AUTHOR=Burghardt Géza V. , Eckl Markus , Huether Doris , Larbolette Oliver H. D. , Lo Faso Alessia , Ofenloch-Haehnle Beatus R. , Riesch Marlene A. , Herb Rolf A. TITLE=Aerosol formation during processing of potentially infectious samples on Roche immunochemistry analyzers (cobas e analyzers) and in an end-to-end laboratory workflow to model SARS-CoV-2 infection risk for laboratory operators JOURNAL=Frontiers in Public Health VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2022.1034289 DOI=10.3389/fpubh.2022.1034289 ISSN=2296-2565 ABSTRACT=Objectives

To assess aerosol formation during processing of model samples in a simulated real-world laboratory setting, then apply these findings to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess the risk of infection to laboratory operators.

Design

This study assessed aerosol formation when using cobas e analyzers only and in an end-to-end laboratory workflow. Recombinant hepatitis B surface antigen (HBsAg) was used as a surrogate marker for infectious SARS-CoV-2 viral particles. Using the HBsAg model, air sampling was performed at different positions around the cobas e analyzers and in four scenarios reflecting critical handling and/or transport locations in an end-to-end laboratory workflow. Aerosol formation of HBsAg was quantified using the Elecsys® HBsAg II quant II immunoassay. The model was then applied to SARS-CoV-2.

Results

Following application to SARS-CoV-2, mean HBsAg uptake/hour was 1.9 viral particles across the cobas e analyzers and 0.87 viral particles across all tested scenarios in an end-to-end laboratory workflow, corresponding to a maximum inhalation rate of <16 viral particles during an 8-hour shift.

Conclusion

Low production of marker-containing aerosol when using cobas e analyzers and in an end-to-end laboratory workflow is consistent with a remote risk of laboratory-acquired SARS-CoV-2 infection for laboratory operators.