Ventilator-associated pneumonia (VAP) is the most common healthcare-associated infection (HAI) in patients with mechanical ventilation. VAP is largely preventable, and a comprehensive unit-based safety program (CUSP) has effectively reduced HAI. In this study, we aim to comprehensively investigate the effect of implementing the CUSP in patients requiring mechanical ventilation.
In this uncontrolled before-and-after trial conducted in two intensive care unit (ICU) settings in China, patients requiring invasive mechanical ventilation were enrolled. Patients were divided into two groups based on the implementation of CUSP. The primary outcome was the incidence of VAP. The secondary outcomes were the time from intubation to VAP, days of antibiotic use for VAP treatments, rate of other infection, length of stay (LOS) in ICU, hospital LOS, and safety culture score. Joinpoint regression analysis was used to test the changes in trends of VAP rate for statistical significance. Propensity score matching (1:1 matching) was used to reduce the potential bias between CUSP and no CUSP groups. Univariate and multivariate logistic/linear regression analyses were performed to evaluate the association between the use of CUSP and clinical outcomes. This study was registered at the Chinese Clinical Trial Registry (
A total of 1,004 patients from the transplant ICU (TICU) and 1,001 patients from the surgical ICU (SICU) were enrolled in the study from January 2016 to March 2022. Before propensity score matching, the incidences of VAP decreased from 35.1/1,000 ventilator days in the no CUSP group to 12.3/1,000 ventilator days in the CUSP group in the TICU setting (adjusted odds ratio [OR], 0.30; 95% confidence interval [CI], 0.15–0.59). The results of the joinpoint regression analysis confirmed that the implementation of CUSP significantly decreased the incidences of VAP. After propensity score matching in TICU setting, the CUSP group reported a lower incidence of VAP (30.4 vs. 9.7‰,
The implementation of CSUP for patients receiving mechanical ventilation could significantly reduce the incidences of VAP, and other infections, prolong the time until the VAP occurrence, reduces the days of antibiotic use for VAP, shorten the ICU and hospital LOS, and enhance the awareness of safety culture.