AUTHOR=Zhang Qian , Guo Miao , Chen Tianyi , Cheng Huizhi , Yang Qianwen , Zhao Zhuohui , She Rong , Yang Xiaoyan , Xiao Wen , Yang Xu , Li Lijuan TITLE=Walking and taking vitamin C alleviates oxidative stress and inflammation in overweight students, even in the short-term JOURNAL=Frontiers in Public Health VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2022.1024864 DOI=10.3389/fpubh.2022.1024864 ISSN=2296-2565 ABSTRACT=Objective

Obese or overweight is a risk factor for some chronic diseases, and oxidative stress and inflammation may be one of the molecular mechanisms leading to the persistence of these chronic diseases. Discovering interventions to alleviate oxidative stress and inflammation in the overweight/obese population, is very important for public health and health education.

Methods

A two-week panel intervention study (Run 0-Run 1-Run 2) was conducted. The subjects were 77 overweight/obese undergraduates attending Dali University, with a BMI>24 kg/m2. The physical indices measured at the end of each run included BMI, waist circumference, serum ROS, TNF-α, IL-1β and urinary 8-OHdG. Students were allocated to one of four intervention groups: No intervention (control); walking; taking vitamin C; and walking + taking vitamin C.

Results

The results demonstrated (1) Walking significantly alleviated ROS levels, and this was consistent in Run 1 and Run 2; (2) During Run1, all three intervention modes reduced levels of 8-OHdG, but there was a statistically insignificant increase during Run 2; (3) No alleviating effects of the three intervention modes on TNF-α levels during Run 1 and Run 2 were observed; (4) The alleviating effects of the three intervention modes on IL-1β levels during Run 1 and Run 2 were clear.

Conclusion

Walking and taking vitamin C can reduce levels of ROS, 8-OHdG and IL-1β, but not TNF-α, in overweight/obese participants. These interventions may become potential preventive measures for the overweight against obese-induced oxidative stress and inflammation.