
3 + C12λ

2 + C13λ + C14)e
−2λτ=0

(8)

When τ = 0, the previous equation becomes as follows:

λ5 + D1λ
4 + D2λ

3 + D3λ
2 + D4λ + D5 = 0 (9)

where

D1 = C1 + C6,D2 = C2 + C7 + C11,D3 = C3 + C8 + C12,D4 = C4 + C9 + C13,D5 = C5 + C10 + C14.

Based on equation (9), we get the following lemma by applying the Routh–Hurwitz criterion.

Lemma If equation (9) satisfies 11 ≡ D1 > 0, 12 ≡

∣

∣

∣

∣

∣

D1 1

D3 D2

∣

∣

∣

∣

∣

> 0, and 13 ≡

∣

∣

∣

∣

∣

∣

∣

D1 1 0

D3 D2 D1

D5 D4 D3

∣

∣

∣

∣

∣

∣

∣

> 0, E1 is locally asymptotically stable

when τ = 0.

Proof. The detailed proof can be referred to Peter et al. (26), Ogunrinde et al. (27).

The aforementioned lemma indicated that when τ = 0, all roots of H(λ; τ ) are to the left of the imaginary axis, and some roots

may cross to the right from the imaginary axis as τ increases. Thus, E1 is unstable because of its positive real parts.

Then, the stability of system (2) was investigated when τ > 0.

Both sides of equation (8) were multiplied by eλτ :

(C6λ
4 + C7λ

3 + C8λ
2 + C9λ + C10)+ (λ5 + C1λ

4 + C2λ
3 + C3λ

2 + C4λ + C5)e
λτ

+(C11λ
3 + C12λ

2 + C13λ + C14)e
−λτ=0

(10)

Suppose the aforementioned equation has a purely imaginary root λ = iω (ω > 0), then we have eiω = cosω + i sinω, e−iω =
cosω − i sinω . Substituting λ = iω into equation (10), we have

C6λ
4 + C7λ

3 + C8λ
2 + C9λ + C10 = C6ω

4 − C7ω
3i− C8ω

2 + C9ωi+ C10 (11)
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(λ5 + C1λ
4 + C2λ

3 + C3λ
2 + C4λ + C5)e

λτ = (C1ω
4 − C3ω

2 + C5) cosωτ + (ω5−
C2ω

3 + C4ω) cosωτ i+ (−ω5 + C2ω
3 − C4ω) sinωτ + (C1ω

4 − C3ω
2 + C5) sinωτ i

(12)

(C11λ
3 + C12λ

2 + C13λ + C14)e
−λτ = (−C12ω

2 + C14) cosωτ + (−C11ω
3 + C13ω)

× cosωτ i+ (−C11ω
3 + C13ω) sinωτ + (C12ω

2 − C14) sinωτ i
(13)

Therefore, equation (10) becomes as follows:

(C1ω
4 − C3ω

2 − C12ω
2 + C5 + C14) cosωτ + (ω5 − C2ω

3 − C11ω
3 + C4ω + C13ω) cosωτ i

+(−ω5 + C2ω
3 − C11ω

3 − C4ω + C13ω) sinωτ + (C1ω
4 − C3ω

2 + C12ω
2 + C5 − C14) sinωτ i

+C6ω
4 − C7ω

3i− C8ω
2 + C9ωi+ C10 = 0

For convenience, we assumed the following:

a1 = C1ω
4 − C3ω

2 − C12ω
2 + C5 + C14, a2 = ω5 − C2ω

3 − C11ω
3 + C4ω + C13ω,

a3 = −ω5 + C2ω
3 − C11ω

3 − C4ω + C13ω, a4 = C1ω
4 − C3ω

2 + C12ω
2 + C5 − C14.

Thus, we get

a1 cosωτ + a2 cosωτ i+ a3 sinωτ + a4 sinωτ i+ C6ω
4 − C7ω

3i− C8ω
2

+C9ωi+ C10 = 0
(14)

The real part after separating the real and imaginary parts is as follows:

a1 cosωτ + a3 sinωτ = −C6ω
4 + C8ω

2 − C10 = D1 (15)

and the imaginary part is as follows:

a2 cosωτ + a4 sinωτ = C7ω
3 − C9ω = D2 (16)

It follows from the real part and imaginary part that

cosωτ =
a4D1 − a3D2

a1a4 − a2a3
; sinωτ =

a1D2 − a2D1

a1a4 − a2a3
(17)

Suppose equation (10) has ñ(1 ≤ ñ ≤ 5) positive real roots, denoted by xn(1 ≤ n ≤ ñ).

Let
√
xn = ω , we get

cos(
√
xnτ ) = Qn

= (C1ω
4−C3ω

2+C12ω
2+C5−C14)(−C6ω

4+C8ω
2−C10)−(−ω5+C2ω

3−C11ω
3−C4ω+C13ω)(C7ω

3−C9ω)
(C1ω4−C3ω2−C12ω2+C5+C14)(C1ω4−C3ω2+C12ω2+C5−C14)−(ω5−C2ω3−C11ω3+C4ω+C13ω)(−ω5+C2ω3−C11ω3−C4ω+C13ω)

sin(
√
xnτ ) = Pn

= (C1ω
4−C3ω

2−C12ω
2+C5+C14)(C7ω

3−C9ω)−(ω5−C2ω
3−C11ω

3+C4ω+C13ω)(−C6ω
4+C8ω

2−C10)
(C1ω4−C3ω2−C12ω2+C5+C14)(C1ω4−C3ω2+C12ω2+C5−C14)−(ω5−C2ω3−C11ω3+C4ω+C13ω)(−ω5+C2ω3−C11ω3−C4ω+C13ω)

Let

τ
(j)
n =







1√
xn

[

arccos(Qn)+ 2jπ
]

, if Pn ≥ 0
1√
xn

[

2π − arccos(Qn)+ 2jπ
]

, if Pn < 0

Here, the positive integer n satisfies 1 ≤ n ≤ ñ, j = 0, 1, 2, ...
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Thus, from the aforementioned equation, we know that the characteristic equation has a pair of purely imaginary roots ±i
√
xn.

We define λ
(j)
n (τ ) = α

(j)
n (τ ) + iω

(j)
n (τ ) as the root of equation (10) near τ

(j)
n for every 1 ≤ n ≤ ñ and j, satisfying α

(j)
n (τ

(j)
n ) = 0 and

ω
(j)
n (τ

(j)
n ) = √

xn. In summary, we arrived at the following theorem:

Theorem 1When τ ∈ [0, τ (0)n0 ) and there are positive real roots in equation (10), infection equilibrium E1 is locally asymptotically

stable, where

τ
(0)
n0 = min

{

τ
(j)
n

∣

∣

∣
1 ≤ n ≤ ñ, j = 0, 1, 2, ...

}

.

Proof.When τ ∈ [0, τ (0)n0 ) and equation (10) have no positive real roots, where τ
(0)
n0 = min

{

τ
(j)
n

∣

∣

∣
1 ≤ n ≤ ñ, j = 0, 1, 2, ...

}

, all the

roots have strictly negative real parts. Thus, E1 is locally asymptotically stable for τ ∈ [0, τ (0)n0 ).

Sensitivity of the basic reproduction number

In this part, the sensitivity index of the basic reproduction number is explored in order to find out the most sensitive parameter that

can significantly affect the basic reproduction number and give proper treatment strategies (3).

The sensitivity index can be computed by using the following equation:

K
R0
q =

∂R0

∂q
×

q

R0
(18)

The basic reproduction number of E0 is as follows:

R0 =
bαkαx0

aαεα
,where x0 =

Tα
max

2rα

[

−(dα − rα)+

√

(dα − rα)2 +
4ξαrα

Tα
max

]

.

The results of sensitivity indexes (Table 1) demonstrated that the infection rate of uninfected cells to become infected cells (b),

production rate of free viruses (k), maximum hepatocyte counts in the liver (Tmax), and production rate of uninfected cells (ξ ) have the

highest positive index. Therefore, decreasing the infection rate, the production rate of free viruses, and the production rate of uninfected

cells can help treat patients with hepatitis B. On the contrary, the death rate of infected cells (a), the death rate of free viruses (ε ), and

the death rate of uninfected cells (d) have the highest negative index. This also suggests that increasing the death rate of infected cells,

the death rate of free viruses, and the death rate of uninfected cells can also keep R0 < 1 and help the treatment of patients with

hepatitis B.

Numerical simulation

In this section, a simulation is carried out to prove the accuracy of the aforementioned theoretical analysis.

Algorithm

Before the simulation, first, we provide the algorithm to solve the fractional-order differential equation (35, 36):















































































x(tk) =
[

ξα − dαx(tk−1)+ rαx(tk−1)
(

1− x(tk−1)+y(tk−1)
Tα
max

)

− bαx(tk−1)v(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j x(tk−j),

y(tk) =
[

bαx(tk−1)v(tk−1)− ay(tk−1)− kα1 y(tk−m−1)z(tk−m−1)
]

hq1 −
k
∑

j=v
c
(q1)
j y(tk−j),

v(tk) =
[

kαy(tk−1)− εαv(tk−1)− kα2 y(tk−m−1)z(tk−m−1)
]

hq1 −
k
∑

j=v
c
(q1)
j v(tk−j),

z(tk) =
[

kα3 y(tk−m−1)z(tk−m−1)− kα4 z(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j z(tk−j),

w(tk) =
[

kα5 + kα6 y(tk−1)z(tk−1)− kα7w(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j w(tk−j),

(19)

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1036901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2022.1036901

TABLE 1 Sensitivity indexes of R0 to model parameters.

Parameter Sensitivity index

b 0.9000

k 0.9000

a −0.8100

ε −0.8100

Tmax 0.9298

d −0.8951

r −0.4518

ξ 0.8716

TABLE 2 Description of parameters and values when R0 < 1.

Parameter Description Value Source

ξ Production rate of uninfected cells 4.6664 (37)

d Death rate of uninfected cells 2.1897 Estimated

r Proliferation rate of uninfected

cells

0.0924 Estimated

Tmax Maximum hepatocyte counts in the

liver

4.2843 Estimated

b Infection rate of uninfected cells to

become infected cells

1.4042 Estimated

a Death rate of infected cells 3.8707 Estimated

k1 Cure rate of infected cells by CTL 1.8838 (37)

k Production rate of free viruses 1.3655 (37)

ε Death rate of free viruses 1.48663 Estimated

k2 Clearance rate of free viruses by

CTL

1.2661 Estimated

k3 Production rate of CTL 3.8549 (37)

k4 Death rate of CTL 1.1395 Estimated

k5 Natural production rate of ALT 1.8789 (37)

k6 Production rate of ALT from

infected cells

0.12002 Estimated

k7 Death rate of ALT 1.2557 Estimated

where Tsim is time length, k = 1, 2, 3, ...,N, N = [Tsim/h],

m = [τ/h], and x(0) = x0, v(0) = v0,w(0) = w0, y(t) =
y0, z(t) = z0, t ∈ [−τ , 0] are the initial conditions. c

(q)
0 =

1, c
(q)
j =

(

1− 1+q
j

)

c
(q)
j−1.

Simulation of asymptotically stable
infection-free equilibrium

First, we simulate the case of infection-free. The parameters

are shown in Table 2.

The time length is 400, and the initial conditions are x(0) =
1, v(0) = 1, w(0) = 1, y(t) = 1, z(t) = 1, t ∈ [−τ , 0]. The

order α = 0.9 and the time delay τ = 0.7. Therefore, we have

E0 =
(

x0, y0, v0, z0,w0
)

= (2.0289, 0, 0, 0, 1.4372), and the

basic reproduction number R0 = 0.7546.

The behaviors of the uninfected cells (x), infected cells

(y), free viruses (v), CTLs (z), and ALT (w) are shown in

Figure 1. In Figure 1, all individuals converge to the infection-

free equilibrium E0, and the basic reproduction number R0

is 0.7546, which is smaller than 1. This coincides with our

theoretical analysis, which showed that when R0 < 1, the

infection-free equilibrium E0 is asymptotically stable.

Simulation of asymptotically stable
infection equilibrium

The theoretical analysis of the infection equilibrium is

verified in this section. Similarly, the parameters are shown in

Table 3.

The initial conditions are the same as in the previous

section. The time length is 400. The order α = 0.9,

and the time delay τ = 1.2. Therefore, the infection

equilibrium is as follows: E1 =
(

x1, y1, v1, z1,w1
)

=
(1.2762, 0.3341, 0.5338, 1.0787, 1.4802), and the basic

reproduction number is R1 = 2.0132.

Figure 2 is the behavior of the uninfected cells (x), infected

cells (y), free viruses (v), CTLs (z), and ALT (w) with R1 > 1

and τ = 1.2. From Figure 2, we know that although all the

individuals oscillate at the beginning, they converge to infection

equilibrium E1shortly. Figure 3 shows the phase portraits of

the uninfected cell–infected cell–free virus space; the arrow

indicates the direction of convergence of the phase portraits, and

it converges to the infection equilibrium E1 (red dot).

Simulation of the Hopf bifurcation of the
infection equilibrium

In this subsection, the Hopf bifurcation of the infection

equilibrium is simulated. All parameters are the same as

those in Section Simulation of asymptotically stable infection

equilibrium, except τ = 3.2.

Figure 4 shows that when τ = 3.2, the uninfected cells (x),

infected cells (y), free viruses (v), CTLs (z), and ALT (w) oscillate

periodically around the infection equilibrium E1. Figure 5 shows

the phase portraits of the uninfected cell–infected cell–free

virus space, and when τ = 3.2, the phase portraits are a

stable limit cycle which is around the infection equilibrium E1.

The bifurcation diagram (Figure 6) shows that the stability of

infection equilibrium E1 changes at τ = 1.2.
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FIGURE 1

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), and ALT (w) with R0 < 1 and τ = 0.7.

TABLE 3 Description of parameters and values when R1 > 1.

Parameter Description Value Source

ξ Production rate of uninfected cells 4.6664 (37)

d Death rate of uninfected cells 2.1897 Estimated

r Proliferation rate of uninfected cells 0.0924 Estimated

Tmax Maximum hepatocyte counts in the liver 4.2843 Estimated

b Infection rate of uninfected cells to become infected cells 2.4042 Estimated

a Death rate of infected cells 2.8707 Estimated

k1 Cure rate of infected cells by CTL 1.8838 (37)

k Production rate of free viruses 2.3655 (37)

ε Death rate of free viruses 0.48663 (37)

k2 Clearance rate of free viruses by CTL 1.2661 Estimated

k3 Production rate of CTL 3.8549 (37)

k4 Death rate of CTL 1.1395 Estimated

k5 Natural production rate of ALT 1.8789 (37)

k6 Production rate of ALT from infected cells 0.12002 Estimated

k7 Death rate of ALT 1.2557 Estimated

Simulation of phase portraits with
di�erent orders

In this section, the phase portraits with different orders

are studied by using the method of numerical simulation.

The initial order is α = 0.75, and with step of 0.05,

the order increases to 0.99. The phase portraits also used

the uninfected cell–infected cell–free virus space. As shown

in Figure 7, when τ = 1.2 and the order (α ) increases

from 0.75 to 0.99, the volume of the phase portraits becomes
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FIGURE 2

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), ALT (w), and phase portraits of the xyz-space with

R1 > 1 and τ = 1.2.

FIGURE 3

Phase portraits of the xyz-space with R1 > 1 and τ = 1.2.

bigger and the phase portraits become more complicated.

Furthermore, the numerical simulations indicated that when the

order increases from 0.75 to 0.95, the uninfected cell–infected

cell–free virus space converges to the infection equilibrium

E1. However, when α = 0.99, the phase portrait is a stable

limit cycle, which is around the infection equilibrium E1. This

indicated that the order can significantly affect the stability of

the system.

Conclusion and discussion

In this study, a fractional differential model of HBV infection

with time delay and logistic proliferation was proposed in

order to better understand the infection mechanism and realize

the infection progression. First, the infection-free equilibrium,

infection equilibrium, and the basic reproduction number

were computed. In epidemiology, R0 is considered the most

important parameter, which provides an insight into how the

disease spreads and helps us understand how to control the

disease. Therefore, we proved that if the basic reproduction

number R0 = bαkαx0
aαεα < 1, the infection-free equilibrium

(E0) is locally asymptotically stable, which indicated that if

the basic reproduction number R0 < 1 can be controlled

in patients, hepatitis B will disappear. Similarly, the stability

analysis of the infection-free equilibrium (E1) was discussed.

In addition, the Hopf bifurcation of the infection equilibrium

was studied at the theoretical level. Furthermore, sensitivity was

analyzed to screen out the parameters that can significantly

affect the basic reproduction number in our model. The results

indicated that decreasing the infection rate (b), production rate

of free viruses (k) and production rate of uninfected cells (ξ )

can significantly decrease the basic reproduction number (R0).

Similarly, increasing the death rate of infected cells (a), the
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FIGURE 4

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), ALT (w), and phase portraits of the xyz-space with

τ = 3.2.

FIGURE 5

Phase portraits of the xyz-space with τ = 3.2.

death rate of free viruses (ε ) and he death rate of uninfected

cells (d) can also decrease the basic reproduction number (R0).

Therefore, in order to keep R0 < 1, the patient can decrease

parameters b, k, and ξ or increase a, ε , and d to achieve the

purpose of treatment.

In order to verify the accuracy of the aforementioned

theoretical analysis, the numerical simulations were carried out.

The simulation results showed that when R0 < 1 and τ < 1.2,

FIGURE 6

One parameter bifurcation diagram with respect to τ .

the infection-free equilibrium E0 is asymptotically stable, which

indicates that the disease will disappear. When R1 > 1 and τ <

1.2, the infection equilibrium E1 is asymptotically stable, which

indicates that the disease could be mitigated and will lead to a

lower infectious class over a period. However, with the increase

in τ , the uninfected cells, infected cells, free viruses, CTL

levels, and ALT levels oscillate periodically around the infection
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FIGURE 7

Phase portraits of the xyz-space with τ = 1.2 and α = 0.75, α = 0.80, α = 0.85, α = 0.90, and α = 0.99.

equilibrium E1, and the phase portrait is a stable limit cycle,

which around the infection equilibrium E1 indicate that the

disease would be out of control. Furthermore, the simulations

also indicated that the order can significantly affect the stability

of the system. For example, if the order is in the range of 0.75–

0.95, the phase portraits converge to the infection equilibrium

E1, and when α = 0.99, the phase portrait is a stable limit cycle.

Therefore, time delay and fractional order are necessary

factors that should be considered in modeling HBV infection

and for researching dynamic characteristics. Although the

process of HBV infection is more complicated than is

established in this study, we believe that the model and

analysis can play an important role in improving the HBV

treatment regimen.
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