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Introduction:Usingwrist-wearable sensors to ecological transient assessment

may provide a more valid assessment of physical activity, sedentary time,

sleep and circadian rhythm than self-reported questionnaires, but has not

been used widely to study the association with mild cognitive impairment and

their characteristics.

Methods: 31 normal cognitive ability participants and 68 MCI participants

were monitored with tri-axial accelerometer and nocturnal photo volumetric

pulse wave signals for 14 days. Two machine learning algorithms: gradient

boosting decision tree and eXtreme gradient boosting were constructed using

data on daytime physical activity, sedentary time and nighttime physiological

functions, including heart rate, heart rate variability, respiratory rate and

oxygen saturation, combined with subjective scale features. The accuracy,

precision, recall, F1 value, and AUC of the di�erent models are compared,

and the training and model e�ectiveness are validated by the subject-based

leave-one-out method.

Results: The low physical activity state was higher in the MCI group than

in the cognitively normal group between 8:00 and 11:00 (P < 0.05), the

daily rhythm trend of the high physical activity state was generally lower in

the MCI group than in the cognitively normal group (P < 0.05). The peak

rhythms in the sedentary state appeared at 12:00–15:00 and 20:00. The

peak rhythms of rMSSD, HRV high frequency output power, and HRV low

frequency output power in the 6h HRV parameters at night in the MCI group

disappeared at 3:00 a.m., and the amplitude of fluctuations decreased; the

amplitude of fluctuations of LHratio nocturnal rhythm increased and the phase

was disturbed; the oxygen saturation was between 90 and 95% and less

than 90% were increased in all time periods (P < 0.05). The F1 value of the

two machine learning algorithms for MCI classification of multi-feature data

combined with subjective scales were XGBoost (78.02) and GBDT (84.04).
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Conclusion: By collecting PSQI Scale data combined with circadian rhythm

characteristics monitored by wrist-wearable sensors, we are able to construct

XGBoost and GBDT machine learning models with good discrimination, thus

providing an early warning solution for identifying family and community

members with high risk of MCI.

KEYWORDS

mild cognitive impairment, circadian rhythm, wrist-wearable sensors, ecological

transient assessment, machine learning

Introduction

Sleep disorder, especially circadian rhythm disturbance, is

a common form of mild cognitive impairment (MCI) among

adults and is a high risk factor for progression to dementia

(1, 2). However, the impairment of sleep can be subjectively

exaggerated in patients with MCI (3, 4). Therefore, evidence

from objective measures is essential for constructing a more

comprehensive model to understand the influence of the

relative amplitude of the circadian rhythm of sleep and wake

on the onset of MCI. Wearable technologies allow objective,

ecologically transient long-term monitoring of physiology and

behavior for motion tracking as well as sleep and circadian

rhythm assessment (5). These physiological and behavioral

assessments achieve minimal interference and are able to

detect subtle changes in specific parameters. They are being

increasingly used in clinical studies of chronic disease in

the community, with particular appeal in dementia. A recent

systematic assessment of the use of wearable technology (6)

showed a decrease in daily activity levels as well as sleep

efficiency and an increase in circadian rhythm variability in

patients with dementia.

However, data from similar MCI studies with wearable

technology become complicated due to variations in study

objectives, procedures, feature extraction, and statistical

methods, particularly for estimating the mean and variability

of circadian rhythms (7). Moreover, few studies have been able

to simultaneously estimate three key indicators of circadian

activity (e.g., rhythm amplitude, timing, and variability) while

also considering changes in circadian rhythms over multiple

days in the same subject.

Therefore, we further studied the objective evidence of

continuous circadian rhythm monitoring for early detection

of community-dwelling older adults with MCI, and explored

whether MCI classification model with good diagnostic

efficiency could be constructed after adding the evidence of

objective circadian rhythm measurement. Participants were

assessed on the MoCA and PSQI scales and completed a 14-

day triaxial accelerometer and day-time physical activity and

night-time photoplethysmographic (PPG) signal recording with

simultaneous sleep diary recording. Records of daytime physical

activity and nocturnal photoelectric capacitance pulse wave

signals were extracted to analyze the association of daytime

physical activity (PA), sedentary time, and rhythmic amplitudes

of nocturnal physiological functions with MCI.

Methods

Participants

We recruited 68 elderly individuals with MCI living in the

community, and 31 normal cognition participants were selected

and matched for age and sex.

Inclusion criteria

(1) Patients were eligible for participation if they had been

diagnosed with MCI according to the 2018 Chinese Guidelines

for the Diagnosis and Treatment of Dementia and Cognitive

Impairment (8); (2) aged between 60 and 75 years old; (3)

had normal activities of daily living, self-care or basic self-care;

(4) understood and cooperated, participated and signed the

informed consent form voluntarily.

Exclusion criteria

(1) Geriatric Depression Scale (GDS-15) score>8 (9), or a

history of depression; (2) brain tumors, Parkinson’s disease,

unstable other medical conditions that can affect brain function

or influence the evaluation of cognitive function; (3) history of

acute illness within 3 months; (4) current diagnosis of active

epilepsy; (5) secondary sleep-wake rhythm disorder due to

physical illness or mental disorder; (6) participation in other

clinical trials that could affect the evaluation of the results of

this study.

Ethical approvals were granted by Ethics Committee of

the Rehabilitation Hospital affiliated to Fujian University of

Traditional Chinese Medicine (2019KY-002-02) and Ethics

Committee of the Second People’s Hospital of Fujian Province

(SPHFJP-K2019001-1). We also registered this study in the

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1036886
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2022.1036886

Chinese Clinical Trial Registry (ChiCTR-ICR-15005795). All

participants provided informed consent before the initiation of

study procedures.

Evaluation projects

General demographic information

Basic demographics, behavioral lifestyle, health

status and other factors were assessed using basic

information questionnaires.

Cognitive function assessment

(1) Montreal Cognitive Assessment (MoCA)

The Fuzhou version of the MoCA scale was used to assess

the overall cognitive function of the subjects face-to-face. The

preliminary study of the project team proved that the Fuzhou

version of the MoCA scale has good reliability and structural

validity with satisfactory factor loadings on the corresponding

factors (10), including eight cognitive domains such as executive

function, visuospatial structure, memory, attention, verbal

fluency, abstraction, calculation and orientation. The total

MoCA score was 0–30 (a higher score equates to better

function), with≥26 being normal, between 18 and 26 beingmild

cognitive impairment, between 10 and 17 being moderate, and

less than 10 being severe.

(2) Ascertain Dementia 8-item Questionnaire (AD8)

The AD8 Dementia Screening Scale was developed by the

University of Washington in 2005 and it contains 8 items (11).

The Chinese version of the scale uses a score of ≥2 as the

cutoff value for cognitive impairment, with a sensitivity of 85.7%

and a specificity of 77.6% (12). Because the Chinese version of

the AD8 is less time-consuming and is easy for older adults to

understand and self-assess, it has good potential for widespread

use in community and non-specialized medical settings such as

general medicine.

(3) Instrumental Activities of Daily Living Scale (IADLs)

Developed by Lawton et al. with good reliability and

validity (13). The scale contains eight entries on telephone

use, shopping, food preparation, household maintenance,

laundry, transportation, medication management, and financial

management, with a total score of 0 to 23, with higher scores

representing more complete activities of daily living abilities. A

score of less than 2 standard deviations from the norm means

that the ability to perform activities of daily living is severely

impaired (14).

(4) Geriatric Depression Scale-15 (GDS-15)

Simplified from Burke et al. (15), the Chinese version of

the scale has an internal consistency Cronbach’s α coefficient

of 0.82 (16). The scale contains 15 items, of which 1, 5, 7, 11,

and 13 are reverse scored, and the remaining 10 are positive

scored, each with a score of 0 or 1, giving a possible high

score of 15. The higher the score is, the more pronounced the

depressive tendency. A GDS-15 score >8 indicates the presence

of depressive symptoms.

Subjective sleep quality assessment

The participants completed a recent 1-month sleep quality

assessment using the internationally recognized Pittsburgh Sleep

Quality Index scale (PSQI) (17). The Chinese version has been

tested for reliability and validity and is suitable for assessing sleep

quality in the Chinese population (18). The PSQI scale consists

of 19 self-assessment items that comprise 7 dimensions, namely,

sleep quality, time to sleep, sleep duration, sleep efficiency,

sleep disorders, hypnotic drugs, and daytime dysfunction. Each

dimension is scored on a 0–3 scale, and the cumulative score for

each dimension is the total PSQI score, with a total score range

of higher scores indicating a worse quality of sleep. A score of

0 to 5 is specified: sleep quality very well; scores >5 indicate a

significant sleep disorder.

Objective circadian rhythm monitoring and
feature extraction

This study used a wristwatch with a tri-axial accelerometer

and an optical heart rate sensor (W180, Shenzhen Fitfaith

Technology Co., Ltd.) as the data collection device (Figure 1).

The accelerometer signals are sampled at 25Hz, and the PPG

signals are sampled at 100Hz. This wristwatch is powered by a

built-in battery, which has a maximum 12-hour usage time and

supports USB charging.

Each subject was allocated two wristwatches for rotation.

They were asked to wear the device at all times for a period

of 14 days and not to remove it except for bathing, swimming,

and rotating the watch. During the sleep period, subjects were

required to attach a separate finger sleeve to the watch and wrap

the sleeve around their index finger. The watch automatically

activates an optical heart rate sensor using PPG. This sensor

emits infrared light onto the skin to capture the pulse wave

signal, which can measure physiological parameters such as

heart rate and respiratory activity. Outside of this process, only

the three-axis acceleration sensor in the watch works, recording

the acceleration signal from the wrist. Each subject was also

asked to record the time of going to bed and waking up in the

morning each day in a sleep diary during the experiment.

The experiment was conducted in batches between

September 2020 and March 2021. The 14-day experiment

was conducted entirely on the subjects’ own, without
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FIGURE 1

System setup: The data collection and analysis of wrist-wearable sensors. (A) The built-in tri-axial accelerometer records the acceleration signal

of the wrist and converts it into a digital signal for storage; (B) two channels of transmission mode PPG signals were collected from the

participants’ index finger and analyzed using an independent component analysis (ICA) algorithm. The respiratory activity was separated from

the heart-related pulsation in PPG after the ICA analysis.

any intervention by the experimenter during this period.

However, at the end of each batch, the experimenter will make

improvements to the subsequent batches based on participant

feedback and the quality of the collected data. Improvements

include giving subjects more training before the experiment,

upgrading the battery capacity of the wristwatch, providing

interchangeable watch straps to avoid allergies, etc.

All data processing and statistical analysis steps are

achieved on the MATLAB 2020b, The Mathwork, Inc. The

implementation of the machine learning and the visualization

of results are based on python toolkits such as scikit-learn

and matplotlib.

(1) Data cleansing

Based on the examination of the experimental data,

especially from the early batches, we found the following

bad data: (1) the sensor of the subject’s watch was damaged

due to water and other special circumstances, resulting in

abnormalities in the recorded acceleration and PPG signals and

failure to present normal waveforms; (2) the subject did not

charge the watch in time while wearing the watch, making the

watch automatically shut down and unable to record rhythmic

information; (3) the subject removed the watch due to the

subject removed the watch because of discomfort, housework,

etc. In this case, the watch recorded a null signal. These bad

data were screened out by manual selection. According to the

sleep logs filled out by the participants, more than 90% of the

participants had a subjective sleep time before 0:00 am and a

subjective wake time after 6:00 am, and most of them woke up

in the middle of the night during this period. Therefore, the

time period from 0:00 to 6:00 am was used as the entry window

for the analysis of physiological nocturnal rhythms. Most of the

participants woke up before 8:00 am and started their daytime

activities, and the earliest time to sleep was after 8:00 pm, so the

period from 8:00 am to 8:00 pm was used as the entry window

for the analysis of the physical activity daily rhythm. If a piece

of data for a subject is not included in this analysis time period,

that data will be screened out.

(2) Data pre-processing

The wearable data acquisition device used in this experiment

has a built-in filtering module, and the analog signal collected

by the sensor is passed through the filtering module and the

analog-to-digital conversion module to obtain the three-axis

acceleration data and PPG data. The data were further filtered

in order to filter out any possible interference during signal

acquisition. For daytime triaxial acceleration data, a fourth-

order Butterworth bandpass filter (0.2Hz to 15Hz) was used

to remove the effects of body motion (19). For nighttime PPG

data, since the PPG signal data recorded during sleep are affected

by environmental disturbances and body movements, the PPG

signal processing was performed by ensemble empirical mode

decomposition (EEMD) with reference to the method of Motin

et al. (20). We randomly added 100 groups of white noise to

the original signal and extracted the scale components that fell

within the range of physiological parameters such as heart rate

and respiration of the elderly to obtain the denoised data.

(3) Daytime physical activity rhythm features

Indeed, there is some evidence that regular PA can favorably

affect dementia patients’ physical and cognitive function, quality

of life, and activities of daily living (21). Most studies have used

the ActiGraph as the gold standard tool for acquiring PA. Other

studies have also used other acceleration monitoring devices as
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replacements (22). In this study, the sum of Count values was

calculated from the acceleration data in 1-minute segments to

calculate the PA. Based on the PA value, sedentary as well as

the low-, medium-, and high-intensity activity (6, 23) can be

classified. Specifically, the vertical axis acceleration signal was

resampled to 30Hz, and the acceleration values within a certain

range were converted to the corresponding Count values in

a sequence of 30 sample points and according to a threshold

setting (24). A period of data longer than 90min with PA kept

at 0 was detected as a non-wear time and screened out (23).

The analysis indicators and definition criteria of daytime PA are

detailed in Table 1.

(4) Nighttime physiological rhythm features

The PPG signal can be used to extract heart rate (HR),

respiratory rate (RR), and oxygen saturation (SpO2) (25–27).

The calculation module for these three physiological indices

is already built into the wristwatch, so they can be extracted

directly from the data. Heart rate variability (HRV) can be

replaced by pulse rate variability (PRV) (28). The PRV-related

indicators rMSSD, LF, HF, and LF/HF can be obtained from the

PPG data (29).We divided the data into 30-second windows and

extracted the average physiological indicators HR, RR, SpO2,

rMSSD, LF, HF, and LF/HF from them (The formula to calculate

the indicators can be seen in Table 2). After normalizing each

type of feature by the Z-score method, the feature values

obtained in all windows were concatenated into a long time

series. It is also worth noting that the SpO2 data were also used to

calculate the number of oxygen decreases obtained under each

hour to estimate the quality of the subject’s breathing during

sleep. The duration of the oxygen desaturation (OD) events

was also recorded as an analyzable point, where each oxygen

desaturation event was defined in a way as a continuous decrease

of more than 4% under one period (30). The percentage of time

TABLE 1 Analysis indicators and definition criteria of daytime physical

activity information.

Analysis of indicators Meaning

Physical Activity (PA) Sum of Count values in one minute

Sedentary Moments when the PA value

within the group was at 0–40%

Low Physical Activity Moments when the PA

value within the group was at 40%−70%

Median Physical Activity Moments when the PA value

within the group was at 70%−90%

High Physical Activity Moments when the PA value

within the group was at 90%−100%

Independent sample t-test to compare the differences in indicators between groups at

each time period, with the significance level α set at 0.05.

in each hour when SpO2 levels exceeded 95, 90–95%, and below

90% was used for analysis as well.

The daytime and nighttime physical activity rhythm features

of the MCI group and the cognitive normal group were averaged

for each time period and presented as line graphs. To show

the overall pattern and filter out the fluctuating data points,

the median value was taken for each adjacent 5min data, and

720 data points (i.e., the number of the data within the six-

hour period) were compressed into 144 points. Moreover, the

compressed data were further divided to four time periods. The

average value of every feature was calculated.

Machine learning algorithm for MCI
classification with multi-features training

(1) Feature extraction

To further investigate the relationship between nocturnal

physiological rhythm features and MCI, this experiment was

conducted by extracting the nocturnal rhythm features of the

subjects and constructing machine learning models for the

classification task of MCI. Specifically, we extracted HR, RR,

SpO2, rMSSD, LF, HF, and LF/HF ratios between 00:00 and 06:00

for each group of data. With a window length of 20min and a

sliding window of 10-min stride, the median values of the data

in each window were extracted. This results in 36 features for

each group of rhythmic signals. In addition, we also extracted

the average values of ODI, ODduration, SpO2 ≥95, SpO2 ≥90%,

and the whole night of these indicators for each hour as a feature

group, respectively. In total, a total of 8 feature groups with a

total of 280 features were extracted.

(2) Feature selection

We use each feature group separately to train the random

forest model. Each training group was performed using stratified

ten-fold cross-validation. Also, because the number of samples

in the MCI and control groups is different, stratified sampling is

used to ensure that the sample distribution in the ten folds is the

same. After the model training, the permutation importance was

calculated ten times randomly on the test set (31). The results of

the ten-fold cross-validation were finally averaged to obtain the

importance of each feature within the feature group. The five

most important features in each group were selected. Based on

the median feature importance of the selected features, only the

features with higher feature importance were retained for the

subsequent classification task.

(3) MCI classification model

We empirically found that Gradient Boosting Decision Tree

(GBDT) (32) and eXtreme Gradient Boosting (XGBoost) (33)

performed best on this dataset compared to other machine

learning models. Therefore, they were used for the classification

task of MCI. Grid search (34) was applied to find the best
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TABLE 2 Indicators of nocturnal physiological function and calculation formula.

Indicators Meaning MATLAB formula

rMSSD Root mean square of the difference between adjacent pulse wave crest spacings RMD [diff (PPi)]

LF 0.04–0.15Hz in the pulse wave frequency band average power Band power (wave, fs, [0.04, 0.15])

HF 0.15–0.4Hz in the pulse wave frequency band average power Band power (wave, fs, [0.15, 0.4])

LF/HF Ratio of LF to HF LF/HF

HR Mean heart rate within a slice Mean (HRs)

RR Mean respiration rate within a slice Mean (RRs)

SpO2 Mean peripheral oxygen saturation within the slice Mean (SpO2s)

ODI Number of oxygen desaturation in one hour Length (ODs)

OD duration The mean duration of

oxygen desaturation in one hour

Mean (OD durations)

SpO2 ≥ 95% Percentage of SpO2 content greater than 95% Length [find (SpO2s >= 95)]/length (SpO2)*100

SpO2 90–95% Percentage of SpO2 content between 90 and 95% Length [find (SpO2s 95|SpO2s >= 90)]/

length (SpO2)*100

SpO2 ≤ 90% Percentage of SpO2 content less than 90% Length [find (SpO2s= 90)])/

length (SpO2)*100

PPi is the wave spacing; fs is the sampling frequency of the signal; XXs is the data of the corresponding indicator within a segment; OD, oxygen desaturation.

hyper-parameters for both models. The list of hyper-parameters

includes the number of base learners, the learning rate, and the

maximum depth of the tree structure.

Compared with cross-validation, leave-one-out can fully

use each data and get a more comprehensive performance

evaluation. However, for the dataset in the study, each subject

may have more than one data. There is correlation among the

data belong to one subject. Therefore, leave-one-out cannot be

used in a conventional way because of the risk of data leakage

(35). Instead, we did leave-one-out on the subject list, i.e., each

time the data from one of the subjects would be the test set, while

the other data would be the training set. It not only solves the

data leakage problem but also make highly use of the data.

We used the subject-based leave-one-out for grid search

and evaluating the performance of the best model. The area

under the ROC (AUC) was adopted to find the best hyper-

parameters of the grid search. In addition to AUC, Accuracy,

Precision, Recall, and F1-score were regarded as the evaluation

metrics of the best model. ROC of the classification result

was used to evaluate the performance as well. Besides, both

GBDT and XGBoost are ensemble learning models, allowing the

measurement of the feature importance through the calculation

of the information gain brought by each feature under each base

learner. We present the feature importance in a bar chart, where

the height of the most important feature is set to 100, and the

height of other features is adjusted accordingly.

To check whether subjective scale features can contribute

to the performance of the MCI classification model, we added

the subjective scale features that have significant differences

between the MCI group and the control group to the dataset

and trained newmodels. Furthermore, we used the performance

of the models trained from data with exclusive subjective scale

features for comparison. It is to be noted that, in this case, only

one data was used for each subject instead of the same amount

of data as the records the subject has.

Results

Research subject characteristics

Compared with cognitively normal controls, the MCI group

had a lower level of education, a higher proportion of sleep

disorder, and 2 or more chronic diseases (P < 0.05), as shown

in Table 3. PSQI scores and their subdomain entries sleep

disturbances, daytime dysfunction had intergroup differences, as

detailed in Table 4.

Physical activity day rhythm
characteristics

As shown in Figure 2, the amplitude rhythm fluctuations of

sedentary, low physical activity, median physical activity, and

high physical activity remained essentially the same between

8:00 and 20:00 for participants in the MCI and cognitively

normal groups. The sedentary state basically reaches its peak

between 12:00 and 15:00, when most elderly people are in a

state of rest after eating, mainly sitting and lying in bed, and

the amount of activity is greatly reduced. In the evening, the

MCI group was more sedentary than the cognitively normal
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TABLE 3 Comparison of clinical characteristics between the two

groups who completed wrist-wearable sensors monitoring (n = 99).

Variables Mild cognitive impairment Z/χ2
P-value

No n = 31 Yes n = 68

Female n (%) 17 (54.8) 43 (63.2) 0.629 0.428

Age, years M (IQR) 66 (6) 67 (9) −0.544 0.586

Education, years M (IQR) 12 (7) 9 (4) −2.692 0.007

SBP (mmHg) M (IQR) 128 (10) 126 (15) −0.225 0.822

DBP (mmHg) M (IQR) 80 (15) 80 (9) −0.460 0.646

BMI (Kg/m2) M (IQR) 23.7 (4.4) 23.7 (3.4) −0.485 0.628

GDS-15M (IQR) 1 (2) 3 (3) 21.924 0.020

Sleep Disorders n (%) 11 (35.5) 39 (57.4) 4.407 0.044

MoCAM (IQR) 27 (4) 22 (4) −18.309 <0.001

2 Chronic Diseases and

Above n (%)

6 (19.4) 29 (42.6) 5.055 0.025

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, bodymass index; BMI=

weight (in kg)/height2 (in m2); GDS-15, geriatric depression scale-15; MoCA, montreal

cognitive assessment; Sleep disorders, PSQI total score ≥ 6.

TABLE 4 Comparison of Pittsburgh sleep quality scale scores between

the two groups (n = 99).

PSQI component Mild cognitive impairment z P-value

No n = 31 Yes n = 68

Sleep quality 1.10 (0.65) 1.30 (0.87) −1.276 0.206

Sleep latency 0.94 (0.85) 0.96 (0.84) −0.107 0.915

Sleep duration 0.97 (0.84) 1.24 (1.13) −1.329 0.188

Sleep efficiency 0.61 (0.96) 1.04 (1.24) −1.890 0.063

Sleep disturbances 1.06 (0.36) 1.27 (0.59) −2.105 0.038

Sleeping medication 0.13 (0.56) 0.15 (0.58) −0.161 0.872

Daytime dysfunction 0.65 (0.66) 1.22 (1.03) −3.351 0.001

Global PSQI score 5.42 (2.78) 7.18 (4.40) −2.398 0.019

group between 17:00 and 20:00 and this reached another peak

at approximately 20:00 (a).

As shown (e) in Figure 2, the trend of daily rhythmic

variation of PA intensity in both groups of participants was

highest from 8:00 to 9:00, lowest throughout the day from

13:00 to 14:00, and rebounded to some extent from 17:00 to

19:00. Compared to the cognitively normal group, the MCI

group showed a significant decrease in PA intensity between

11:00 and 12:00, and the same occurred between 17:00 and

19:00. For the daily rhythm trend of the medium physical

activity state (c), no statistically significant differences were

found between groups; the daily rhythm trend in the low

physical activity state was higher in the MCI group than in

the cognitively normal group between 8:00 and 11:00 (b) and

the daily rhythm trend in the high physical activity state was

generally lower in the MCI group than in the cognitively normal

group (d).

As shown in Table 5, the MCI group had lower activity

levels than the normal cognitive group in all six time periods

except “13:00–15:00” after normalizing the data, and the

difference was statistically significant (P < 0.05). During

13:00–15:00, participants in both groups were generally resting

after lunchtime and their activity level reached its daytime

trough; the difference between the groups was not statistically

significant (P > 0.05).

Physiological function night rhythm
characteristics

As seen in Figure 3, the rMSSD-HRV, LF-HRV, and HF-

HRV in the cognitively normal group of older adults showed a

nocturnal elevated rhythm, peaking at approximately 3:00 a.m.

Compared with cognitively normal older adults, the peak

rhythm of the rMSSD-HRV, LF-HRV, and HF-HRV at 3:00 a.m.

disappeared, and the amplitude of fluctuations decreased in the

MCI group. Elevated amplitude and phase disturbance of the

nocturnal rhythm fluctuations of the low-frequency to high-

frequency component ratio (LHratio), a parameter reflecting

sympathetic-parasympathetic interactions, indicates that the

autonomic stability of MCI patients is impaired, and their

relative activity of sympathetic and parasympathetic nerves

is out of balance. In addition, the amplitude of nocturnal

rhythm fluctuations in heart rate and respiration was elevated

in the MCI group, and the rhythm range was essentially

the same.

The mean oxygen desaturation duration of the MCI

patients at 1:00–3:00 was elevated compared to that of

patients with normal cognitive function (P < 0.05). The

percentage of pulse oxygen saturation (SpO2) in the range

of 90–95% and less than 90% was elevated throughout

the night from 0:00 to 6:00 (P < 0.05). There was no

statistically significant difference in the comparison of ODI

and SpO2 greater than 95% (P > 0.05), as shown in

Figure 4.

For HR, RR, SpO2, rMSSD, LF, HF, and the LHratio,

the median window was expanded to 10min to extract

the features, and for ODI, OD duration, SpO2 ≥95%,

and SpO2 90–95% we extracted the values in each hour

as features and calculated them separately from the

total mean value for each time period. As shown in

Table 6, the nocturnal oxygen desaturation index was

reduced in MCI patients, consistent with the range

of rhythmic changes in oxygen saturation and HRV

time-domain/frequency-domain indices.
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FIGURE 2

Di�erences in the temporal distribution of activity intensity and the amount of activity in various states between the two groups during

08:00–20:00. (A) Sedentary state; (B) Low physical activity state; (C) Median physical activity state; (D) High physical activity state; (E) Physical

activity.

TABLE 5 Comparison of daytime activity between groups for each

time period.

Time Mild cognitive impairment

No Yes

08:00–09:00 0.805± 0.084 0.752± 0.157a

09:00–11:00 0.593± 0.082 0.529± 0.061a

11:00–13:00 0.455± 0.152 0.351± 0.124a

13:00–15:00 0.165± 0.072 0.172± 0.077

15:00–17:00 0.497± 0.116 0.446± 0.128a

17:00–19:00 0.676± 0.083 0.473± 0.08a

19:00–20:00 0.381± 0.146 0.282± 0.074a

aIndicates compared to the cognitively normal group, P < 0.05.

Classification performance of MCI
classification models

After data cleansing, only 436 data records were used

for training MCI classification models. Among them, 293

records were collected from 49 MCI group subjects, while 143

records were collected from 24 control group subjects. We first

performed feature selection on the extracted features based on

the permutation importance calculated from the random forest.

Table 7 presents the importance of the five most important

features in each group of features. Among the eight group

of the features, rMSSD and HF have more important feature

(higher than median level); HR and SpO2 performs relatively

worse, where only two features are important; RR, LF and

LF/HF has no features contribute to the classification of MCI. In

general, 20 important features were selected for training theMCI

classification model, which greatly reduced the training burden

of the models.

We used the grid search to tune the hyper-parameters of

the models. For both GBDT and XGBoost, the same hyper-

parameters combination grid was used, including the number

of base learners, the learning rate, and the maximum depth

of the tree structure. At last, comparing the average AUC of

the subject-based leave-one-out, the above hyper-parameters

were set as [150, 0.01, 3] for GBDT and [200, 0.05, 3]

for XGBoost.
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FIGURE 3

Di�erences in changes in various physiological indicators between groups during 00:00–06:00. (A) HR: Heart rate; (B) RR: Respiratory rate; (C)

rMMSD: Root mean square of the di�erence between adjacent pulse wave crest spacings; (D) SpO2: Peripheral oxygen saturation; (E) LF: Low

Frequency, 0.04–0.15Hz in the pulse wave frequency band average power; (F) HF: High Frequency, 0.15–0.4Hz in the pulse wave frequency

band average power; (G) LHratio: Ratio of LF–HF.

Table 8 shows the results of the best-performed MCI

classification models based on GBDT and XGBoost. Besides,

the performance of the model trained from the data added

with subjective scale features and that contains only subjective

scale data are also presented. The adopted subjective scale

features include education (EDU), daytime dysfunction (DD),

sleep disturbance (SD), PSQI score, and type of chronic

disease (CD). As mentioned, the significant difference in
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FIGURE 4

Di�erences in SpO2 and related oxygen desaturation indexes between the two groups during 0:00–6:00. (A) ODI: oxygen desaturation indexes,

number of oxygen desaturation in one hour; (B) OD duration: the mean duration of oxygen desaturation in one hour; (C) SpO2 = 95%:

percentage of SpO2 content greater than 95%; (D) SpO2 90–95%: percentage of SpO2 content between 90 and 95%; (E) SpO2 = 9%: percentage

of SpO2 content less than 90%.

these features between the MCI and control groups has been

proved.

As seen in the table, the model trained from exclusive

subjective scale data performs best for both models, while the

model trained from physiological function features performs

worst. Combining these two types of features would improve

the performance of the MCI classification. Moreover, GBDT

performs much better than XGBoost except for the model

without subjective scale features training. From another view,

the results of the recall metric are approximately 20% higher

than the precision metric. This difference indicates that the

classificationmodels can classify mostMCI data. However, some

normal cognitive subjects may be misclassified as MCI patients.

F1 score is the trade-off between these two metrics. All the

results are around 80%, which shows that the models have good

classification performance. However, as for the AUC metric, all

the results, especially GBDT models, are not impressive, which

can be seen more clearly in the ROC curve (Figure 5).

We also presented the top five important features in each

GBDT and XGBoost classification models (Figure 6). From

the figure we can see that for the models trained from

physiological function features, two rMSSD features are most

important. Education and the PSQI score contribute greatly to

the classification of the MCI no matter whether the training data

contain physiological function. For the GBDT model trained

from both type of data, the performance of the rMSSD features is

quite close to these two subjective scale features. It is to be noted

that all important physiological function features are extracted

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1036886
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2022.1036886

TABLE 6 Distribution of each index of physiological function between groups in each time period.

Time 00:00–01:00 01:00–03:00 03:00–05:00 05:00–06:00

Indicators MCI Control MCI Control MCI Control MCI Control

HR 74.8± 58.5 69.4± 42.8 77± 65.3 69.2± 40.8 77.7± 68 68.3± 36.6 83± 74.3 67.6± 32.2*

RR 15.8± 11.4 14.8± 8.5 16± 12.8 14.9± 7.8 15.8± 13.2 14.9± 7.4 16.2± 14.4 14.1± 6.1*

SpO2 98.5± 4.2 98.7± 2.8 98.7± 4.6 98.7± 2.7 98.7± 4.7 98.8± 2.4 99± 4.9 98.8± 2.1

rMSSD 67.3± 64.7 73.9± 40.6 63.1± 55.8 79± 48.6* 65.1± 50.6 84.4± 51.8* 76.7± 62.8 87.4± 53.2

LF 497.7± 352.6 594.8± 358.1* 480.1± 339.4 629.7± 367.8* 519.8± 359.6 663.3± 368.1* 578.7± 389.2 669.2± 360*

HF 1072.9± 1153.3 1297.6± 1112.6 1015± 993.3 1355.1± 1025.9* 1150.9± 1258.2 1424.4± 965* 1257.9± 1180.8 1411.4± 931.1

LF/HF 0.6± 0.2 0.6± 0.2 0.6± 0.2 0.6± 0.2 0.6± 0.2 0.6± 0.2* 0.6± 0.2 0.6± 0.2

ODI 5.4± 7 4± 6.6* 4.9± 5.6 4.1± 4 4.7± 4.8 3.8± 3.5* 6± 6.6 4.4± 4.8*

OD duration 40.8± 45.3 50.1± 77.9 58.2± 90.9 43.6± 68.1 57.9± 100 58.1± 58.9 44.6± 44 51± 80.4

SpO2 ≥95% 89.6± 17.9 94.7± 13* 89.2± 18.3 93.8± 13.9* 88± 19.7 93.9± 12.1* 86.8± 21.9 94± 12.1*

SpO2 90–95% 9.5± 16.4 4.9± 12* 9.8± 16.2 5.8± 13.4* 11.2± 18.4 5.6± 11.3* 11.6± 19.3 5.4± 11.3*

SpO2 ≤90% 0.9± 5.8 0.5± 2.4 1± 6.5 0.4± 2.1 0.8± 6.1 0.5± 1.9 1.7± 9.3 0.6± 3.4

*The MCI group and the cognitively normal (Control) group with statistically significant differences for that index and for that time period.

HR, heart rate; RR, respiratory rate; SpO2 , peripheral oxygen saturation; LF, low frequency, 0.04–0.15Hz in the pulse wave frequency band average power; HF, high frequency, 0.15–0.4Hz

in the pulse wave frequency band average power; LF/HF, ratio of LF to HF; ODI, oxygen desaturation indexes, number of oxygen desaturation in one hour; OD, duration, the mean

duration of oxygen desaturation in one hour; SpO2 ≥95%, percentage of SpO2 content greater than 95%; SpO2 90–95%, percentage of SpO2 content between 90 and 95%; SpO2 ≤9%,

percentage of SpO2 content less than 90%.

TABLE 7 The top five most important features of each feature group.

OD HR RR SpO2 rMSSD LF HF LF/HF

04:00–05:00* 00:20–00:40* 00:10–00:30* 02:10–02:30* 03:40–04:00* 03:40–04:00 00:00–00:10* 02:40–03:00*

00:00–01:00* 01:10–01:30* 02:50–03:10 02:30–02:50* 02:40–03:00* 03:50–04:10 01:50–02:10* 03:50–04:10

03:00–04:00 00:00–00:10* 00:30–00:50 02:20–02:40 00:00–00:20* 05:20–05:40 02:30–02:50* 05:10–05:30

Mean SpO2 90–95% 03:10–03:30* 00:00–00:10 00:40–01:00 00:10–00:30* 01:40–02:00 05:10–05:30* 02:10–02:30

SpO2 90–95%03:00–04:00 00:40–01:00 00:00–00:20 00:00–00:20 02:50–03:10* 00:10–00:30 03:30–03:50* 03:30–03:50

*The importance of the features with bold mark are higher than median level.

TABLE 8 The performance of the MCI classification models (units: %).

Model Training data Accuracy Precision Recall F1 score AUC

GBDT P 66.74 69.89 88.74 78.20 62.00

P+S 74.31 74.79 93.17 82.98 58.72

S 75.69 75.20 95.22 84.04 62.83

XGBoost P 69.27 73.73 84.30 78.66 65.10

P+S 69.95 75.00 82.94 78.77 64.88

S 69.50 75.64 80.55 78.02 70.68

P, features extracted from physiological function indicators; S, subjective scale features; XGBoost, eXtreme gradient boosting; GBDT, gradient boosting decision tree.

from the data in 00:00∼01:00. This discovery may be helpful to

further research on feature extraction.

Discussion

This study compared indicators of awake and sleepy

circadian rhythm patterns and describes more specifically the

differences in rhythm characteristics between the groups. Some

research questions are answered: (1) Wrist-wearable sensors are

an effective means of monitoring the early cardiopulmonary

coupling characteristics of MCI. Objective evidence of

disturbances in the nocturnal rhythm of physiological functions

is manifested by an imbalance in the relative activity of

sympathetic and parasympathetic nerves and impaired stability

of autonomic functions, particularly evident from 1:00 to
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FIGURE 5

The ROC curves of the MCI classification model including GBDT and XGBoost. Receiver operating characteristic curves. AUC (C statistics) is the

corresponding values of the area under the curve for each model.

FIGURE 6

The top five importance features contribute to the MCI classification models (A) GBDT and (B) XGBoost. Both models were trained from the data

containing the physiological function features (P), the data containing the subjective scale features (S), and the data of their combination (P + S).

3:00. The daily amount of total physical activity and high

physical activity decreases. The periods of 5:00–7:00, 7:00–9:00,

and 17:00–19:00 may be the key time windows for “adapting

measures according to time”. (2) Two optimal machine

learning models (XGBoost and GBDT) were constructed

using PSQI data combined with objective features of circadian

rhythms monitored by wrist-wearable sensors, and they have

a high accuracy and precision of classification and a good

differentiation of MCI.

Characteristics of changes in nighttime
autonomic function in MCI

Sleep is a complex state characterized by important

changes in the autonomic regulation of cardiovascular and

respiratory activity. Abnormal autonomic regulation is highly

associated with negative affect and sleep disturbances, especially

during NREM sleep, possibly due to abnormal parasympathetic

regulation of cardiac activity (36). HRV is an important
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indicator commonly used in clinical practice for the non-

invasive detection of autonomic function. The results of

this study found that the time domain index HRV and

the frequency domain indices LF-HRV and HF-HRV had

significantly lower rhythm amplitudes and higher LF/HF ratio

rhythm amplitudes during sleep in MCI patients than in

cognitively normal controls. This means that the autonomic

function of MCI patients is impaired, the relative activity of

sympathetic and parasympathetic nerves is imbalanced, and

the body’s ability to adapt to the environment is decreased.

This is similar to the findings of other researchers (37).

As a result, they are prone to clinical manifestations such

as difficulty sleeping, easy waking, reduced concentration,

and forgetfulness.

In recent years, several studies have also found that early

cognitive decline may be associated with cardiac autonomic

dysfunction. Nonogaki et al. (38) assessed cardiac autonomic

function in AD patients by HRV and found that the

memory domain of cognitive function in AD was closely

related to cardiac autonomic function. Marte et al. (39)

showed that compared to cognitively normal elderly people,

MCI and AD patients had altered HRV indicators at 70◦

of postural tilt, mainly in the form of increased HF and

decreased LF and LF/HF. The LF/HF ratio is an indicator of

sympathetic activation, suggesting a poor sympathetic response

to postural stress in patients with MCI and AD. A study

published in 2020 in the journal Sleep (25) showed that

patients with MCI had greater reductions in HF-HRV during

NREM sleep than those with subjective cognitive decline,

suggesting that HF-HRV may be an early biomarker for

detecting dementia.

In addition, we also found important changes in the

nocturnal rhythm of breathing in MCI patients, and the

ODI and low oxygen ratio (SpO2 less than 90%) were

higher than those in the cognitively normal group, especially

during the 1:00–3:00 period. This is consistent with the

results of similar studies. Kazuko et al. (40) found that

a decrease in the apnea/hypopnea index (AHI) at night

and SpO2 in elderly individuals had a negative impact

on cognitive function. Severe nocturnal hypoxemia reflects

impaired functional connectivity of medial temporal brain

structures, which are involved in the pathophysiology of sleep,

memory and dementia (41).

The association between respiratory and cardiac rhythms is

widely recognized. Our study also confirmed that the rhythm

ranges of nocturnal SpO2, ODI and HRV time/frequency

domain indicators in MCI patients were consistent. This

demonstrates that respiratory signal andHRV analysis is a useful

tool for non-invasive and accurate monitoring of respiratory

activity and autonomic regulation of cardiac activity and for

assessing changes in cardiopulmonary coupling during sleep in

patients with MCI.

Characteristics of changes in daytime
physical activity levels in MCI

Although current evidence (42) suggests that sleep

fragmentation, daytime sleepiness, and circadian rhythm

disturbances are common in AD, it is unclear how these factors

influenceMCI activity of daily living patterns, intensity and peak

activity phase. Our study found two distinct peak phases in the

12 h physical activity daily rhythm (10:00–11:00, 16:00–17:00)

and two distinct trough phases (13:00–14:00, 19:00–20:00) in

older adults during the period 8:00–20:00. This suggests that

short breaks after lunch become the norm for older adults. A

cross-sectional study of 2,214 individuals living in several cities

in China (43) showed that healthy older adults aged 60 years and

older who took afternoon naps had significantly higher MMSE

cognitive ability scores than the non-napping group, as well as

significant differences in positional awareness, verbal fluency,

and memory. Furthermore, a research team from the Institute

of Chronic Diseases, affiliated with Zhejiang University School

of Medicine, investigated the relationship between nap duration

and different metabolism-related diseases in 3,327 people aged

18–80 years in four communities in Lanxi City (44), and the

findings suggest that keeping afternoon naps to one hour may

have potential benefits for the prevention of diabetes and its

related diseases.

However, we did not find differences in the phases of

total daytime physical activity amplitude between MCI and

cognitively normal older adults during the 12-hour daytime

rhythms. The MCI group was more sedentary than the

cognitively normal group between 17:00 and 20:00. This finding

is consistent with the evidence that people with AD canmaintain

many activities of daily living abilities in the preclinical phase

(45) and suggests that early cognitive declinemay not affect most

daily physical activities. Despite having similar physical function

and physical activity capacity, MCI patients exhibited a decrease

in physical activity compared to controls. Available evidence

suggests that sedentary behavior is associated with decreased

cognitive and physical function (46) and that increased physical

activity maymoderately promote health benefits (47). It not only

emphasizes the importance of daytime physical activity intensity

affecting cognitive decline but also illustrates the potential value

of early exercise rehabilitation for the MCI population before

significant declines in physical activity and function (48).

When total physical activity was further divided into high,

medium and low intensities to compare the differences between

groups, it was found that the daily rhythm amplitude of the

low physical activity state was higher in the MCI group than in

the cognitively normal group from 8:00 to 11:00. Daily rhythm

amplitude in the high physical activity state was generally lower

in theMCI group than in the cognitively normal group. Medium

physical activity status was basically the same in both groups.

This suggests that MCI patients may have limited capacity for
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high physical activity. Previous studies (49) have shown that

older adults prefer family-centered activities and that cognitive

decline is associated with narrower living spaces and more time

spent at home. MCI patients may spend less time in complex

environments outside of the home, which may not be conducive

to high-intensity physical activity. Many high-intensity physical

activities (e.g., dancing, running, ball games) may be more

physically demanding and cognitively complex than low- to

moderate-intensity physical activities (e.g., cleaning, cooking,

walking) andmay bemore challenging for individuals withMCI.

These individuals may also be cognitively more dependent on

caregivers or other adults to facilitate physical activity programs,

such as during self-care or out-of-home visits. Therefore,

individuals with MCI are an important target population

for moderate-to-vigorous physical activity interventions that

moderately increase daily physical activity and reduce sedentary

time. Tsai et al. (50) found that aerobic and resistance exercise

were effective in increasing neurotrophic proteins, reducing

certain inflammatory cytokines, and promoting neurocognitive

function in older adults with MCI. However, the two exercise

modalities may promote cognitive function through different

neuromolecular mechanisms. A study by Tao et al. (51)

confirmed the potential of traditional Chinese medicine exercise

for MCI as represented by Baduanjin. The Baduanjin group

showed increased gray matter volume in the right hippocampal

region compared to the walking group and increased resting-

state functional connectivity between the hippocampus and the

right angular gyrus in the Baduanjin group compared to the

health education group. Future studies should consider more

multimodal interventions for motor rehabilitation programs in

the MCI population.

Advantages and applications of machine
learning techniques

The use of wearable watch devices has made it possible to

capture physiological functional signals during sleep. Subjects

wore a finger cover equipped with an optical heart rate sensor

during sleep, whereby their real-time PPG signal could be

measured. We extracted nocturnal physiological functional

characteristics from the PPG signals. After data filtering, feature

extraction, and feature screening, GBDT and XGBoost are

constructed to classify prediction of MCI. We validate the

classification performance of the model by the subject-based

leave-one-out method. From the results, both models have great

MCI classification performance. The results of recall metric

are much higher than that of precision, which indicates that

although the model can classify most MCI subjects, there is a

portion of the control group who are misclassified. However,

this is not bad news, because MCI can be ruled out for

false-positive patients by going through more standard MCI

diagnostic procedures. The high F1 score also shows that the

MCI classification models with nocturnal physiological features

has some potential for MCI diagnosis. Nonetheless, we can see

from the ROC curve that the model does not perform well on

the AUC metric, which indicates that the classification results

are quite dependent on the threshold setting.

We also compared the models trained with the addition

of subjective scale features and with only these features each.

These features have been shown to be significantly different in

the MCI and control groups. From the results, it appears that

the inclusion of these subjective scale features can effectively

improve the classification ability of the models. In fact, the

models trained by these features alone already have good

classification results. But by real-time physiological function

signals, especially like heart rate variability features rMSSD as

well as HF, belong to ecological transient assessment. Compared

with the traditional assessment model, this ecological transient

assessment model, which can provide real-time feedback of

circadian rhythm changes in the natural state, is suitable for

long-term monitoring at home and in the community and can

well compensate for the waste of limited medical resources.

The advantage of the machine learning model in this study

is that it can improve the decision-making ability of older

adults and their caregivers. First, machine learning models can

integrate higher-order nonlinear interactions between predictor

variables and outcomes (52). Thus, our model can accommodate

large databases and can also identify interactions between

features. Machine learning can be easily recalibrated over time

formodel iterations as new data become available for subsequent

studies (53), forming ecological transient solutions for MCI

alerts. In addition, advanced machine learning models have the

advantage of being scalable because they can update models by

automatically interfacing with community or hospital EHR data

and integrating digital images, natural language processing, and

continuous monitoring of physiological data (54). Therefore,

machine learning, as a very important assistive technology

for continuous monitoring and early warning of MCI, can

further improve the triage decision-making ability of health care

providers to identify people at high risk of MCI among the

community elderly.

However, it cannot be denied that this study was limited

by the sample size, and external validation of the model

performance is something that needs to be further explored.

Future iterations of the new model could be used to support

decision-making for MCI diagnosis and prediction of referral

to constitute a comprehensive data-based machine learning

decision support system for health care professionals in the

community or health care facilities. In addition, the classification

model can be developed for self-assessment of traditional

Chinese medicine constitution and PSQI scales by older adults

at home, combined with wrist-wearable sensor monitoring data

to decide whether to visit a medical facility for a professional

neuropsychological assessment.
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Shortcomings and prospects

This study benefited from the use of a large sample of

community-dwelling older adults from our prior cross-sectional

study in Fuzhou, China. MCI participants were diagnosed by

a physician. All participants wore wrist-wearable sensors for at

least 3 days or more in a free-living environment, PPG signals

were captured at night, and 24-hour objective monitoring data

were combined with subjective scale assessment data. The results

of this study provide potential evidence for the subsequent

design of targeted rehabilitation interventions.

There are several limitations in this study. First, the

use of a wrist-worn accelerometer did not record certain

specific physical activities, including swimming, cycling, and

lower body activities, and therefore may have underestimated

total physical activity. Second, the study was conducted

in the Fuzhou community without an external validation

dataset. It may not be generalizable to other cities. Future

longitudinal follow-up and mechanistic studies based on

this work will help us better understand how circadian

rhythm disturbances in wakefulness and sleep affect

cognitive decline and brain pathological changes associated

with MCI.

Conclusion

Patients with MCI have impaired autonomic function

stability, imbalance in the relative activity of sympathetic

and parasympathetic nerves, disturbance in the amplitude

of nocturnal rhythm fluctuations of HRV and ODI,

a decrease in total daytime physical activity and high

physical activity, and decreased adaptability of the body

to the environment. By collecting subjective PSQI scale

data combined with objective circadian rhythm features to

construct MCI machine learning classification models with

good discriminatory power, ecologically transient solutions

for MCI early warning are formed that may be useful in

cognitive monitoring and care of older adults at home and in

the community.
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