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Aim: To explore the role of smell and taste changes in preventing and

controlling the COVID-19 pandemic, we aimed to build a forecast model for

trends in COVID-19 prediction based on Google Trends data for smell and

taste loss.

Methods: Data on confirmed COVID-19 cases from 6 January 2020 to 26

December 2021 were collected from the World Health Organization (WHO)

website. The keywords “loss of smell” and “loss of taste” were used to search

the Google Trends platform. We constructed a transfer function model for

multivariate time-series analysis and to forecast confirmed cases.

Results: From 6 January 2020 to 28 November 2021, a total of 99 weeks

of data were analyzed. When the delay period was set from 1 to 3 weeks,

the input sequence (Google Trends of loss of smell and taste data) and

response sequence (number of new confirmed COVID-19 cases per week)

were significantly correlated (P < 0.01). The transfer function model showed

that worldwide and in India, the absolute error of the model in predicting the

number of newly diagnosed COVID-19 cases in the following 3 weeks ranged

from 0.08 to 3.10 (maximum value 100; the same below). In the United States,

the absolute error of forecasts for the following 3 weeks ranged from 9.19

to 16.99, and the forecast e�ect was relatively accurate. For global data,

the results showed that when the last point of the response sequence was

at the midpoint of the uptrend or downtrend (25 July 2021; 21 November

2021; 23 May 2021; and 12 September 2021), the absolute error of the model

forecast value for the following 4 weeks ranged from 0.15 to 5.77. When the
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last point of the response sequence was at the extreme point (2 May 2021; 29

August 2021; 20 June 2021; and 17October 2021), themodel could accurately

forecast the trend in the number of confirmed cases after the extreme points.

Our developed model could successfully predict the development trends

of COVID-19.

Conclusion: Google Trends for loss of smell and taste could be used to

accurately forecast the development trend of COVID-19 cases 1–3 weeks

in advance.

KEYWORDS

COVID-19, big data, smell, taste, prediction

Introduction

COVID-19 has ravaged countries worldwide, seriously

threatening human life and health and causing severe damage to

the social order and economic development (1). Governments

in all countries attach great importance to pandemic prevention

and control, and pandemic trend forecasting is critical to

this end.

Big data from the Internet played an essential role in

pandemic monitoring and prevention, disease source tracing,

drug screening, medical treatment, product recovery, and other

applications (2–4). Based on Internet big data, such as Google

Trends and Baidu Trends, the occurrence and development of

infectious disease trends can be predicted (5, 6). Previous studies

have confirmed a significant positive correlation betweenGoogle

Trends data for smell and taste loss and the daily number of

confirmed COVID-19 cases (7–10).

Previous studies have found that loss of smell and taste is

an early symptom of COVID-19 infection and can serve as a

reliable indicator in COVID-19 diagnosis (11, 12). Most clinical

symptoms in patients with COVID-19 who have olfactory and

gustatory disorders are not serious, so these patients are difficult

to diagnose in a timely fashion, raising the risk for the spread

of infection. However, patients with olfactory and gustatory

disorders usually search for information and methods to deal

with smell and taste loss online. Therefore, analysis of big data

for information on smell and taste loss retrieved from the

Internet can likely provide an essential reference for pandemic

prevention and control. By analyzing billions of Google search

results worldwide, Google Trends displays the search volume

and relevant statistical data for each keyword entered into

Google, which can reflect the scale, timeliness, accuracy, and

intuitiveness of the data. In this study, we used Google Trends

data on smell and taste loss, as well as the daily pandemic

statistics reported by theWorld Health Organization (WHO), to

build a COVID-19 global pandemic trend forecast model. Our

study can provide an essential scientific basis for the prevention

and control of COVID-19.

Research data and methods

Raw data

Number of confirmed COVID-19 cases

Using the WHO official website (https://covid19.who.

int/info), we downloaded daily data on newly confirmed

cases of COVID-19 infection from 6 January 2020

to 26 December 2021 in the data module. We then

aggregated these to obtain the weekly number of new

confirmed cases worldwide, in the United States (US), and

in India.

Google Trends data on smell and taste loss

Using the Google Trends platform (https://trends.google.

com), we used “loss of smell” and “loss of taste” as keywords to

obtain Google Trends data on loss of smell and taste worldwide,

in the United States, and in India from 6 January 2020 to 26

December 2021.

Data preprocessing

Normalization of confirmed case data

Because the maximum retrieval volume defined by

Google Trends is 100, we normalized the maximum

number of weekly new cases to 100 such that the weekly

confirmed cases data were distributed within the range

of 0–100.

Outliers

Due to the potential influence of media reports or other

factors, there may be abnormal changes in the Google Trends

data for individual weeks, which would adversely affect the

analysis of the overall trend for loss of smell and taste; therefore,

we defined outliers.
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For the detection of outliers, the following judgment

principles were used:

For a given time series {Nt}, if

1

t

t
∑

j=1

Nj − 6

√

N2
t − Nt

2
< Nt+1 <

1

t

t
∑

j=1

Nj

+ 6

√

N2
t − Nt

2
(1)

This means that Nt+1 is not an outlier. Otherwise, it can be

concluded that Nt+1 is an outlier.

For some outliers, we used the linearization method for

modification. Assuming Ni,Ni+1, · · · ,Ni+k−2,Ni+k−1were k

adjacent outlier points, we first calculated a straight line through

two points
(

i− 1,Ni−1
)

, (i + k,Ni+k) and then replaced the k

outlier points with corresponding equally spaced points on the

straight line.

Calculation of cross-correlation function
(CCF) between the input sequence and
response sequence

We analyzed the CCF of input sequences (Google Trends

data for loss of smell and Google Trends data for loss of

taste) and response sequences (number of new confirmed cases

per week during the COVID-19 pandemic) to determine the

lag effect of Google Trends on the development trend of the

COVID-19 pandemic.

The calculation method of the CCF was as follows.

For the sample {Ut , t = 1, 2, · · · , n} , {Vt , t = 1, 2, · · · , n} of

time series {Ut}, {Vt}, we calculated the interaction covariance

function of the sample as an estimate of the interaction

covariance function of {Ut}, { Vt}:

Cuv
(

k
)

=
1

n

n−k
∑

t=1

(

Ut − U
) (

Vt+k − V
)

, k = 0, 1, 2 · · · (2)

Similarly, the sample CCF can be regarded as follows:

γuv
(

k
)

=
Cuv(k)

SuSv
, k = 0, 1, 2 · · · (3)

where Su is the sample standard deviation ofUt ; Sv is the sample

standard deviation of Vt .

Transfer function model fitting

We adopted the Box–Jenkins iterative three-stage

modeling approach, namely, identification, estimation,

and diagnostic checking.

(1) Structure of the model

We denoted the Google Trends search volume for “loss of

smell” or “loss of taste” in 1 week as Xt and the number of

newly diagnosed COVID-19 cases (normalized) as Yt ; then, the

structure of the transfer function model is given as follows:

Yt =
ω(B)Bb

δ(B)
Xt +

θ(B)

ϕ(B)
at (4)

where B is the backshift operator,

w (B) = w0 −
∑s

i=1 wiB
i,δ (B) = 1−

∑r
i= 1 δiB

i

ϕ (B) is the autoregressive polynomial,

ϕ (B) = 1−
∑p

i= 1 ϕiB
i

θ (B) is the moving average polynomial,

θ (B) = 1−
∑q

i= 1 θiB
i

at is the white noise process, and b is the lag period of Xt .

(2) Identification of the model

Because both Xt and Yt are non-stationary sequences, and

regressions with non-stationary series are spurious and the

analyses are not valid, we applied the first-order difference

transformation to obtain the stationary sequences.

Z
(x)
t = ∇Xt (5)

Zt = ∇Yt (6)

Some cases are shown in Figures 1, 2.

Therefore, the structure of the model can be transformed

into the following equation:

Zt =
ω(B)Bb

δ(B)
Z
(x)
t +

θ(B)

ϕ(B)
at (7)

Then, we conducted pre-white noise processing on Z
(x)
t

and Zt . Next, by observing the features of a CCF diagram of

Z
(x)
t and Zt , the values b, s, r could be determined, and then,

w (B) and δ (B) could be calculated. After that, it is necessary to

identify the white noise property of the residual. If the residual

is a white noise sequence, meaning that there is no useful

information to further extract, the transfer function model

has been established; otherwise, if the residual is a non-white

noise sequence, the autoregressive integrated moving average

(ARIMA) model should be used to extract the information.

The orders of AR and MA parameters can be identified

by examining the autocorrelation and partial autocorrelation

function; then, θ (B)and ϕ(B) are calculated to obtain the

transfer function model.

(3) Parameter estimation: Parameters were estimated using

the non-linear least-squares method.

(4) Model diagnosis was done using the following:
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FIGURE 1

Time plot of normalized newly confirmed COVID-19 cases per week worldwide. (A) Raw data, (B) first-order di�erence.

FIGURE 2

Time plot of Google Trends for smell loss per week worldwide. (A) Raw data, (B) first-order di�erence.

① Significance test of parameters.

② Autocorrelation check of residuals.

③Cross-correlation check of residuals with the

input sequence.

Results

Lag e�ect of Google Trends for smell and
taste loss during the COVID-19 pandemic

First, we selected the Google Trends data for anosmia and

ageusia worldwide from 6 January 2020 to 28 November 2021 as

the input sequence and the weekly new confirmed cases during

the same period as the response sequence. Then, by calculating

the CCF between the input sequence and response sequence

when the former lagged in different weeks, we could analyze the

lag effect of the input sequence on the response sequence. The

results are shown in Figure 3.

The unit of the horizontal axis in the figure is 1 week, which

represents the number of lag periods of the input sequence;

the vertical axis represents the CCF. The blue background

represents a two-standard error interval. If the CCF is outside

the two-standard errors when the input sequence is lagged

by k weeks, it can be concluded that the CCF is significantly

changed (P < 0.001), which means that the input sequence

{Ut} and response sequence
{

Vt+k

}

are significantly correlated

(P < 0.05).
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FIGURE 3

Cross-correlation function values for global data. (A) Google Trends data for loss of smell worldwide as the input sequence. (B) Google Trends

data for loss of taste worldwide as the input sequence.

FIGURE 4

Cross-correlation function values for data from the United States and India. (A) Google Trends data for United State loss of smell as the input

sequence. (B) Google Trends data for United State loss of taste as the input sequence. (C) Google Trends data for loss of smell in India as the

input sequence. (D) Google Trends data for loss of taste in India as the input sequence.

From Figure 3, it can be concluded that when k =

1–3, the input sequence is significantly correlated with

the response sequence; therefore, on a global scale, the

impact of Google Trends for anosmia and ageusia on

the weekly number of newly confirmed cases of COVID-

19 lags by 1–3 weeks. Similarly, we can draw the same

conclusion from data from the United States and India

(Figure 4).

The CCF of the input and response sequence with a lag of

1–3 weeks is shown in Table 1.

Construction and accuracy test of the
COVID-19 forecast model

Construction of the transfer function model

We selected 99 weeks of data from 6 January 2020 to

28 November 2021 with a focus on the whole world, the

United States, and India as the raw data for modeling. Taking

the weekly number of newly confirmed COVID-19 cases

(normalized) in the corresponding region as the response

sequence and Google Trends data for anosmia and ageusia
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TABLE 1 Results of cross-correlation function analysis.

Area Input sequence Calculation results of cross-correlation function

Lag 1 Lag 2 Lag 3

CCF P-value CCF P-value CCF P-value

Global Google Trends of anosmia 0.51 <0.001 0.44 <0.001 0.35 <0.001

Google Trends of ageusia 0.36 <0.001 0.39 <0.001 0.33 <0.001

US Google Trends of anosmia 0.36 <0.001 0.49 <0.001 0.35 <0.001

Google Trends of ageusia 0.32 0.001 0.53 <0.001 0.35 <0.001

India Google Trends of anosmia 0.67 <0.001 0.78 <0.001 0.72 <0.001

Google Trends of ageusia 0.61 <0.001 0.73 <0.001 0.66 <0.001

as the input sequence, we established the corresponding

transfer function models and calculated the parameters in the

models. Model construction and parameter calculation were

implemented using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

The results are shown in Table 2.

Forecast results

First, using the transfer function model established above,

we calculated the weekly number of newly confirmedCOVID-19

cases (normalized) from 6 January 2020 to 28 November 2021

globally and in the United States and India. Second, we used the

model to calculate the weekly number of new confirmed cases

from 29 November 2021 to 26 December 2021, as the forecast of

the response sequence for the following 4 weeks. Finally, the 95%

confidence interval of the forecast was calculated. The results are

shown in Table 3.

The timing diagram of the actual data and forecast value was

plotted using GraphPad Prism 8.0 (GraphPad Software, Inc., San

Diego, CA, USA) for data visualization (Figure 5).

Accuracy test of the transfer function model

From Figure 5, it can be preliminarily considered that the

forecast results are ideal. To test the accuracy of the model, we

downloaded the daily number of newly confirmed COVID-19

cases from 29 November 2021 to 26 December 2021 from

the official WHO website and aggregated these to obtain the

weekly number of new confirmed cases. We then normalized

the data to obtain the actual value of the response sequence in

the following 4 weeks. Finally, model accuracy was tested by

calculating the absolute error between the forecast value and the

actual value in the following 4 weeks. The results are shown in

Table 4.

It can be concluded from Table 4 that when the forecast

week is 1–3, the absolute error (normalized) between the forecast

value and the actual value is not >16.99 (it should be noted

that the normalized absolute error is distributed between 0 and

100; the same applies below). When the region scope of the

data is global or India-based, the absolute error between the

forecast value and the actual value is not >3.10. Therefore,

it can be considered that the transfer function model has

high accuracy in forecasting the development trend of the

COVID-19 pandemic.

Analysis of forecast accuracy of the
transfer function model with changes in
the last point of the response sequence

Selection of the last point

Considering that the forecast accuracy of the model will

be affected by changes in the position of the last point of the

response sequence, we selected two midpoints of the upward

trend, two midpoints of the downward trend, two maximum

points, and two minimum points in the timing diagram of

weekly new confirmed cases of COVID-19 worldwide as the

last point (Figure 6). Then, using Google Trends of anosmia

worldwide as the input sequence, we established different

transfer function models for the data before different last points

and forecasted the weekly number of newly confirmed cases in

the following 4 weeks after the last points. Considering that the

difference between the last points will lead to a change in the

amount of raw data for modeling, to reduce the influence of this

factor on the forecast accuracy, the dates of the eight last points

are relatively close to each other.

Analysis of forecast accuracy when the last
point is at the midpoint of the upward trend or
downtrend

In this study, the number of new confirmed cases during

the week of 25 July 2021 and the week of 21 November 2021

were selected as the last points, which were at the midpoint

of the upward trend. Then, we used data before the cutoff

date as the raw data to build the transfer function model for
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TABLE 2 Transfer function models for di�erent areas and di�erent input sequences.

Input sequence Area Transfer function Residual

Google Trends of anosmia Global
0.24505− 0.89657B− 0.03937B2

1− 1.71231B+ 0.82890B2
B

1

1− 0.47913B
αt

US
0.28733− 0.92108B2

1− 1.52293B+ 0.55607B2
B (1+ 0.21552B)αt

India
0.18375− 0.51241B2

1− 0.77260B+ 0.39383B2
B3 1+ 0.43898B

1− 0.73118B
αt

Google Trends of ageusia Global
0.10155− 1.42692B2

1− 1.74075B+ 0.85038B2
B2 1+ 0.45126B

1− 0.25973B
αt

US
0.35544− 0.88787B2

1− 1.45079B+ 0.48766B2
B αt

India
0.09459− 0.51358B2

1− 0.93742B2
B3 1

1− 1.44276B+ 0.69438B2
αt

TABLE 3 Forecast values and 95% confidence interval for the following 4 weeks.

Area Input sequence Google Trends of anosmia Google Trends of ageusia

Week Forecast 95% Confidence interval Forecast 95% Confidence interval

Global 1 73.17 67.45 78.89 73.72 67.71 79.74

2 75.23 64.73 85.73 77.11 65.20 89.03

3 76.50 61.37 91.63 79.68 63.17 96.20

4 76.95 57.47 96.43 81.26 60.88 101.63

US 1 35.08 26.83 43.34 35.73 27.47 43.99

2 38.26 24.77 51.76 36.58 24.21 48.96

3 39.88 20.77 58.99 37.05 19.59 54.50

4 40.57 15.98 65.16 37.41 14.64 60.18

India 1 2.55 −2.08 7.18 1.78 −2.50 6.07

2 1.94 −9.13 13.00 0.76 −10.55 12.07

3 0.94 −16.91 18.80 0.59 −19.35 20.52

4 0.36 −24.33 25.06 0.16 −28.59 28.91

forecasting. The forecast results and absolute error are shown

in Table 5.

The number of newly confirmed COVID-19 cases during

the week of 23 May 2021 and the week of 12 September 2021

were selected as the last points, which were at the midpoint of

the downtrend. Then, we used the data before the cutoff date as

the raw data to build the transfer function model for forecasting.

The forecast results and absolute error are shown in Table 6.

The timing diagram of actual data and forecast value

was plotted using GraphPad Prism 8.0 for data visualization

(Figure 7).

Analysis of the forecast accuracy when the last
point is at the maximum point or minimum
point

In this study, the number of newly confirmed COVID-19

cases during the week of 2 May 2021 and the week of 29 August

2021 were selected as the last points, which were at themaximum

points in the response sequence. Then, we used the data before

the cutoff date as the raw data to build the transfer function

model for forecasting. The forecast results and absolute error are

shown in Table 7.

The number of new confirmed cases in the week of 20

June 2021 and the week of 17 October 2021 were selected

as the last points, which were the minimum points in the

response sequence. Then, we used the data before the cutoff

date as the raw data to build the transfer function model for

forecasting. The forecast results and absolute error are shown

in Table 8.

The timing diagram of actual data and forecast value

was plotted using GraphPad Prism 8.0 for data visualization

(Figure 8).

When the last point for the response sequence is at the

extreme point, the standard error between the forecast value and

the actual normalized data (Tables 7, 8) is more significant than

in the case where the last point is at the midpoint of the uptrend

or downtrend (Tables 5, 6). In some test cases (Figure 8A), the

absolute error increases relatively rapidly as the number of

forecast periods increases.

We found that in most test cases (Figures 8A,B,D), the

transfer function model could accurately forecast the date of
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FIGURE 5

Timing diagram of actual value and forecast value for weekly new cases. (A) Global, (B) United States, and (C) India.
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TABLE 4 Absolute error between forecast values and actual values for the following 4 weeks.

Area Input sequence Google Trends of anosmia Google Trends of ageusia

Week Forecast Actual value Absolute error Forecast Actual value Absolute error

Global 1 73.17 74.26 1.09 73.72 74.26 0.54

2 75.23 75.34 0.11 77.11 75.34 1.77

3 76.50 79.60 3.10 79.68 79.60 0.08

4 76.95 99.74 22.79 81.26 99.74 18.48

US 1 35.08 44.92 9.84 35.73 44.92 9.19

2 38.26 49.81 11.55 36.58 49.81 13.23

3 39.88 54.04 14.17 37.05 54.04 16.99

4 40.57 84.57 44.00 37.41 84.57 47.16

India 1 2.55 2.22 0.33 1.78 2.22 0.44

2 1.94 2.09 0.15 0.76 2.09 1.33

3 0.94 1.82 0.88 0.59 1.82 1.23

4 0.36 1.70 1.34 0.16 1.70 1.54

FIGURE 6

Timing diagram of weekly new confirmed cases worldwide.

the inflection point of the pandemic and the trend of the

response sequence in the future. Specifically, when we set the last

point of the response sequence as 2 May 2021 and 29 August

2021, the transfer function model successfully forecasted that

there would be a maximum point for the number of newly

confirmed COVID-19 cases, which means that the intensity of

the pandemic will ease after a few weeks. When we set the

last point of the response sequence as 17 October 2021, the

transfer function model successfully forecasted that there would

be a minimum point for the number of newly confirmed cases,

which means that the intensity of the pandemic will rise after a

few weeks.

In summary, when the last point of the response sequence

is at the extreme point, although the forecast value of the
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TABLE 5 Forecast result when the last point is at the midpoint of the upward trend.

Position of the last point Cutoff date 25 July 2021 21 November 2021

Week Forecast Actual value Absolute error Forecast Actual value Absolute error

Mid-point of the uptrend 1 69.69 72.68 3.00 71.74 70.38 1.35

2 72.46 77.11 4.65 75.76 74.26 1.50

3 74.43 79.35 4.92 78.80 75.34 3.46

4 75.34 80.27 4.93 80.71 79.60 1.11

TABLE 6 Forecast result when the last point is at the midpoint of the downward trend.

Position of the last point Cutoff date 23 May 2021 12 September 2021

Week Forecast Actual value Absolute error Forecast Actual value Absolute error

Mid-point of the downtrend 1 62.64 62.49 0.15 62.06 64.40 2.34

2 52.74 53.17 0.43 55.58 61.09 5.51

3 44.74 46.83 2.09 50.28 54.65 4.37

4 39.02 44.78 5.76 46.37 51.14 4.77

FIGURE 7

Timing diagram of forecasts and actual values when the last point of the response sequence is at the midpoint of the upward trend or

downtrend. (A) Date of the last point: 25 July 2021 (upward trend 1). (B) Date of the last point: 21 November 2021 (upward trend 2). (C) Date of

the last point: 23 May 2021 (downtrend 1). (D) Date of the last point: 12 September 2021 (downtrend 2).

transfer function model deviates slightly from the actual value,

the turning point of the pandemic can be forecasted relatively

accurately. Therefore, this forecast method is of great guiding

importance for accurate judgment about future trends in the

COVID-19 pandemic and the deployment and adjustment of

governmental prevention and control policies.
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TABLE 7 Forecast result when the last point is at the maximum point.

Position of the last point Cutoff date 2 May 2021 29 August 2021

Week Forecast Actual value Absolute error Forecast Actual value Absolute error

Maximum point 1 99.27 96.04 3.23 79.29 76.31 2.98

2 96.46 84.56 11.90 77.08 69.35 7.73

3 93.32 73.78 19.54 74.05 64.40 9.65

4 88.49 62.49 26.00 70.65 61.09 9.56

TABLE 8 Forecast result when the last point is at the minimum point.

Position of the last point Cutoff date 20 June 2021 17 October 2021

Week Forecast Actual value Absolute error Forecast Actual value Absolute error

Minimum point 1 43.11 45.99 2.88 47.88 51.90 4.02

2 42.90 48.03 5.13 47.25 53.80 6.55

3 42.42 56.96 14.54 48.05 55.15 7.10

4 42.94 62.43 19.49 50.28 59.79 9.51

FIGURE 8

Timing diagram of forecasts and actual values when the last point of the response sequence is at the maximum or minimum point. (A) Date of

the last point: 2 May 2021 (maximum 1). (B) Date of the last point: 29 August 2021 (maximum 2). (C) Date of the last point: 20 June 2021

(minimum 1). (D) Date of the last point: 17 October 2021 (minimum 2).

Sensitivity analysis of the search term

To further test the prediction accuracy of the trans

function model when the search term of Google Trends

changed, we used “smell loss” instead of “loss of smell” as

a keyword to obtain Google Trends data from 6 January

2020 to 28 November 2021 worldwide, the United States,

and India. Then, we used these data as the input sequences

of the model to forecast the new confirmed cases for the

next 4 weeks. The prediction results and absolute errors are

shown in Table 9, which showed that absolute errors were

very similar to that in Table 4, which indicates that the
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TABLE 9 Prediction results and absolute errors when the search term

changed to “smell loss.”

Area Search term Smell loss

Week(s) Forecast Actual value Absolute error

Globe 1 73.11 74.26 1.15

2 75.88 75.34 0.54

3 77.71 79.60 1.89

4 78.55 99.74 21.19

USA 1 34.77 44.92 10.15

2 37.48 49.81 12.33

3 39.19 54.04 14.85

4 39.73 84.57 44.84

India 1 2.45 2.22 0.23

2 2.42 2.09 0.33

3 2.74 1.82 0.92

4 2.93 1.70 1.23

precise forecast results we can also get when the search term

was changed to “smell loss.” In conclusion, the prediction

method proposed in this paper has good stability for different

search terms.

Discussion

Summary of the study and comparison
with contemporaneous studies

Through multivariate time-series analysis, the transfer

function models forecast the development trend of COVID-19,

which is of great importance in pandemic prevention and

control. A few researchers have used Google Trends data

to forecast trends in the development of diseases, including

COVID-19 (13–15). Mavragani and Gkillas (16) applied

regression analysis to Google search data on COVID-19

in the United States and found a statistically significant

correlation between Google Trends and COVID-19 data. In

those publications, various methods were used for analysis,

including long short-term memory, random forest regression,

AdaBoost algorithm, neural network autoregression, and vector

error correction modeling. The conclusions indicated that the

use of Google Trends data could be beneficial for forecasting and

surveillance of COVID-19 spread in most countries.

However, few researchers established a forecast model using

Google Trends data on smell or taste loss worldwide. Walker

et al. (7) found a positive correlation between Google Trends

data with loss of smell and taste using Spearman’s grade

correlation analysis. Henry et al. (17) used Google searches

for loss of smell, taste, and fever to forecast the number of

new cases of COVID-19 in Poland using linear regression.

Ahmed et al. (18) used data from Pakistan to establish a linear

regression model and concluded that patients’ loss of smell and

taste occurred roughly 2–3 weeks earlier than the time the case

was diagnosed. Although relevant research has been carried

out, due to the complex relationship between the number of

confirmed cases and Google Trends search volume, there are still

many shortcomings in linear regression. Our study improved

on these by using a transfer function model in a multivariate

time-series analysis, a combination of multiple regression, and

time-series analysis. As a result, the accuracy of the forecast is

effectively improved.

Explanation of the regional scope of the
source data selected in this study

In this study, we selected data from the United States and

India, based on extensive data analysis. First, the United States

and India have had many confirmed cases since the COVID-19

outbreak. Second, the Google search engine is the most widely

used in the United States, India, and worldwide. Therefore, the

Google Trends data from the United States and India used in

this study have strong representativeness and reliability. With

the popularization and improvement of Internet technology, big

Internet data can be used tomonitor infectious diseases earlier in

many countries to prevent problems before they occur (19–21).

In the course of pandemic prevention and control in China,

Internet big data has played an important role in monitoring

and early warning, virus source tracking, etc. (2, 22). We have

also tried to add analysis on the search volume of Chinese smell

and taste keywords, but we finally concluded that there were no

valid data on the loss of smell and taste in China. First, Baidu

is the search engine commonly used by most netizens in China,

but in the Baidu search engine, related keywords such as “loss of

smell” and “loss of taste” are not included in the Baidu Index

entries. According to the Baidu Index data acquisition rules,

“Keywords that do not meet the inclusion criteria can be added

to the Baidu Index by purchasing the right to add words. For

new words created on the day, the system starts calculating and

providing data services the next day and does not backtrack

historical data.” According to this rule, we could not obtain

online search data for keywords such as “loss of smell” and “loss

of taste” during themost severe period of the pandemic in China.

Second, in most cases, users use Google to search in English,

Google has withdrawn from the Chinese market, and there is

no relevant valid data about the pandemic in China. Based on

the consideration of big data analysis, the study selected the

United States and India as regions to examine.

Explanation of error calculation in the
accuracy test

In this study, we evaluated the forecast accuracy of themodel

by calculating the absolute error between the forecast value

and the actual normalized value (abbreviated as the normalized
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absolute error).

normalized absolute error = |normalized forecast value

− normalized actual value|

First, the absolute error reflects the difference between

the number of newly confirmed cases during the COVID-19

pandemic per week and the number of confirmed cases

forecasted by the model. The advantage is that the error is

not affected by the confirmed cases, which enables the forecast

accuracy of the same model in other weeks to have a unified

measurement standard.

Second, the normalized absolute error can limit the range of

absolute error to 0 and 100. The advantage of this is that the error

can be more intuitive for researchers in analysis. At the same

time, comparing the forecast accuracies of models in different

regions eliminates the effect of differences in the populations

of different regions in error comparisons, which enables the

forecast accuracy of the different models in different regions to

have a unified measurement standard.

In summary, we used the normalized absolute error to judge

model forecast accuracy.

Discussion about the media converge

As we all know, the popularity of media coverage had a

certain correlation with the search volume of Google Trends,

which might affect the number of online searches in a certain

period of time (21, 23), but from the overall time point of view, it

could not change the overall development trend of online search

volume, nor would it affect the development trend of pandemic

situation. Taking India as an example, after the media reported

the symptoms of COVID-19 including loss of smell and taste

(around mid-March 2020), its network retrieval volume was still

at a low level (data from Media Cloud). On the contrary, the

media coverage had different effects on Google Trends search

volume in different countries and different time periods, and it

was difficult to quantify it by setting an indicator. Due to the

above considerations, we did not include the impact of media

coverage on the data in the calculation of the model.

Overview of advantages and
disadvantages of this study

The present study has many advantages and innovations in

the selection of source data and the consideration of research

methods. First, in terms of source data selection, the data from

Google Trends have been widely used as raw data for infectious

disease research, so its accuracy has been confirmed (24–26).

Second, the time duration of the data collected in this study was

sufficiently long to cover many critical and peak periods of the

pandemic. The cumulative number of confirmed cases reached

180 million, and the spread regions covered nearly the whole

world. Third, although media reports and public opinion have

a slight impact on the retrieval volume of entries (21), these

cannot significantly influence the overall increase or decrease

trend of data over a long period. Therefore, the accuracy of the

data still could be guaranteed. In terms of research methods,

we established a transfer function model for data from different

regions at different periods and tested the stability and accuracy

of themodel from various perspectives. Regardless of the current

pandemic situation, the error in the forecast was within a

smaller interval without influences on the trend of COVID-

19. In addition, the turning points of the pandemic could be

forecasted relatively accurately, which is of importance for the

deployment and adjustment of governmental prevention and

control policies.

There are also some shortcomings of this study. First, we

only considered time-series analysis in this study, and the

only independent variable was anosmia or ageusia according to

Google Trends. Compared with some mature forecast models,

this model may be somewhat simple, but the results proved that

this model has sufficient forecast accuracy. Our study provides a

heuristic idea to which researchers can add the variables of loss

of smell or taste based on an existing mature forecast system to

further improve forecast accuracy. Second, the study findings

only provide a forecast but do not specify how to promptly

deploy and adjust pandemic prevention and control policies.

Conclusion

Google Trends data for smell and taste loss can help with

the advanced forecasting of trends in COVID-19 infection.

Worldwide, in the United States, and India, the weekly numbers

of newly confirmed cases of COVID-19 lag Google Trends by 1–

3 weeks, suggesting that Google Trends regarding loss of smell

or taste could forecast the trend in COVID-19 infection up to 3

weeks in advance.
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