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Exposure to environmental ionizing radiation (IR) is ubiquitous, and large-dose

exposure to IR is known to cause DNA damage and genotoxicity which

is associated with an increased risk of cancer. Whether such detrimental

e�ects are caused by exposure to low-dose IR is still debated. Therefore,

rapid and early estimation of absorbed doses of IR in individuals, especially

at low levels, using radiation response markers is a pivotal step for early

triage during radiological incidents to provide adequate and timely clinical

interventions. However, there is currently a crucial shortage of methods

capable of determining the extent of low-dose IR exposure to human beings.

The phosphorylation of histone H2AX on serine 139 (designated γ-H2AX),

a classic biological dosimeter, can be used to evaluate the DNA damage

response. We have developed an estimation assay for low-level exposure

to IR based on the mass spectrometry quantification of γ-H2AX in blood.

Human peripheral blood lymphocytes sensitive to low-dose IR, maintaining

low temperature (4◦C) and adding enzyme inhibitor are proven to be key steps,

possibly insuring that a stable andmarked γ-H2AX signal in blood cells exposed

to low-dose IR could be detected. For the first time, DNA damage at low dose

exposures to IR as low as 0.01Gy were observed using the sensitive variation

of γ-H2AX with high throughput mass spectrometry quantification in human

peripheral blood,which ismore accurate than the previously reportedmethods

by virtue of isotope-dilution mass spectrometry, and can observe the time

e�ect of DNA damage. These in vitro cellular dynamic monitoring experiments

show that DNA damage occurred rapidly and then was repaired slowly over

the passage of post-irradiation time even after exposure to very low IR doses.

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1031743
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1031743&domain=pdf&date_stamp=2022-10-28
mailto:ghlsh@163.com
mailto:birm4th@163.com
mailto:xiejw@bmi.ac.cn
https://doi.org/10.3389/fpubh.2022.1031743
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1031743/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao et al. 10.3389/fpubh.2022.1031743

This assay was also used to assess di�erent radiation exposures at the in vitro

cellular level. These results demonstrate the potential utility of this assay in

radiation biodosimetry and environmental risk assessment.

KEYWORDS

low-dose exposure, ionizing radiation, γ-H2AX, humanperipheral blood lymphocytes,

mass spectrometry

Introduction

Since the discovery of X-rays by German physicist Roentgen

(1), industries that utilize radiation and radioactive materials

such as the medical, agriculture, and nuclear power industries

have been expanding (2–4). On the other hand, accidental

or occupational exposure to ionizing radiation (IR), which

occurs to individuals during nuclear mishaps, to astronauts,

and to some medical professionals, can cause side effects (5–

7). Radiation therapy, one of the most important therapeutic

strategies for treating malignancies, can also injure the normal

cells and tissues surrounding tumors (8). Therefore, IR from

natural and artificial sources is a double-edged sword in our

daily life.

Exposure to moderate-to-high doses of IR is known to

induce genotoxic effects that can lead to carcinogenesis (9).

However, whether such detrimental effects can be produced after

exposure to low-dose IR is still controversial (10). Usually, a low

dose of IR is a radiation dose of 100 mSv or less (≤100 mGy)

(11). Epidemiological and clinical studies show that low-dose

IR may induce cancer, cardiovascular diseases and long-term

psychological consequences (11). For example, increased risk

of leukemia and brain tumors have been reported in pediatric

patients following doses of 30–50 mGy, as observed using

CT scans (12). There are still questions, however, about the

impact of even lower doses of exposure for which classical

epidemiological studies are limited. In addition, when the health

risks associated with exposure to low-dose IR were estimated in

previous studies, there were many uncertainties (11, 13). These

uncertainties significantly affect almost every facet of society,

especially medical care, energy production, occupational health

and safety, manufacturing and industry, and all these factors

emphasize the importance of low-dose IR research (10, 13, 14).

When an individual is exposed to IR, knowledge of

the absorbed dose is essential for early triage during

radiological incidents to provide optimum, potentially

life-saving procedures. Toward this goal, biological dosimetry

methods such as the dicentric assay, micronucleus assay,

fluorescence in situ hybridization translocation assay, and

premature chromosome condensation have been established

and used in real-life exposure cases over the past several decades

(15, 16). Among the available assays, the dicentric assay remains

the international gold standard for biodosimetry measurement

of recent radiation exposure (17), detecting exposures to 0.1Gy

when up to 1,000 cells are analyzed (18). Other assays have been

explored but lack sensitivity in the low-dose range (19–21). In

addition, the established methods still have disadvantages in

large-scale accidents, with the most pressing issues being the

time it takes to culture blood samples and the applicable dose

range (22, 23). The culture time for analysis using the premature

chromosome condensation fusion method has been reduced to

2 h, but this is technically difficult, expensive, and restricted to

high doses (24).

However, the most common IR exposure encountered

by humans, both in the environment and occupationally, is

protracted or chronic low-dose exposure. Over the years, a

number of molecular, metabolomic, lipidomic, and protein

markers exhibiting dose responses have been identified (25–

29). None have demonstrated an adequate capability for dose

reconstruction in low-dose exposures. γ-H2AX, which is formed

by the phosphorylation of Ser 139 in histone H2AX, has been

identified as a robust biomarker for DNA double-strand breaks

(DSBs) (30). The potential of the γ-H2AX assay for triage

and/or to measure the absorbed radiation dose for exposed

individuals has been reported in several in vivo and in vitro

studies (31–34). Since the role of γ-H2AX was first elucidated

∼2 decades ago, an immunocytochemical assay with antibodies

recognizing γ-H2AX, which is sensitive to detect even mGy

of IR exposure, has emerged as the gold standard for the in

situ detection of DNA damage, specifically DSBs (30, 35–37).

However, the specificity of immunoassays is limited due to poor

batch-to-batch reproducibility as well as some cross-reactivity

that originates from antibodies, and accurate quantification is

still challenging (34).

We have established a sensitive and convenient liquid

chromatography-tandem mass spectrometry (LC–MS/MS)

method to detect cellular γ-H2AX for use as a tool to rapidly

screen the genotoxicity or carcinogenicity of chemicals (38–40).

Here, an estimation assay based on the mass spectrometry

quantification of γ-H2AX is developed to determine whether

DNA damage and its profiles are caused under very low

dose exposure to IR (as illustrated in Figure 1). Using human

blood cells, optimization of γ-H2AX extraction and other

experimental manipulations were performed and the DNA
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FIGURE 1

Schematic diagram of an estimation assay for low-dose

exposure to IR based on mass spectrometry quantification of

γ-H2AX in blood. Blood from healthy donors, which was

irradiated ex vivo, was used to isolate peripheral blood

lymphocyte (PBL), white blood cell (WBC) and red blood cell

(RBC) at 4◦C or 37◦C according to the manufacturer’s

instructions of the human lymphocyte separation medium and

the red blood cell lysate. Subsequently, after nuclear isolation

with or without protease inhibitors, histone extraction, trypsin

digestion in the solution, and desalting, the peptide sample from

the carboxy terminus of H2AX was used for LC–MS/MS analysis.

damage effect at low levels of exposure to IR was investigated.

This assay promises potential utility in radiation biodosimetry

and environmental risk assessment for low-dose IR exposures.

Materials and methods

Materials and reagents

Peptides that represented the sequences of trypsin

cleavage products from γ-H2AX and H2AX (ASQApSQEY

and ASQASQEY), together with the corresponding isotope-

labeled peptides containing 13C3 as well as 15N-labeled

N-terminal alanine, i.e., (13C3, 15N) ASQApSQEY and (13C3,
15N) ASQASQEY, were provided by Sangon Biotech Co.,

Ltd. (Shanghai, China). Trypsin of sequencing grade was

provided by Promega Biotech Co., Ltd. (Beijing, China). Mouse

monoclonal antibodies against γ-H2AX were purchased from

Millipore (Shanghai, China) and diluted 1:200 for use. Alexa

Fluor 488-labeled goat anti-mouse IgG (H + L) secondary

antibodies were obtained from Sigma–Aldrich Inc. (MO, USA)

and diluted 1:5,000. The C18 Empore disk was provided by 3M

(Beijing, China). Protease inhibitor cocktails and phosphatase

inhibitors were purchased from Roche (Shanghai, China).

Dulbecco’s modified Eagle’s medium (DMEM), Roswell

Park Memorial Institute Medium 1,640 (RPMI 1,640),

penicillin/streptomycin, and fetal bovine serum (FBS) were

purchased from Life Technologies (Paisley, UK). Red blood

cell lysate and human lymphocyte separation medium were

purchased from Tianjin Hao Yang Biological Manufacture Co.,

Ltd. (Tianjin, China). A nuclear extraction kit was provided

by Solar Bio S&T Co., Ltd. (Beijing, China). Formic acid (FA)

was obtained from Sigma–Aldrich Inc. (MO, USA). Other

compounds or reagents were purchased from Sinopharm

Chemical Reagents Co., Ltd. (Beijing, China).

Cell culture and radiation exposure

Human lymphoblast cells (AHH1) and human bronchial

epithelial cells (16HBE) were grown in RPMI 1,640 and DMEM,

respectively. Both media were supplemented with 10% (v/v)

FBS, 100U mL−1 penicillin and 100 µg mL−1 streptomycin.

Cultures were maintained in a humidified atmosphere with

5% CO2 at 37◦C, and the medium was refreshed every 2–

3 days during subculturing. All experiments were performed

with exponentially growing cells, and the passage number was

below 25.

Initially, AHH1 and 16HBE cells were irradiated in a low-

dose range (0.01, 0.02, 0.05, 0.1 and 0.2Gy) at a dose rate

of 0.0281 Gy/min using 60Co γ-ray irradiation (0.24 keV/µm

in water) to evaluate low-dose IR-induced γ-H2AX levels and

DNA damage. Sham-exposed cells were used as controls. Cells

were incubated at room temperature (RT) for various designated

post-exposure times (0.5, 1, 2, 4, 8, and 24 h) until further

processing for γ-H2AXMS analysis.

For low-linear energy transfer (LET) irradiation in the space

radiation environment, a 100 MeV proton cyclotron (0.7371

keV/µm in water) provided by the China Institute of Atomic

Energy was used. The dose rate of protons was 0.8 Gy/min.

For high-LET irradiation in the space radiation environment, a

heavy-ion beam 12C6+ (30.79 keV/µm in water) developed by

the Institute of Modern Physics, Chinese Academy of Science,

was used. The dose rate for heavy-ion beam 12C6+ was 1

Gy/min. AHH1 cells were exposed to varying proton and heavy-

ion doses (sham, 0.5, 1, 2, 4, and 6Gy) to evaluate the response

for space radiation. Cells were collected at various designated

post-exposure times (1, 2, 4, 8, and 24 h) and then processed for

γ-H2AXMS analysis.

Human peripheral blood sampling and
processing

After obtaining written informed consent from

volunteers and ethical approval from the Subcommittee on

Human Investigation of the Beijing Institute of Radiation

Medicine (AF/SC-08/02.146), we collected peripheral

blood samples from 41 healthy adults volunteers (16

females and 25 males ranging from 20 to 40 years old)

by venipuncture into Vacutainer tubes that contained

ethylene diamine tetraacetic acid as an anticoagulant.
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The subjects had no history of chronic disease, substance

abuse, smoking, or toxic chemical exposure. Furthermore,

they had not been exposed to radiation and had no

history of viral infections during the 6 months preceding

the study.

First, healthy human blood samples that were not irradiated

were obtained to measure the basal level of γ-H2AX. Blood

was drawn from each volunteer and kept at RT for 30min

to 1 h to isolate lymphocytes and white blood cells (WBCs)

at 4◦C according to the manufacturer’s instructions for the

human lymphocyte separation medium and the red blood cell

lysate. Then, blood samples from the same 20 volunteers,

randomly selected from the 41 non-smoking healthy volunteers,

were used for all radiation exposure experiments. The blood

samples were divided into 2mL aliquots and then irradiated

with 4Gy at a dose rate of 0.6661 Gy/min and a low-dose

range (0.01, 0.02, 0.05, 0.1, and 0.2Gy) at a dose rate of

0.0281 Gy/min using 60Co γ-ray irradiation (0.24 keV/µm

in water). Sham-irradiated and irradiated blood samples were

treated in the same way. Afterward, the aliquots were recovered

at RT for 0.5 h, and the cellular histones of lymphocytes and

WBCs were extracted with a nuclear extraction kit, which

included the addition of protease inhibitor and phosphatase

inhibitor at 4◦C, and prepared for subsequent γ-H2AX

MS analysis.

Determination of γ-H2AX based on MS
analysis

The determination of γ-H2AX based on the MS technique

was performed as previously described (38, 39). Briefly, cells

were washed and collected in 1.5-mL tubes after treatment.

After nuclear isolation, histone extraction, trypsin digestion

in the solution, and desalting, the peptide sample from

the carboxy terminus of H2AX was analyzed. LC–MS/MS

analysis was conducted using a QTRAP 5,500 (AB Sciex,

Framingham, USA) with an ACQUITY UPLC system (Waters

Co., Manchester, UK). Chromatographic separation was carried

out with an ACQUITY UPLC BEH C18 column (100mm

× 2.1mm, 1.7µm). The column temperature was maintained

at 40◦C. A 10 µL sample aliquot was injected for analysis.

Mobile phases A and B were 0.1% FA in distilled H2O and

acetonitrile, respectively. The elution gradient was initiated

with 1% B and linearly increased to 30% B in 8min at

a flow rate of 0.25 mL/min. The eluent composition was

maintained for 2min, after which the system returned to

1% B and was re-equilibrated for 2min. The eluates in the

first 1min were switched to waste to prevent contaminating

the ion source. The electrospray ionization (ESI) source was

operated in positive mode using nitrogen as the nebulizing

gas. All experiments were performed independently in at

least triplicate.

Immunofluorescence

AHH1 cells were cultured in 25mm culture bottles and

treated with varying γ-ray doses (sham, 1, 2, 4, and 8Gy) at

a dose rate of 0.6661 Gy/min using 60Co γ-ray irradiation

(0.24 keV/µm in water). The cells were washed three times

with precooled phosphate buffered saline (PBS) 1 h after IR was

applied and were spotted onto slides with a cytospin. The cells

were subsequently permeabilized with PBS that contained 0.5%

Triton X-100 at RT for 10min and were blocked with 10% FBS

in PBS at RT for 1 h. Then, the cells were incubated for 1 h with

γ-H2AX primary antibody at RT. The cells were subsequently

washed three times with PBS and then incubated with Alexa

Fluor 488-labeled goat anti-mouse IgG (H+L) secondary

antibody. Then, 4
′

,6-diamidino-2-phenylindole (DAPI) staining

was performed. Slides were imaged using a NIKON TI2-E

(Nikon, Japan) and CRESTOPTICS X-LIGHT V3 fluorescence

microscope system (Crest Optics, Italy).

Statistical analysis

The results are expressed as the mean ± standard deviation

(SD) and were calculated from the quantitative data obtained

from three replicate experiments. Statistical analysis was

performed using one-way analysis of variance in SPSS version

21.0 software (IBM Corp., Armonk, NY, USA). The significance

of the differences between groups was determined using one-

way analysis of variance (ANOVA). P < 0.05 was considered

statistically significant, and n.s. means not significant. Graphs

were generated using Origin 8.0. Linear regression analysis and

curve fitting were conducted using SAS 9.4 (SAS Inc.), and the

respective figures were generated in Origin 8.0.

Results

Dose and time response for γ-H2AX after
low doses of γ-ray exposure in cells

We previously reported a sensitive and convenient method

for detecting cellular γ-H2AX based on stable isotope dilution

mass spectrometry (38). This method can dynamically monitor

DNA damage and repair processes for genotoxic compounds

by the amount change of γ-H2AX and assess the potential

carcinogenicity of genotoxic compounds from the European

Center for the Validation of Alternative Methods list (39). To

investigate whether this method could be used to evaluate

low-dose IR-induced γ-H2AX levels and DNA damage, we

administered a variety of low doses of IR to two cell lines, AHH1

and 16HBE.

The results show that the sensitivity of AHH1 and 16HBE

cells to radiation is different, as γ-H2AX levels in AHH1 cells
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FIGURE 2

Time courses of γ-H2AX in AHH1 and 16HBE cells treated with (A) 0.01Gy and (B) 0.2Gy of γ-ray irradiation for six time points: 0.5, 1, 2, 4, 8 and

24h. Time courses of γ-H2AX in (C) AHH1 and (D) 16HBE cells treated with 0.01Gy of γ-ray irradiation for six time points: 0.5, 1, 2, 4, 8 and 24h.

The horizontal axis represents the exposure time for γ-ray, and the vertical axis represents the proportion of the number of phosphorylated

peptides to the total number of peptides in a cell (n ≥ 3, mean ± SD, **p ≤ 0.01).

increased in a dose-dependent manner after 0.01–0.2Gy γ-

ray exposure, and the levels in 16HBE cells were less affected

(Supplementary Figure 1). Since post-irradiation kinetics must

be considered when using γ-H2AX in biodosimetry (34), the

changes in γ-H2AX for 0.01 and 0.2Gy γ-ray irradiation

were investigated at six time points over a 24 h period in

AHH1 and 16HBE cells (Figure 2). At 0.5 h post-irradiation,

the proportion of γ-H2AX in a cell sharply increased to a

peak and then gradually decreased. An obvious difference

between the two types of cells is that the γ-H2AX level in

AHH1 cells increased to a greater extent than in 16HBE

cells at 0.5 h post-irradiation, further suggesting that the γ-

H2AX levels in AHH1 cells are more sensitive to low levels of

IR exposure (41).

Utility of γ-H2AX for evaluation of the
response after low-LET and high-LET IR
in AHH1 cells

Since AHH1 cells are more suitable for γ-H2AX research,

the γ-H2AX levels in AHH1 cells after proton and heavy-ion

exposure were further profiled. As seen in Figure 3, the γ-

H2AX levels increased significantly compared to those of sham-

exposed cells when AHH1 cells were exposed to 0.5–6Gy proton

and heavy-ion irradiation at various time points, but these

presented different respective trends. The γ-H2AX levels under

these two types of ion irradiation all showed a definite dose-

dependent relationship, but a poor relationship appeared for

heavy ions because of severe cell deterioration and even death.
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FIGURE 3

γ-H2AX response after low-LET proton and high-LET heavy ion exposure in AHH1 cells. (A) γ-H2AX change in 0.5–6Gy proton-irradiated AHH1

cells at various time points, (B) γ-H2AX change in 0.5–6Gy heavy ion-irradiated AHH1 cells at various time points, (C) linear regression plot of

γ-H2AX levels in proton-irradiated AHH1 cells vs. doses at 1 h post-exposure, and (D) linear regression plot of γ-H2AX levels in heavy

ion-irradiated AHH1 cells vs. doses at 1 h post-exposure (n ≥ 3, mean ± SD, **p ≤ 0.01).

Furthermore, we observed a distinct difference in the peak time

of the time-effect relationship. The peak time for heavy ions was

∼1 or 2 h (Figure 3B), while there was a time delay for 100 MeV

protons, with peak time occurring at 4 h (Figure 3A). Significant

differences in the peak time for the two types of irradiations

further suggests that damage to cells from heavy ions was more

hazardous than that from protons (42).

To further evaluate the usefulness of γ-H2AX as a potential

biodosimeter for space radiation, we constructed two dose-

effect calibration curves. The equations for trend lines and R-

squared values are y = 0.673x + 4.475/R2 = 0.8567 and y

= 0.652x + 4.792/R2 = 0.7255 in the dose range of 0–6Gy

irradiation at 1 h post-exposure, respectively, where y is the

ratio of γ-H2AX to total H2AX (Rγ−H2AX/TotalH2AX, briefly,

Rγ /T) and x is the dose (Figures 3C,D). Compared to heavy

ions, the correlation coefficient of the fitted curve for protons

is better, which may be attributed to the less obvious dose-

effect relationship in the latter stage of cells irradiated by

heavy ions.

Correlation analysis of
immunofluorescence and LC-MS/MS for
γ-H2AX

The levels of γ-H2AX in cells exposed to IR are commonly

measured with immunoassays, including immunofluorescence

staining, western blot techniques, flow cytometry, and

enzyme-linked immunosorbent assays (34). To further

verify whether the levels of γ-H2AX are accurately and

quantitatively evaluated with LC–MS/MS assays, we determined
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FIGURE 4

Correlation analysis of immunofluorescence and LC–MS/MS methods for the measurement of γ-H2AX, (A) γ-H2AX foci of immunofluorescent

staining in AHH1 cells exposed to γ-ray in the dose range of 0–8Gy at 0.5 h post-irradiation, and (B) the correlation analysis of

immunofluorescence and LC–MS/MS in AHH1 cells exposed to γ-ray in the dose range of 0–8Gy at 0.5 h post-irradiation.

the γ-H2AX foci number in AHH1 cells exposed to γ-ray

using immunofluorescence and performed correlation analysis

of immunofluorescence and LC–MS/MS assays (Figure 4A).

As expected, the number of γ-H2AX foci increased with the

radiation dose, with a correlation coefficient of 0.837 between

immunofluorescence and LC–MS/MS for γ-H2AX analysis

(Figure 4B), suggesting a strong correlation between the two

analysis assays.

Extraction conditions for γ-H2AX
detection in human peripheral blood
lymphocytes

To further verify the practicability of LC-MS/MS to detect

γ-H2AX levels in blood cells, we used human peripheral blood

samples. However, it was found that the γ-H2AX signal could

not be detected in either WBCs or lymphocytes using previously

published protocols (38). Therefore, the choice of blood cells

sensitive to IR exposure, cell lysis medium, and condition

optimization were investigated using human blood exposed to

IR at low levels.

First, a series of extraction conditions for the influence of the

γ-H2AX signal were performed and optimized, which included

different concentration gradients and combination ratios for

protease and phosphatase inhibitors (Supplementary Table 1),

volumes of blood and temperatures (from 4 to 37◦C). The results

show that the addition of 1× protease inhibitor and at least

0.001× phosphatase inhibitor at 4◦C gave an optimal γ-H2AX

signal in lymphocytes (Supplementary Table 1).

Unsorted WBCs exhibited a weak γ-H2AX response

compared to that of lymphocytes, reflecting the fact that

lymphocytes are a sensitive and well-established blood cell

for the γ-H2AX assay in whole blood samples, which is

consistent with the fact that lymphocytes are sensitive to IR

exposure (41). Furthermore, we drew different volumes of

blood to test the γ-H2AX response, to evaluate the sensitivity

or limit of quantitation (LOQ) of the assay. As shown in

Supplementary Table 2, a 2mL blood volume was required to

accomplish a reliable detection sensitivity, according to the

mean value of the background of sham-exposed cells as the

LOQ. The Rγ /T for peripheral blood lymphocytes from 41

healthy human donors was determined for the purpose of

evaluating and confirming the background levels of γ-H2AX

in fresh whole blood. The mean value of Rγ /T in normal

human donors was 2.78 ± 0.16 (Figure 5A). In addition,

our data also indicate that there is no significant difference

in the γ-H2AX signal between gender groups (Figure 5B).

Next, fresh whole blood from 20 healthy individuals was

irradiated with 4Gy of γ-ray. Lymphocytes were prepared, and

the γ-H2AX signal was measured (Figure 5C). γ-H2AX levels

increased 2.8-fold at 0.5 h post-irradiation compared to those of

the controls.
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FIGURE 5

γ-H2AX signal in healthy human donors. (A) The background levels of Rγ /T in peripheral blood lymphocytes from 41 healthy human donors, (B)

dot-whisker plot of γ-H2AX levels between gender groups, and (C) comparison of γ-H2AX levels in the lymphocytes of peripheral blood

exposed to γ-ray in the dose of 4Gy at 0.5 h post-irradiation with those of sham-exposed blood. (n ≥ 3, mean ± SD, nsp > 0.05, **p ≤ 0.01).

γ-H2AX response at low doses exposure
of γ-ray in human peripheral blood
lymphocytes

Next, we wanted to determine whether the assay could

be used to measure the γ-H2AX response after low-dose

exposure to γ-ray. Fresh whole blood from six healthy subjects

was irradiated with γ-ray at doses of 0, 0.01, 0.02, 0.05, 0.1,

and 0.2Gy, respectively. Lymphocytes were separated, and

the γ-H2AX response was analyzed at 0.5 h post-irradiation

(Figure 6A). We observed a significant increase in γ-H2AX

levels at 0.5 h compared to that of the control. The γ-H2AX

signal could be detected at exposures as low as 0.01Gy. On this

basis, we plotted a fitting curve for the low-dose radiation in

human peripheral blood samples (Figure 6B). The correlation

coefficient was 0.86, indicating a good degree of fitting.

Discussion

It is well-known that exposure to large-dose IR increases

the risk of cancer and, at higher doses, diseases such as

cardiovascular diseases and cataracts (16). However, there

are important unanswered questions that need addressing to

increase our understanding of the impact of low dose (11). The

reason for this consequence is partly due to a crucial shortage of

estimate methods for IR exposure to human beings at low-dose

levels. We recently developed a sensitive and convenient method

to detect cellular γ-H2AX for use as a tool to rapidly screen the

genotoxicity or carcinogenicity of chemicals (38–40).

In the present study, we first applied our technique

to evaluate whether low-dose IR could induce γ-H2AX

levels and DNA damage. This evaluation was performed

in AHH1 and 16HBE cells. Studies have reported a linear

dose-dependent increase between the γ-H2AX values and

radiation dose (0.2–6Gy) as measured using flow cytometry

and immunofluorescence detection, respectively (41, 43). A

comparison of our results with data in the literature indicates

that our method can sensitively detect changes in the γ-H2AX

signal under exposure to γ-ray at 20 times lower doses (41). To

our knowledge, this is the first report that γ-H2AX levels can

be detected stably at doses as low as 0.01Gy to observe the time

effect of DNA damage using high throughput mass spectrometry

quantification in vitro.

According to the time-effect relationship for γ-H2AX after

low doses of γ-ray exposure in cells, we observed an obvious

difference between the two types of cells. The γ-H2AX level

in AHH1 cells increased to a greater extent than in 16HBE

cells at 0.5 h post-irradiation, further suggesting that the γ-

H2AX levels in AHH1 cells are more sensitive to low levels of

IR exposure (41). This was supported by the fact that the γ-

H2AX level in 16HBE cells quickly declined to its lowest level,

approximately that observed in the non-irradiated cells after

irradiation, even at a 0.2Gy dose exposure. Moreover, we found

that although H2AX is rapidly phosphorylated after treatment

with low doses of γ-ray, γ-H2AX in cells first decays rapidly
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FIGURE 6

Detection of γ-H2AX levels in human peripheral blood lymphocytes. (A) Violin chart and (B) fitting curve of γ-H2AX in the lymphocytes of

peripheral blood exposed to low doses of γ- rays of 0.01–0.2Gy γ-ray (n ≥ 3, mean ± SD; **p ≤ 0.01, *represents multiplication).

and then transitions to a slow decline over post-irradiation

time, which is consistent with our previous report about the

state of γ-H2AX induced by genotoxic compounds (38). This

phenomenon further demonstrates the time dynamics of DNA

damage and repair, that is, early DNA repair is fast and late repair

is relatively slow.

As mankind moves into space, the space radiation

environment poses considerable harm to the lives and health of

astronauts (5, 6, 44). The IR hazards to astronauts inside and

outside the aircraft cabin mainly depend on the composition

of space radiation particles, among which protons are the most

important components, followed by heavy ions (45, 46). Since

AHH1 cells are more suitable for γ-H2AX research, the γ-H2AX

levels in AHH1 cells after protons and heavy ions exposure were

further profiled (47, 48). Our results indicated that the γ-H2AX

levels under protons and heavy ions irradiation all showed a

definite dose-dependent relationship, but a poor relationship

appeared for heavy ions because of severe cell deterioration

and even death. Higher γ-H2AX levels and more cell death

induced by low-dose heavy ions irradiation at early stages could

be attributed, at least in part, to the higher LET value of heavy

ions. The higher the LET value of irradiation is, the more serious

the degree of DNA damage caused by irradiation (49–51). In this

study, the LET value of 100MeV protons is 0.8 keV/µm and that

of heavy ions is 30 keV/µm. As a consequence, the DNA damage

caused by heavy ions is more intense than that caused by protons

after the same dose of irradiation at early stages, resulting in

higher levels of γ-H2AX. However, in the latter stage, more

cells underwent apoptosis and death due to lethal damage to

their DNA by heavy ions and thus the expression value of γ-

H2AX decreased. It was also shown that heavy-ion irradiation

led to poor or no recovery from impaired neurogenesis in mice

at doses as low as 0.5Gy (52), which supports the results in the

present study.

Blood is the most commonly used sample in the clinic. The

monitoring of γ-H2AX in blood cells is also most available

for the evaluation of population exposure, especially for low-

dose IR exposure. However, the γ-H2AX signal could not

be detected in either WBCs or lymphocytes using previously

published protocols (38). Accordingly, we further optimized γ-

H2AX extraction and other experimental manipulations. Based

on the newly developed estimation assay, we determine whether

DNA damage and its profiles are caused under very low dose

exposure to IR in human peripheral blood lymphocytes.

We first determined the Rγ /T for peripheral blood

lymphocytes from 41 healthy human donors for the purpose of

evaluating and confirming the background levels of γ-H2AX in

fresh whole blood. We observed that the mean value of Rγ /T

in normal human donors was 2.78 ± 0.16. There was a slight

variation in the γ-H2AX level for different individuals, which

may indicate that the number of γ-H2AX produced per DSB

varies among individuals. We believe that this explanation is

unlikely since the number of γ-H2AX correlates well-with the

DSBs effects that were measured with other techniques (30, 53,

54). A more likely possibility is that an inherent difference exists

in γ-H2AX levels among humans (54, 55). It has been reported

that γ-H2AX levels can vary due to genetics and underlying

conditions, contributing to differences in the DNA damage

response and cell cycle checkpoint activation (55) and resulting

in changes in the expression of γ-H2AX detected in peripheral

blood. Regardless of the mechanism behind this γ-H2AX signal

variation, it would be interesting to examine whether this
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phenomenon is linked to the sensitivity of IR exposure (56, 57)

and therefore could be used, as a part of radiotherapy planning,

to identify IR-sensitive individuals. In addition, γ-H2AX levels

in healthy individuals which was irradiated with 4Gy of γ-ray

increased 2.8-fold at 0.5 h post-irradiation compared to those of

the controls. This is consistent with our previous results where

γ-H2AX levels increased 3-fold in 4 Gy-treated peripheral blood

samples from healthy volunteers relative to those of the controls,

as detected using flow cytometry (41).

In order to further validate whether the estimate assay

could be used to measure the γ-H2AX response after low-

dose exposure to γ-ray in blood, fresh whole blood from

healthy subjects was irradiated with γ-ray at doses of 0.01–

0.2Gy, respectively. The results indicated that the γ-H2AX

signal could be detected at exposures as low as 0.01Gy. To our

knowledge, this is the first report that γ-H2AX change levels

were detected and showed the dose–response relationship at low

doses exposure with a range of 0.01–0.2Gy in human peripheral

blood lymphocytes. Recently, several methods based on gene

signatures have been reported for biodosimetry purposes in the

low-dose range (16). For example, a biodosimetry study by the

North Atlantic Treaty Organization (NATO) showed that single

genes as well as gene signatures could be used to estimate low-

dose IR exposures of 0.1–6.4Gy in 2–3ml whole blood samples

(58). The γ-H2AX MS assay showed higher sensitivity levels

and stability.

Freeze thaw stability was studied for whole blood and

purified lymphocyte samples because it is important in the

clinical setting and for investigations of population exposure

(59). Fresh whole blood was stored in an ice bath for extended

periods of 10 h, and purified lymphocytes were stored in a

−80◦C freezer for long periods of 8 months. The results suggest

no significant loss of the γ-H2AXMS signal (data not shown).

Conclusions

In conclusion, this paper demonstrates an estimation assay

based on mass spectrometry quantification of γ-H2AX for low-

dose exposure to IR. For the first time, a marked variation in

the γ-H2AX response in the lymphocytes of human peripheral

blood exposed to low-dose IR as low as 0.01Gy was measured

stably, which is more accurate than the previously reported

methods by virtue of isotope-dilution mass spectrometry. This

proof-of-concept study suggests the potential utility of this assay

in radiation biodosimetry and environmental risk assessment for

low-dose IR exposures.
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