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Introduction: Since the second half of the 20th century, Aedes albopictus, a

vector for more than 20 arboviruses, has spread worldwide. Aedes albopictus

is the main vector of infectious diseases transmitted by Aedes mosquitoes in

China, and it has caused concerns regarding public health. A comprehensive

understanding of the spatial genetic structure of this vector species at a

genomic level is essential for e�ective vector control and the prevention of

vector-borne diseases.

Methods: During 2016–2018, adult female Ae. albopictus mosquitoes were

collected from eight di�erent geographical locations across China. Restriction

site-associated DNA sequencing (RAD-seq) was used for high-throughput

identification of single nucleotide polymorphisms (SNPs) and genotyping of

the Ae. albopictus population. The spatial genetic structure was analyzed and

compared to those exhibited by mitochondrial cytochrome c oxidase subunit

1 (cox1) and microsatellites in the Ae. albopictus population.

Results: A total of 9,103 genome-wide SNP loci in 101 specimens and

32 haplotypes of cox1 in 231 specimens were identified in the samples

from eight locations in China. Principal component analysis revealed that

samples from Lingshui and Zhanjiang were more genetically di�erent than

those from the other locations. The SNPs provided a better resolution

and stronger signals for novel spatial population genetic structures than

those from the cox1 data and a set of previously genotyped microsatellites.

The fixation indexes from the SNP dataset showed shallow but significant

genetic di�erentiation in the population. The Mantel test indicated a positive

correlation between genetic distance and geographical distance. However,

the asymmetric gene flow was detected among the populations, and it was

higher from south to north and west to east than in the opposite directions.
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Conclusions: The genome-wide SNPs revealed seven gene pools and fine

spatial genetic structure of the Ae. albopictus population in China. The

RAD-seq approach has great potential to increase our understanding of the

spatial dynamics of population spread and establishment, which will help us to

design new strategies for controlling vectors and mosquito-borne diseases.

KEYWORDS

invasive species, restriction site-associated DNA sequencing (RAD-Seq), genetic

diversity, gene pool, isolation by distance

Introduction

Aedes (Stegomyia) albopictus (Skuse, 1894), one of the

100 most dangerous invasive species worldwide, can be found

on every continent except for Antarctica, because of global

warming, human-aided transport, and insecticide resistance (1–

3). The global spread of Ae. albopictus has attracted public

health concern for mosquito-borne diseases. Aedes albopictus

is a vector for more than 20 arboviruses, some of which are

highly pathogenic and transmissible, for example, dengue virus,

Chikungunya virus (CHIKV), and yellow fever virus (4).

Aedes albopictus as well as Ae. aegypti are responsible for

the recent re-emergence of dengue and Chikungunya and new

outbreaks of Zika virus infection (5, 6). Aedes albopictus is the

predominant species found in nearly one-third of China (7, 8),

whereas the distribution of Ae. aegypti is limited to small areas

of southern China, including Hainan, Guangdong, Guangxi,

and Yunnan Provinces (9–11). Aedes albopictus is the main

vector of infectious diseases transmitted by Aedesmosquitoes in

China. The threat of infectious disease transmission has led to

the establishment of surveillance and vector control strategies,

which gain from knowledge of the genetic, ecological, and

behavioral traits of the mosquito populations (12).

Many studies on the genetic diversity and population

structure of Aedes albopictus population have been conducted

by using molecular markers such as mitochondrial

gene cytochrome c oxidase subunit 1 (cox1) (13–20)

and microsatellite markers (14, 21–23). However, the

use of mitochondrial DNA as a marker in population,

phylogeographic, and phylogenetic studies may be a problem

due to the existence of inherited symbionts in Ae. albopictus

(5, 24, 25). Microsatellite markers are codominant nuclear loci

that are commonly used to infer levels of genetic diversity and

population genetic structure in natural populations. However,

bias selection for only the most polymorphic markers in the

genome may result in reduced sensitivity and an inaccurate

reflection of the underlying genome-wide levels of genetic

diversity (26). Many population genetic studies have used

mitochondrial DNA and microsatellite markers and provided

limited resolution of population genetic structure patterns

because of low levels of sequence variation or limited number

of markers (5). For example, Gao et al. (14) and Wei et al. (27)

reported two patterns of broad population structure on the

basis of microsatellite markers alone and three major haplotype

clusters of cox1 in the Ae. albopictus population in China.

Genetic indices and environmental factors were combined and

17 Ae. albopictus populations across China were sampled and

clustered into three groups that approximately correlated to

three climate regions: tropical, subtropical, and temperature

regions (14).

Currently, single nucleotide polymorphisms (SNPs),

identified using next-generation sequencing techniques, are the

markers of choice because of their abundance in the genomes

of virtually all populations (28). Restriction site-associated

DNA sequencing (RAD-seq) is one of the most popular

strategies used to identify large numbers of bi-allelic SNPs in

the genomes of vector mosquito populations. Several studies

have been conducted using genome-wide SNPs to decipher the

genetic diversity (29), spatial population structure (30), gene

flow patterns (31, 32), incursion pathways (32–34), as well as

cold adaptation (35, 36) of Ae. albopictus. However, limited

numbers of mosquito populations have been sampled from

the native population for studying the population genomics

of this species, especially in China (34). Genome-wide SNPs

could provide a valuable tool for identifying the genetic

basis of important ecological adaptations, including traits

related to invasion success and range expansion (37). Such

information may provide the basis for novel vector-control

strategies based on the genetic or chemical disruption of

these adaptations.

This study was designed to investigate the genomic patterns

of the spatial population genetic structure of Ae. albopictus

across China. We used genome-wide SNPs to determine the

distribution of genetic diversity and population structure of the

Ae. albopictus populations across eight different geographical

locations. Combined with the cox1 and microsatellite datasets

from the same populations in our previous study (27),

we compared the spatial genetic structure exhibited by

the genome-wide SNPs, cox1, and microsatellite markers in

the populations.
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Methods

Mosquito sampling and DNA extraction

Between August 2016 and September 2018, we collected Ae.

albopictus adult female mosquitoes from different geographical

clusters in eight locations (Beijing, BJ; Shijiazhuang, SJZ;

Hangzhou, HZ; Wuhan, WH; Meishan, MS; Guangzhou, GZ;

Zhanjiang, ZJ; and Lingshui, LS) from our previous study

(27) in China (Figure 1). At each location, 8–12 households

or collection points 400–3,000m apart were selected randomly

for obtaining adult mosquitoes, and 20–32 Ae. albopictus

female mosquitoes from each location, with 2–3 individuals

per collection point, were used for DNA extraction and genetic

analysis. All adult mosquito specimens were identified using

morphology under a stereomicroscope (Nikon, Tokyo, Japan)

and cox1 sequencing. Sampling bias was examined using

previous microsatellite data (27). Total genomic DNA was

individually extracted using the Insect DNAKit (Omega Bio-tek,

GA, USA), according to the manufacturer’s instructions.

PCR amplification and mtDNA
sequencing

SNPs in the mitochondrial gene cox1 of the mosquito

specimens were examined. PCR was performed to amplify a 796

bp fragment in the 5
′

cox1 region of the mtDNA by using the

DNA primer pairs 2027F (5
′

-CCCGTATTAGCCGGAGCTAT-

3
′

) and 2886R (5
′

-ATGGGGAAAGAAGGAGTTCG-3
′

) (16).

The 25 µl reaction mixture contained 40 ng of genomic DNA,

12.5 µl of 2× PCR Master Mix (Promega, WI, USA), 1 µl

each of the forward and reverse primers at 10 µmol/l, and

nuclease-free water. The PCR conditions were as follows: 95◦C

for 5min; 35 cycles of 95◦C for 30 s, 60◦C for 30 s, and 72◦C for

1min; and a final extension at 72◦C for 10min. The amplified

fragments were run on a 1% agarose gel to check integrity,

stained with ethidium bromide, and analyzed under UV light.

The PCR products were purified using a gel extraction kit

(Omega Bio-tek, GA, USA) and sequenced with PCR primer

2027F by using the ABI 3730XL automatic sequencer (Applied

Biosystems, CA, USA).

FIGURE 1

Geographical locations of Ae. albopictus sampling sites in China. Bayesian estimates of historical asymmetrical migration between five locality

groups of Ae. albopictus on the basis of the genome-wide SNPs. The numbers indicate migration rate, and arrows indicate the direction of

migration. BJ, Beijing; SJZ, Shijiazhuang; HZ, Hangzhou; WH, Wuhan; MS, Meishan; GZ, Guangzhou; ZJ, Zhanjiang; LS, Lingshui. The map was

generated using ArcMap 10.2.2 software. Map source: ESRI (available at: www.esri.com).
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Library construction for RAD-seq

Samples with total DNA quantity >1 µg were sequenced

using RAD-seq, and the sample sizes from the eight locations

for library construction were 13 (BJ), 13 (SJZ), 13 (HZ), 12

(WH), 13 (MS), 14 (GZ), 15 (ZJ), and 12 (LS). Onemicrogram of

genomic DNA was digested with EcoRI (New England Biolabs,

MA, USA), which identifies the 5
′

-GAATTC-3
′

sequence. The

Illumina P1 adapter (BGI, Shenzhen, China) was ligated to the

digested DNA. Then, the products from different samples were

pooled and randomly fragmented using Covaris E210 (Covaris,

MA, USA) with agarose gel selection for 300–500 bp. The

products were purified using the QIAquick PCR Purification Kit

(Qiagen, CA, USA). The fragments were end-repaired using End

Repair Mix (Qiagen) and then purified. The repaired DNA was

combined with A-Tailing Mix (Qiagen); Illumina P2 adaptors

(BGI) were ligated to the adenylated 3
′

ends of the DNA,

followed by product purification. PCR amplification with PCR

Primer Cocktail and PCR Master Mix (NEB, MA, USA) was

performed to enrich the adapter-ligated DNA fragments. The

PCR conditions were as follows: 98◦C for 30 s; 15 cycles of 98◦C

for 10 s, 65◦C for 30 s, and 72◦C for 30 s; and a final extension at

72◦C for 5min. The PCR products were selected using agarose

gel electrophoresis with target fragments and then purified.

The library was quantified using the Agilent Technologies

2100 bioanalyzer (Agilent Technologies, CA, USA) and ABI

StepOnePlus Real-Time PCR System (Applied Biosystems). The

libraries, with 16 samples pooled per library, were pair-end

sequenced using the PE150 strategy on theHiSeq XTen platform

(Illumina, CA, USA).

Sequence alignment and SNP
identification

The filtered reads from all mosquito specimens were aligned

to the reference genome of Aedes albopictus Foshan strain

(GenBank accession: GCA_001444175.2) (38) and C6/36 cell

line (GenBank accession: GCA_001876365.2) (39) with the

Burrows–Wheeler Aligner bwa-0.7.17 software (bwa mem –

M -t 5 -T 20) (40). The aligned.bam files were sorted

and indexed using SAMtools v1.9 (41). GATK modules

RealignerTargetCreator, IndelRealigner, BaseRecalibrator, and

ApplyBQSR were used to process the.bam files (42). Then,

HaplotypeCaller of GATK was used for variant calling of

each sample (42). In this study, only SNPs were detected,

and other complex events such as indels and multi-nucleotide

polymorphisms were ignored. For instance, loci with more

than two alleles were discarded to avoid potential sequencing

errors. SNPs with global MAF > 0.05 across samples were

retained to reduce false SNP identification (43). In addition,

SNPs with a minimum genotyping rate of 80% within each

population were retained. The following quality controls were

also used for SNP calling: (a) mapping quality≥55, (b) coverage

depth >200 and < ,000, and (c) Phred quality score for the

assertion made in alternate bases >100. The SNPs were further

filtered by removing the loci out of Hardy-Weinberg equilibrium

with VCFtools v0.1.16 (44) and linkage disequilibrium with the

parameter (–indep-pairwise 50 10 0.1) by using PLINK v1.9 (45)

and then retained in the VCF output file. We only retained SNPs

that were successfully genotyped in 50% of the individuals, a

minimum quality score of 30, and a minimum read depth of 3

for further analysis.

Data analysis

The cox1 sequences from 231mosquitoes were aligned using

Clustal W multiple alignment in BioEdit version 7.2.5 (46).

The number of segregating sites (S), haplotype diversity (Hd),

average number of nucleotide differences (k), and nucleotide

diversity (π) within each population were determined using

DnaSP v5.10.1 (47). To determine the genealogical relationships

among the haplotypes, a haplotype network was constructed

using a statistical parsimony algorithm implemented in TCS

v1.21 (48). The minimum number of mutational steps between

sequences was calculated with >95% confidence.

The filtered VCF file containing the genome-wide SNPs

was analyzed for the population genetics of Ae. albopictus. The

SNP dataset was analyzed as follows: PGDSPIDER v.2.0.5.0

(49) was used to reformat the VCF files into ARP format

files for Arlequin. Deviations from selective neutrality were

tested using Fu’s Fs statistic (50) and Tajima’s D (51). The

neutrality test was performed for each population to examine

population expansion. The Bayesian model-based clustering

program STRUCTURE v2.3 and the Maximum-Likelihood

(ML) clustering program ADMIXTURE v1.3.0 (52) were used to

infer the cryptic genetic structure. On the basis of the genome-

wide SNPs, cox1 data, and microsatellite data from our previous

study, Bayesian clustering analysis was performed by conducting

20 independent runs for each K = 1 to 8, using a “burn-in”

value of 50,000 iterations followed by 200,000 repetitions with

STRUCTURE v2.3 (53). The optimal number of clusters (K) was

determined using the Delta K method of Evanno et al. (54).

The results of the clustering analysis were visualized using the

ggplot2 package in R v4.0.3 (55). VCFtools v0.1.16 (44) was used

to reformat the VCF file of the SNP data into PLINK format files

(MAP/PED) for ADMIXTURE. Furthermore, average pairwise

FST was calculated between each pair of sampling populations,

and theMantel test andAMOVAwere conducted using Arlequin

v3.5.2.2 (56). The gene flow and migration rates between

all pairwise populations were estimated using the Bayesian

coalescence-based approach implemented in LAMARC v2.1.10

(57). The Adegenet package (58) in R software (55) was used to

perform principal component analysis (PCA) and discriminant
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analysis of principal components (DAPC). Neighbor-joining

(NJ) and ML phylogenetic trees were constructed using MEGA

7.0 (59), according to the Kimura 2-parameter (K2P) model

(bootstrap = 100) for cox1, microsatellite, and genome-wide

SNP data. The best-fitting model for evolution and model

parameters was determined using the Bayesian Information

Criterion in jModelTest 2.1.10 (60). A significance level at P <

0.05 was set for all statistical tests, and sequential Bonferroni

correction (61) was used when significant correlations were

detected between the paired data.

Results

Genetic variation and haplotype network
based on Cox1

PCR amplification and sequencing of the mitochondrial

cox1 gene resulted in the detection of a 765 bp fragment

in each specimen, with no insertions or deletions. All 231

sequences were identical or possessed >99% similarity to Ae.

albopictus (GenBank: KR068634). According to cox1 sequencing

and identification of cryptic species in our previous study (27),

no cryptic Ae. albopictus species were found in all populations.

Twenty-seven variable sites were detected, and 20 of them

were parsimony-informative. The ZJ population had the highest

number of polymorphic sites (S = 10, the same as the GZ

population), haplotype diversity (Hd = 0.890), and nucleotide

diversity (π = 0.248) and the highest average number of

nucleotide differences (k = 1.897). However, the BJ population

had the lowest values for these genetic indices, as it had only two

haplotypes (Table 1).

A total of 32 haplotypes of cox1 mtDNA were detected

in the 231 specimens (GenBank: MT188111–MT188130,

MT755918–MT755929). To determine the relationships

between the specimens or haplotypes, we constructed a

median-joining network using the haplotypes on the basis of

sequence variation (Supplementary Figure S1). Most of the

specimens were identified as H01 (45.9%) in the Ae. albopictus

populations, but H01 was not detected in the LS population

(Supplementary Figure S1). Some haplotypes were unique to

a specific population (for example, H12, H13, and H15 in

MS; H16, H17, H18, H19, H20, and H21 in GZ; H22, H23,

H24, H26, and H27 in ZJ; and H28, H29, H30, H31, and

H32 in LS), whereas the H05 and H06 haplotypes appeared

simultaneously in specimens of the SJZ, ZJ, and LS populations

(Supplementary Figure S1).

RAD-seq and data filtering

The average number of filtered quality reads per individual

was approximately 24.79 million reads (range: 4,630,354–

42,550,002; Supplementary Table S1). The Q20_rate (ratio of

bases with a quality value >20 in all reads to the total length

of reads) was more than 96%. Quality filtering yielded 33,769

SNPs, and a total of 9,968 SNPs were retained after checking

for Hardy-Weinberg equilibrium and linkage disequilibrium.

The mean and median values of SNP coverage per sample were

shown using box-and-whisker plots (Supplementary Figure S2).

Four samples had <50% of the loci genotyped, and 865 SNPs

identified in <50% samples were removed; the remaining 9103

SNPs from the 101 samples were used for further population

genetics analysis. A summary of the statistics for the counts of

putative SNP loci and final counts of candidate SNPs after each

filtering step is available in Table 2.

Neutrality test, gene flow, and population
genetic analysis

The neutrality of the SNP dataset was checked using Tajima’s

D and Fu’s Fs tests. Tajima’s D tests for all populations were

not statistically significant (Table 3); this indicates that the

populations are in genetic equilibrium, which is consistent with

TABLE 1 Population information and genetic polymorphism based on cox1 of Ae. albopictus in China.

Populations Abbreviation Latitude longitude n S h Hd k π

Beijing BJ 39◦51′36′′N 116◦11′45′′E 21 1 2 0.095 0.095 0.012

Shijiazhuang SJZ 37◦54′55′′N 114◦27′49”E 32 5 5 0.532 1.399 0.183

Hangzhou HZ 30◦18′42′′N 120◦07′09′′E 25 5 6 0.533 0.613 0.080

Wuhan WH 30◦30′30′′N 114◦22′39′′E 30 4 5 0.453 0.501 0.066

Meishan MS 30◦11′55′′N 103◦52′01′′E 30 6 6 0.809 1.554 0.203

Guangzhou GZ 23◦11′15′′N 113◦19′42′′E 32 10 10 0.742 1.151 0.150

Zhanjiang ZJ 21◦05′37′′N 109◦42′60′′E 30 10 10 0.890 1.897 0.248

Lingshui LS 18◦30′27′′N 110◦01′59′′E 31 8 8 0.811 1.729 0.226

n, number of samples; S, number of segregating sites; h, number of haplotypes; Hd , haplotype diversity; k, average number of nucleotide differences; π, nucleotide diversity (× 102 , average

number of nucleotide differences per site).
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TABLE 2 Summary statistics for counts of putative SNP loci and final

counts of candidate SNPs after di�erent filtering steps.

Filtering step SNP counts

Biallelic variants 60,982,824

Global minor allele frequency (MAF > 0.05) 38,300,712

Coverage ratio of samples for each pop ≥ 80% 156,516

Mapping quality ≥ 55; 200 < Coverage depth <

40,000;

Phred-scaled quality score for the assertion made

in alternate bases > 100

33,769

Reservation of Hardy-Weinberg equilibrium loci 24,136

Removal of linkage disequilibrium loci 9,968

Removal Loci genotyped < 50%, reads depth < 3 9,103

TABLE 3 Neutrality tests based on genome-wide SNPs and cox1 of Ae.

albopictus populations in China.

Populations Genome-wide SNPs cox1

Tajima’s D Fu’s Fs Tajima’sD Fu’s Fs

BJ −0.682 1.711 −1.164 −0.919

SJZ −0.675 1.311 0.341 0.347

HZ −0.684 1.604 −1.538* −3.491*

WH −0.796 1.694 −1.293 −2.493*

MS −0.688 1.523 0.074 −0.353

GZ −0.773 1.245 −1.675* −5.849*

ZJ −0.806 0.298 −0.788 −3.406*

LS −0.512 1.710 −0.412 −1.734

*P < 0.05.

FIGURE 2

Structure analysis of the SNP dataset on the basis of the

Maximum-Likelihood clustering method.

the neutral mutation hypothesis. Likewise, Fu’s Fs tests were

not statistically significant (Table 3) and rejected the population

expansion/bottleneck model. Tajima’s D tests and Fu’s Fs tests of

the cox1 data for the HZ and GZ populations were statistically

significant (Table 3).

On the basis of the SNP dataset, all 28 pairwise tests

of genetic differentiation were significant at P < 0.05 after

Bonferroni correction, and the pairwise FST values ranged from

0.020 (between WH and GZ) to 0.106 (between HZ and ZJ);

FIGURE 3

Discriminant analysis of principal components (DAPC) plots for

genome-wide SNPs (A), cox1 (B) and microsatellites (C) in eight

field populations of Ae. albopictus in China. The plots show the

relationship between individuals belonging to eight di�erent

populations (represented by colored dots, where the color of a

dot corresponds to a population).

a few pairwise tests showed no significance on the basis of

the cox1 and microsatellite data (Supplementary Table S2). The

Mantel test showed a statistically significant correlation (SNPs:

y = 0.0177x−0.0618, R2 = 0.190, P = 0.006; microsatellites: y

= 0.008x−0.0341, R2 = 0.288, P = 0.002) between the genetic

distance [y, estimated as FST/(1 – FST)] and the geographical

distance [x, estimated as Ln (km)] of populations on the basis of

the SNP and microsatellite data, with no significant correlation

(y= 0.1185x−0.5812, R2 = 0.117, P = 0.054) on the basis of the

cox1 data (Supplementary Figure S3). The LAMARC analysis

showed that the historical gene flow rates ranged from 5.6 to

87.8. An asymmetric gene flow was detected among populations,

and it was higher from south to north and from west to east

regions than the opposite directions (Figure 1).

The Bayesian clustering analysis based on the datasets

of the three DNA markers showed that the ZJ and LS

samples were clustered together and separated from the other

populations when K = 2. In addition, the optimal cluster

numbers (K) determined using the Delta K method for SNPs,

cox1, and microsatellite data were 2, 2, and 3, respectively
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(Supplementary Figure S4). The ML clustering analysis based

on the SNP dataset showed obvious division among the

samples when K = 7, as the cross-validation error was the

lowest (Figure 2). All samples were clearly separated on the

basis of the SNP data rather than the cox1 and microsatellite

data in the coordinate system of the DAPC (Figure 3). A

large number of dots representing the samples of the DAPC

based on the cox1 data (Figure 3B) overlapped because of

many identical haplotypes in each population. The division

of samples by DAPC on the basis of the microsatellite

data was unclear (Figure 3C). The PCA results via the two-

dimensional plots (Supplementary Figure S5) were consistent

with those of the DAPC. The NJ phylogenetic tree (Figure 4) and

ML phylogenetic tree (Supplementary Figure S6) constructed

using the SNP dataset showed that each sample could be

clearly separated and classified from its original population.

In this respect, the SNPs outperformed cox1 (Figure 5;

Supplementary Figure S7) and microsatellites (Figure 6). The

phylogenetic analysis based on the SNP dataset showed that

some samples from the SJZ had a close relationship with those

from LS and ZJ, which is congruent with the H05 and H06

haplotypes limited to these populations in the cox1 haplotype

network. The AMOVA results (Table 4) indicated that most

variations in Ae. albopictus were within populations: 94.08%,

SNPs; 67.24%, cox1; and 97.82%, microsatellites; variations

among the populations accounted for 5.92% (genome-wide

FIGURE 4

Neighbor-Joining phylogenetic tree constructed using 9,103 genome-wide SNPs.
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FIGURE 5

Neighbor-Joining phylogenetic tree constructed using the cox1 data.

SNPs), 32.76% (cox1), and 2.18% (microsatellites) of the total

variation. The fixation index among the populations showed

significant genetic variation on the basis of Fisher’s exact test for

the three types of DNA marker data.

Discussion

Global warming and rapid development of transportation

have caused the distribution of Ae. albopictus to continuously

expand to the north of China (11). The invasion ofAe. albopictus

has increased the potential risks of mosquito-borne diseases

in some non-endemic areas in China (62). High-throughput

genotyping with next-generation sequencing technology is being

increasingly used to study the population genetics of disease

vectors (31, 63, 64). An appropriate genotyping strategy and

fine-population genetic analysis of Ae. albopictus would help

us to understand the dynamics of its population spread and

establishment and design strategies for controlling the vectors

and mosquito-borne diseases (5, 22, 65).

In this study, the dominate haplotype H01 of cox1 was

detected in seven geographical Ae. albopictus populations in

mainland China, suggesting H01 is relatively conservative, as

observed in another study of the Ae. albopictus population in
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FIGURE 6

Neighbor-Joining phylogenetic tree constructed using the microsatellite data.

China (66). The haplotype diversity is richer in southern China,

which is similar to the findings of our previous study and

other studies (14, 16, 27). One possible explanation is that the

environment and climate in southern China are more conducive

to survival, reproduction, and continuous dispersion, whereas

the relatively dry and cold climate in northern China could result

in lower allele richness and genetic diversity in Ae. albopictus

populations (14, 16).

The results of Tajima’s D and Fu’s Fs tests based on the

genome-wide SNPs indicated demographic equilibrium and no

population bottleneck/expansion. Thus, these populations may

exist stably and not have invaded recently as new founding

populations (18). Previous studies have indicated two gene

pools on the basis of microsatellites from the Ae. albopictus

population in China (14, 27). The genome-wide SNPs results

divided the eight Chinese Ae. albopictus populations into seven

genetic clusters, indicating the presence of seven gene pools in

the sampled areas. Individuals sampled from six populations

were assigned to six different clusters, corresponding to actual

geographical locations; in contrast, theWH and SJZ populations
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TABLE 4 Analysis of molecular variance (AMOVA) based on the three DNA markers of Ae. albopictus populations in China.

DNAmarker Source of variation df SS Variance components Percentage of variation Fixation index P-value

Genome-wide SNPs Among populations 7 676.780 3.390 5.92 0.059 P < 0.001

Within populations 93 5,014.240 53.917 94.08

Total 100 5,691.020 57.307

cox1 Among populations 7 61.860 0.286 32.76 0.328 P < 0.001

Within populations 223 131.079 0.588 67.24

Total 230 192.939 0.874

Microsatellites Among populations 7 72.094 0.101 2.18 0.022 P < 0.001

Within populations 223 2,046.194 4.507 97.82

Total 230 2,118.288 4.608

df, degrees of freedom; SS, sum of square.

were mixed with individuals from other gene pools, indicating

the coexistence of different genetic units in these locations,

similar to other vector species in China (67).

Our results showed that the FST-values were low but

significantly different among all populations, and some pairs

were not significantly different in our previous study using

microsatellites, for example, BJ and SJZ, HZ and SJZ, and

GZ and ZJ populations. Compared to the results of clustering

and population differentiation on the basis of cox1 and

microsatellites, the genome-wide SNPs exhibited stronger

separation between populations than the other markers, which

is consistent with the results of previous studies (64, 68,

69). On the basis of the SNPs, the LS and ZJ populations

were more genetically different than the other populations.

Several factors may contribute to the genetic differentiation

and shape the structure of the two southern populations

and other populations in China: (1) The tropical climate

characteristics (hot and humid) of Hainan Island and southern

China facilitate the breeding and development of Ae. albopictus

(70–73). (2) The thriving border trades andmany famous tourist

attractions in southern China provide many pathways for the

introduction andmovement of this species from other Southeast

Asian countries, thus increasing genetic diversity (74). (3) The

geographical isolation of Hainan Island is probably an important

factor that limits species dispersal to other places, thus affecting

the gene flow and distribution of genetic diversity (66, 75).

The population analysis using the SNP dataset showed

that the SJZ population specimens had close evolutionary

relationships with the ZJ and LS population specimens, which

also confirms that they have the same specific cox1 haplotypes

(H05 and H06). We speculated that several mosquitoes from

individual SJZ collection points may have originated from ZJ

and LS populations because of human-assisted transportation

over long distances. When compared with the customs of

provincial capital cities such as BJ, HZ, and WH, the customs

of SJZ may have a relatively loose control on commercial

transportation and species invasion. The population structure

bar plots generated using STRUCTURE on the basis of the SNPs

showed that the WH population had the highest shared SNP

alleles with neighboring populations; this is possibly because

Wuhan is a central city in China and a transportation hub,

leading to an increase in mosquito migration and gene flow.

The overall gene flow showed a trend from south to north and

from west to east, which is consistent with the trend determined

using a large number of samples in our previous study (27).

Similar dispersal behavior can produce similar patterns of

differentiation (76). Mosquitoes spread from south to north

through active dispersal affected by global warming and passive

dispersal caused by human activities (77–80). This also explains

the reports of some dengue cases in new non-endemic areas in

recent years (62, 81).

Genome-wide SNPs identified with next-generation

sequencing (such as RAD-seq) that are used to analyze

population genetics have two major advantages when compared

with microsatellites and cox1: the need for smaller sample

sizes and no need for prior genomic information (82, 83). SNP

analyses have corroborated microsatellite-based findings and

provided a more accurate and robust population structure than

microsatellite analyses (68, 84). In our previous study (27), a

set of polymorphic microsatellites were an economical choice

for a large-scale population genetic clustering analysis, but not

suitable for finer genetic structural analysis of relatively few

populations of Ae. albopictus. It is important to consider a

very high probability of incorrect conclusions from cox1 data

when the data alone are used to infer the population history of

arthropods, due to indirect selection on mtDNA cox1 arising

from linkage disequilibrium with inherited microorganisms

(such as Wolbachia) in Ae. albopictus (24). The Mantel test

detected significant positive relationships between genetic and

geographical distance, whereas no such relationships were

evident from the cox1 data. Therefore, cox1 data could be

problematic when performing the Mantel test for isolation by

distance (IBD), as they often do not provide reliable information

on the true dispersal potential of a species (25).
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Currently, next-generation sequencing costs have decreased

dramatically, and several reference genome assemblies of Ae.

albopictus are available, including reference genomes AaloF1

(38) and AalbF2 (85) assembled from the Chinese Foshan strain

and MNAF02 assembled from the C6/36 cell line (39); these

assemblies greatly facilitate allele-specific measurements (65).

In this study, we used two assembled genomes as references,

and several samples were aligned with only 50% or less reads

to the reference genome. This suggests reference bias, although

the reference genome AaloF1 is based on a laboratory strain

from a local population in China. Indeed, a previous study also

obtained a low read mapping rate (25%) based on the primary

reference assembly (29). However, the∼9,000 high-quality SNPs

obtained in the study should be enough to assess the genetic

diversity and population structure of Ae. albopictus. Overall, the

genomic patterns identified in this study can help to identify

biosecurity threats in Ae. albopictus by revealing a likely degree

of gene flow (31, 80). The fine spatial genetic structure and

gene flow data based on the genome-wide SNPs, in combination

with other related factors such as mosquito density, climate,

and rainfall, will be valuable for vector surveillance as well as

epidemiological prediction and modeling of the incidence and

spread of vector-borne diseases.

Conclusions

Next-generation sequencing techniques such as RAD-seq

provide an increasingly affordable approach for generating

numerous genetic markers to study disease vector populations.

A total of 9,103 SNP loci and seven gene pools were identified

from Ae. albopictus specimens by using RAD-seq, and the SNP

dataset showed shallow but significant genetic differentiation

among the populations, except specimens from WH and SJZ.

The LS and ZJ populations were isolated from the other

populations and exhibited the effects of geographical distance

and barriers to gene flow. The Mantel test indicated a positive

correlation between genetic distance and geographical distance.

However, asymmetric gene flow was detected among the

populations, and it was higher from south to north and west

to east regions than the opposite directions. The resolution

of the population genetic structure inferred from the genome-

wide SNPs was better than that from the cox1 data and a set

of polymorphic microsatellites. The RAD-seq based approach

demonstrates great potential for obtaining information on the

spatial dynamics of population spread and establishment and

designing new strategies for the control of vectors andmosquito-

borne diseases.
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