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The rockburst phenomenon is the major source of the high number of

casualties and fatalities during the construction of deep underground projects.

Rockburst poses a severe hazard to the safety of employees and equipment in

subsurface mining operations. It is a hot topic in recent years to examine and

overcome rockburst risks for the safe installation of deep urban engineering

designs. Therefore, for a cost-e�ective and safe underground environment, it

is crucial to determine and predict rockburst intensity prior to its occurrence.

A novel model is presented in this study that combines unsupervised and

supervised machine learning approaches in order to predict rockburst risk.

The database for this study was built using authentic microseismic monitoring

occurrences from the Jinping-II hydropower project in China, which consists

of 93 short-term rockburst occurrences with six influential features. The

prediction process was succeeded in three steps. Firstly, the original rockburst

database’s magnification was reduced using a state-of-the-art method called

isometric mapping (ISOMAP) algorithm. Secondly, the dataset acquired from

ISOMAP was categorized using the fuzzy c-means algorithm (FCM) to reduce

the minor spectral heterogeneity impact in homogenous areas. Thirdly, K-

Nearest neighbor (KNN) was employed to anticipate di�erent levels of short-

term rockburst datasets. The KNN’s classification performance was examined

using several performance metrics. The proposed model correctly classified

about 96% of the rockbursts events in the testing datasets. Hence, the

suggested model is a realistic and e�ective tool for evaluating rockburst

intensity. Therefore, the proposed model can be employed to forecast the

rockburst risk in the early stages of underground projects that will help to

minimize casualties from rockburst.
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Introduction

Rockburst is a dynamic phenomenon which occurs in

underground excavations when immense amounts of energy

are released, rocks are inelastically deformed, and rocks are

thrown into the excavations (1). As defined by the Mine Safety

and Health Administration (MSHA), “a rockburst occurs when

overstressed rock collapses abruptly, releasing large amounts of

energy instantly” (2). Rockburst occurrence is mainly associated

with the geological structure, properties of surrounding rock

masses and lithology. It has been demonstrated that rockburst

poses a severe hazard to the safety of employees and equipment

in underground constructions (3–6). Therefore, for a cost-

effective and safe deep underground construction or mining in

burst-prone conditions, it is crucial to determine and predict

rockburst intensity prioir to its occurance.

The rockburst intensity is characterized into four different

levels (7). It is a big challenge to predict rockburst due to its

complex and nonlinear nature. In the last few decades, several

methods have been utilized to assess rockbursts (6). Monitoring

and forecasting the rockburst danger are carried out by utilizing

microgravity, microseismic, and geological radar techniques (8).

Based on on-site monitoring of microseismic waves emitted

during rock fractures, some precursory features of rockbursts

were discovered that could be used to predict the risk of

rockbursts. The most commonly used microseismic features to

predict rockbursts are the number of events (9), energy features

(10), apparent volume (11) and b value, which is the slope

of the commutative hit toward amplitude (12). In addition to

these indexes, researchers have proposed other strategies for

predicting the long-term occurrence of rockburst. Rock burst

risk can be assessed using tangential stress criterion (13), rock

brittleness coefficient (14), strain energy storage index (15), and

elastic strain energy density (16). A burst potential index based

on energy has been established to assess burst proneness (17).

The increasing demand for energy and construction has resulted

in underground excavations being extended to greater lengths,

which has caused severe rock burst disasters. It has therefore

been a hot topic in recent years to examine and overcome

rockburst risks.

In the previous few decades, rockburst prediction or

evaluation approaches have evolved, but there has never been

a breakthrough or generally recognized method that has been

preferred over others. Since then, the rockburst has been an

unsolved and alarming issue that needs to be resolved more

precisely. In order to eliminate the threat of rockbursts in the

first place, advanced rockburst prediction is crucial to reducing

the cost of the damage and preventing major losses from a

rockburst. In recent years, state-of-art intelligent techniques

have widely been implemented to overcome the severe dynamics

hazards of rockburst disasters for the safe installation of

underground projects. The researchers have extended their

horizons and utilized cutting-edge soft-computing methods

to predict the rockburst occurrence intensity successfully.

Additionally, the intelligent algorithm is low cost, only

focuses on input and output parameters, and has broader

applicability (18–21).

The development of artificial intelligence makes the

intelligent system more suitable for rockburst prediction. Based

on distinct geological conditions, different models are proposed,

and these models are so specialized that they cannot be used

concurrently to many projects. Rockburst is affected by non-

linear factors, and artificial intelligence algorithms are outclassed

in non-linear analysis with high-dimensional datasets. The most

widely used methods to predict rockbursts are support vector

machines (SVMs), artificial neural networks (ANNs), K-nearest

neighbors (KNNs), classification and regression trees (CARTs),

ensemble learning and random forests (RFs) (22). The results

of a study have shown that ANN models can be used to

predict rockburst risks in deep gold mines in South Africa

after an improved model was introduced (23). Zhao et al.

(24) constructed a data-driven model using a convolutional

neural network (CNN) and compared its performance with

that of a traditional neural network. An SVM model was

used by Zhou et al. (22) to categorize a long-term rockburst.

The four classical single intelligent algorithms, namely k-

nearest neighbors (KNN), SVM, deep neural networks (DNN)

and recurrent neural networks (RNN), were combined to

form four ensemble models (KNN–RNN, SVM–RNN, DNN–

RNN and KNN–SVM–DNN–RNN) using stacking ensemble

learning (25). A new probability model for tunnel rock burst

prediction was proposed based on Copula theory and the least

square support vector machine (LSSVM) method optimized via

particle swarm optimization (PSO) (26). Using kernel principal

component analysis (KPCA), adaptive-PSO, and SVM, Li et al.

(27) developed a hybrid model (KPCA-APSO-SVM). The short-

term rockburst risk was predicted using t-distributed stochastic

neighbor embedding (t-SNE), K-means clustering, and extreme

gradient boosting (XGBoost) algorithms (28). On the basis of

microseismic monitoring data, Zhao et al. (29) developed a

model for prediction of rockbursts that uses a decision tree (DT)

model. For assessing the rockburst hazard of an active hard

coal mine, Wojtecki et al. (1) used neural networks, decision

trees, RF, gradient boosting, and XGBoost. In order to study

the predictability of short-term rockburst, Liang et al. (30)

used microseismic data from Jinping-II hydropower project to

examine the predictability of short-term rockburst. This study

evaluated several ensembles learning algorithms, including RF,

adaptive boosting, gradient boosting decision tree, XGBoost,

and light gradient boostingmachine (LightGBM). RF andGBDT

have shown good performance. Li et al. (6) demonstrated the

predictability of different ensemble trees in estimating rockburst

based on 314 real rockbursts. Sun et al. (31) proposed an RF

and firefly algorithm (FA) based ensemble classifier to achieve

an optimum rockburst prediction model. A study by Ahmad

et al. (32) investigated that J48 and random tree algorithms can
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successfully predict the rockburst classification ranks based on

165 rockburst cases.

In deep underground projects, a self-organizing map

and fuzzy c-mean clustering techniques were used to cluster

rockbursts events (33). Even though several rockburst

estimation models have been described and compared by

previous researchers (34–40), developing an accurate and

reliable predictive model still poses a significant challenge for

the ground, which is likely to experience frequent rock bursts.

Further, many other models for forecasting rockbursts can be

considered valuable and efficient tools for geological and mining

engineering applications. Unsupervised machine learning is an

approach that researchers have shown increasing interest in

adopting, in which data labels are not required to be known in

advance to perform the analysis. In order to classify the data,

clusters are formed based on their proximity to each other and

the distance from each cluster’s center is taken into account

(28, 29, 41). So far, the available studies have succeeded in

predicting and classifying the rockburst dynamic disaster but

were never entirely successful. A particular procedure can be

appropriate in certain instances but not in others. Therefore,

the adaptation of state-of-art data depletion combined with

unsupervised and KNN learning has less contribution to

rockburst intensity prediction. Table 1 illustrates the summary

of previously published literature to predict rockburst.

Significance of the study

The predicting features of rockburst levels vary throughout

a wide range of rock engineering, mining and geotechnical

engineering projects. The impacts of each uncertainty level are

yet unclear. In fact, many different findings are reported in the

diverse domains of rockburst prediction, short-term rockburst

is a complex and sophisticated phenomenon that cannot yet be

accurately predicted.

This study develops short-term rockburst prediction

model based on uncertainty incorporating unsupervised

and supervised learning in order to apply the model

effectively in addressing the rock engineering problems.

The following three steps are provided in this study to forecast

the short-term rockburst:

1) To begin with, the original rockburst database’s

magnification was reduced using a state-of-the-art

method called isometric mapping.

2) The isometric mapping dataset was categorized

using fuzzy c-means clustering as an unsupervised

machine learning approach to reduce the minor spectral

heterogeneity impact in homogenous areas.

3) In order to anticipate different levels of short-term

rockburst datasets, KNN, a supervised machine learning

has been designed. The study’s flowchart is shown in

Figure 1.

Materials and methods

Data curation

The database for this study was built using authentic

microseismic monitoring occurrences from the Jinping-II

hydropower project in China. The Jinping II Hydropower

Station is located close to the boundaries of Muli, Yanyuan, and

Mianning in the Liangshan Yi Autonomous Region of Sichuan,

southwest China. It is an ultra-deep buried long tunnel with an

extra-large subterranean water power engineering. The average

length of the cave line is around 1,667 km, the width of the

excavation hole is 13m, the underlying rock mass is normally

buried between 1,500 and 2,000m, and the maximum buried

depth is roughly 2,525m. The excavation tunnel section of the

1# and 3# diversion tunnels is a four-hearted horseshoe with

TABLE 1 Summary of previously published literature to predict rockburst.

Year Number of input features Number of datasets Approaches Accuracy (%) References

2020 6 93 XGboost 73.33 (30)

2020 6 93 Gradient boost decision tree 76.67 (30)

2020 6 93 Adaboost 66.67 (30)

2020 6 93 Random forest 80 (30)

2021 4 165 J48 92.857 (32)

2018 3 108 and 132 Decision tree model 73-93 (42)

2008 4 36 AdaBoost 87.8-89.9 (43)

2008 6 45 v-support vector regression 93.75 (44)

2012 6 132 Heuristic algorithms and support vector machine 66.67-90 (22)

2021 6 311 Scorecard methodology 75 (45)
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FIGURE 1

Flowchart of the proposed study.

FIGURE 2

The distribution of di�erent rockburst level.

an excavation diameter of 13m, whereas the tunnel boring

machine (TBM) excavation section of the 1# and 3# diversion

tunnels is a circular section with an excavation diameter of

12.4m. The distance between the four diversion tunnels is

60m. The auxiliary tunnels A and B are 35m apart from

the centerline of the construction drainage tunnel, whereas

the construction drainage tunnel is 45m apart from the 4#

diversion tunnel (26). The database consists of 93 short-term

rockburst occurrences with six influential features (46). The

dataset analyzed in this study was obtained from the work of

Liang et al. (30) and was built on the dataset readily accessible

by Feng et al. (46). Rockburst intensity has been divided

into four categories: no rockburst level (represented by Level

0) illustrates that the rock composites have no considerable

breakage on the free face; slight rockburst level (represented

by Level 1) indicates minor composites with modest fragment

movement and kinetic energy transfer; moderate rockburst level

(represented by Level 2) illustrates the sample debonding of

the rock mass inside the diverticulum and highway structure;

while severe rockbursts level (represented by Level 3) involve

a significant amount of rock mass cracking that immediately

fractures the nearby rock mass. The distribution of different

rockburst level in this study is shown in Figure 2. Table 2 depicts

the statistic of input and output features employed in the

rockburst database.

Data visualization

Table 2 reveals that this study incorporates six significant

features. The values of Z1, Z2, Z3, Z4, Z5 and Z6 are adjusted

on a logarithmic scale to make the effective implementation

more favorable. The log parameter’s primary objective is

to address the database’s skewness toward big data. The

rockburst database has been investigated by utilizing Python

programming language. The Python programming language
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TABLE 2 The statistic of input and output feature in rockburst database.

Rockburst

level

Cumulative

number of

events Z1

(Unit)

Event rate Z2

(unit/day)

Logarithm of the

cumulative release

energy Z3 (J)

Logarithm of

the energy Z4

(J/day)

Logarithm of the

cumulative

apparent volume

Z5 (m3)

Logarithm of the

apparent volume

Z6 (m3/day)

3 41 3.727 4.694 3.653 4.926 5.968

2 14 1.556 4.622 3.668 4.887 5.841

2 17 1.889 4.397 3.443 3.8 4.754

2 18 1.8 4.703 3.703 4.295 5.295

. . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . ..

2 36 2.571 4.336 3.16 2.583 4.729

1 8 2.667 3.977 3.5 4.727 5.204

1 16 2.667 4.681 3.903 2.843 3.621

0 6 1.5 2.735 2.133 4.698 5.3

Minimum 1 0.11 0.78 0.178 2.511 1.66

Maximum 70 12.25 7.094 5.89 5.168 4.39

Mean 13.011 1.735 4.389 3.562 4.15 3.334

Standard

deviation

13.69 1.738 1.441 1.332 0.66 0.558

offers important assistance for experimental data mining,

together with data input classification and statistical learning

techniques evaluation. Additionally, the learning outcome for a

big amount of data is made apparent by visualizing the input

data (47). Figure 3 depicts the voilen of several features for

the four rockburst levels. Figure 3 shows a positive correlation

between each feature and the corresponding rockburst level.

The higher level of rockburst is indicated by the larger values

of the features. Additionally, a few outliers may be seen in all

of the short-term rockburst dataset’s features for accompanying

rockburst intensity, demonstrating the heterogeneity of the

rockburst events. Therefore, this study incorporates the effects

of all the features to increase the authenticity of the rockburst

data structure.

Isometric mapping (ISOMAP)

Isometric Mapping (ISOMAP) is a stochastic technique

for reducing dimensionality that maintains geodesic adjacency

using a non-Euclidean measure. As a result, it preserves

nonlinear characteristics of the original data that are lost in

conventional analysis (48). Although the ISOMAP represents

nonlinear fluctuations in the broader domain, it preserves

linearity in small domains (49). Alternatively, this is referred

to as multifaceted learning or consideration. It follows that the

manifold’s small local area is a conversation of metric space

(50). Figure 4 depicts the mechanism of ISOMAP. The relevant

datasets are denoted by the letters a–f. They have star points as

neighbors. The measured distances of these data are represented

by the green segments. It works by mapping the original

dataset into a predetermined low-dimensional embedded space

and makes the assumption that the high dimensional data is

uniformly sampled from a uniform manifold. This method then

attempts to identify the underlying manifold (51).

The standard Euclidean geometry and domain-specific

metrics can both be used to approximate the geodesic

distance. A series of brief hops between nearby points can

be added up to approximate domain-specific distance, and

the input space’s standard Euclidean metric gives a decent

approximation of geodesic distance (52). With the ability

to learn a wide range of nonlinear manifolds, ISOMAP

combines the key algorithmic characteristics for computational

effectiveness, global optimality, and guarantees the asymptotic

convergence (53).

Fuzzy c-means algorithm (FCM)

The theory of the fuzzy set was developed for the purpose

of precisely resolve the difficulties of certainty and uncertainty

in the field of optimization and artificial intelligence (54, 55).

The FCM was developed based on clustering analysis concept

which allows every level to classify in many categories knows as

fuzzy sets. This algorithm often has significant advantages over

more conventional methods. Several researchers have proposed

innovative strategies to FCM in order to solve the problems

related to different fields (56–59). Figure 5 depicts the flowchart

of FCM algorithm.
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FIGURE 3

Voilen chart of significant features employed in the study.

K-nearest neighbor (KNN)

The K-Nearest neighbor (KNN) algorithm is a supervised

technique that is often utilized in a wide range of situations due

to its efficiency and simplicity. The most modern development

highlights KNN’s potential for reducing distortion in a dataset

(60–63). Big data analysis with a KNN classifier demands

powerful computing resources. According to the classification

approach, a test sample’s class label is established using the k

nearby samples from the training dataset (64). The connection

between all training instances and the testing data ought to be

determined in order to perceive the k nearest neighbors. Each

test instance is allocated using KNN contingent on its k closest

neighbors. The separation between all training instances and the
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FIGURE 4

The mechanism of Isomap.

FIGURE 5

Flowchart of fuzzy c-means algorithm.

test instances ought to be computed in order to find the k nearest

neighbors (63).

FIGURE 6

A simple 3D multi-class KNN model for the rockburst dataset.

Equation 1 is employed in the KNN to determine the

spectral intervals (Euclidean distances) across each unknown

value and the samples plots. The k sample plots that are closest

to the estimated level are chosen based on the aforementioned

particular node.

γ =

√

√

√

√

m
∑

k=1

(uk − vk)
2 Eqn. 1

whereas γ stands for the spectral distance between the u and

v in the n-dimensional space, uk and and vk are the spectral

values of unknown variables and v in the kth selected spectral

variable, respectively. By weighing the reciprocals of their

spectral distances from the ideal k closest plots, the rockburst

level was predicted using Equation (2).

Levelp =

∑y
z=1

1
dγz

∗vz
∑y

z=1
1
dpz

Eqn. 2

whereas Levelp represents the appropriate forecasted level at

the p, vz depicts the rockburst observation associated with

to the zth sample, dpz represent the spectral interval from

the P to the zth samples, and k illustrates the ideal number

of samples.

Finally, the suggested KNN algorithm with the rockburst

data has been computed on Algorithm 3. The massive training

data is divided into m distinct sections first. The size and

dispersion of each cluster throughout the various axes of the

data space (dtu) should be estimated once the clusters have been

identified. Themost appropriate cluster of rockburst datasetmay

be chosen using Algorithm 1. Selecting the appropriate data

cluster can substantially affect the outcome of the classification
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process because the KNN process’ output is dependent on the

training data. In order to determine the k nearest neighbors

and determine the rockburst level of the test sample, the KNN

algorithm is applied to the chosen portion of the training data

(65). A simple 3D multi-class KNN model for the rockburst

dataset is shown in Figure 6.

Result and discussion

Large-scale theoretical and mathematical analyses of

datasets are performed using the powerful programming

language Python. The clustering and classifying focused

data mining techniques and algorithms are supported by the

Python programming language. This option is one of the best

platforms for designing scalable applications since it has so

many advantageous characteristics. Therefore, it may be used to

the framework of big data analysis in large rockburst datasets to

produce reliable findings.

The ISOMAP technique has been implemented as a

method for learning a nonlinear manifold from a collection

of unstructured high-dimensional datasets. Its foundation is

an expansion of the conventional multidimensional scaling

approach to data reduction. The ISOMAP enhances the data

identification and make it simple to quantify differences

between data points and the reconstructed space. In comparison

to the distances in the other conventional data dimensionality

reduction rebuilt spaces, the separation far or near in the

ISOMAP-reconstructed matrix give the dimension of the

similarity intervening the data point. The ISOMAP effectively

separates the points by calculating the geodesic distance. Several

ISOMAP iterations can assist in separating the data points,

allowing them to be grouped into various clusters. The benefit

of ISOMAP is that it employs the Dijkstra’s algorithm, which

determine the optimum route through neighbors and terminate

at every point, to provide realistic distance estimates between

the interconnected points distance, which accurately depicts

the change in actual space distance between the data points.

ISOMAP tool is used to visualize the original rockburst database

from high-resolution matrix to low-resolution matrix. The

original rockburst dataset having six influential feature was

employed in this study. The proposed ISOMAP technique

is implemented in Jupyter notebooks. The ISOMAP’s three

leading factors were utilized to depict the rockburst points

that had been reduced after dimensionality reduction. The

original rockburst data points in the ISOMAP reconstructed

3D structure showed greater spatial variation, which were

evenly spaced apart. Table 3 represent three influential

factors rockburst acquired from ISOMAP. The 3D structure

of the isometric reconstructed rockburst dataset is shown

in Figure 7.

The application of FCM could be used to solve a wide

range of geostatistical data analysis issues. Each type of

TABLE 3 The influential factor of rockburst dataset acquired from

isomap.

Pattern no. Factor 1 Factor 2 Factor 3

1 29.63107 1.098796 −0.24922

2 1.649354 −1.04534 1.085205

3 4.826978 −0.45574 0.016694

4 5.97017 −0.5952 −0.01854

5 −2.48045 −0.55883 0.118498

. . . .. ..... ..... .....

89 17.77873 −1.29822 −0.75349

90 24.13729 1.433746 0.084803

91 −4.68471 −1.88809 2.039045

92 3.84182 1.570014 1.10249

93 −7.98256 −2.45747 2.358197

FIGURE 7

3D visualization of ISOMAP based rockburst database.

numerical data can be employed to generate prototypes and

fuzzy partitions with this programmed. These partitions are

helpful for supporting established substructures or pointing to

substructure in undiscovered data. The FCM clustering with

ISOMAP reconstructed points has been employed to determine

whether it is feasible to categorize the rockburst level. The FCM

clustering is implemented in Jupyter notebook. Researchers

have established the cluster monitoring’s generalizability of the

findings (29). A metric used to determine the effectiveness of a

clustering method is the silhouette coefficient, often known as

the silhouette score (66, 67). Its value is between −1 and 1. The

score 1 clusters are clearly distinguishable and spaced far apart,

score 0 indicates that clusters are undifferentiated or that there

is no statistically significant difference across clusters, whereas
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FIGURE 8

Fuzzy c-means algorithm visualization on Isomap database.

score −1 implies that the clusters are assigned incorrectly.

Equation 3 depicts the silhouette score.

Sillhouette score =
(y− x)

max(y, x)
Eqn. 3

Whereas y is the average distance between all clusters and x is the

average intra-cluster distance, or the average distance between

each point inside a cluster.

The silhouette score can demonstrate that the ISOMAP

acquired data is correctly categorized, representing the

arrangement of the features into the categories to which they

belong. This index measures the effectiveness of the clustering’s

authentication in choosing the best k cluster members. We

suppose that there will be four FCM clusters, which corresponds

to the four distinct rockburst intensities. This study calculated

many iterations phases, as illustrated in Figure 8. The yellow,

aqua, green and red color were selected to identify the rockburst

level 0, 1, 2 and 3 respectively. A suitable model for clustering

has been demonstrated in several studies to have a silhouette

score of higher than 0.5 (68–70). Following the tenth iteration

in the Isometric mapping derived short-term rockburst dataset,

the silhouette score of 0.53 demonstrates that the clusters were

consistent and authentic. The center of the circle of the four

clusters were (0.740, −0.08, 0.035), (−0.139, −0.543, 0.864),

(−0.581, −0.419, −1.136), (−0.776755, 1.755, −0.212). Based
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TABLE 4 The classification report of the proposed approach on the

rockburst database.

Precision (%) Recall (%) F1-score (%)

Level 0 100 92 96

Level 1 86 100 92

Level 2 100 100 100

Level 3 100 100 100

Accuracy 96

Macro avg 96 98 97

Weighted avg 97 96 96

on the performance evaluation, the FCM performed well to

categorize four different levels of rockburst.

The KNN is a supervised machine learning method

that is appropriate for classification and modeling and is

reasonably simple to construct. It may be employed in

a variety of rock engineering applications. It selects k

sample plots from the training dataset that are most similar

to the predicted rockburst level, and it then utilizes the

“feature similarity” concept to weight the observations of

the k plots based on how similar their significance is

to the unknown rockburst level. The KNN technique for

predicting short-term rockburst levels was implemented using

the Python programming language. Each unknown rockburst

level in this study was given a Euclidean distance to each

sample plot, and these distances were used to determine the

spectral distances.

The FCM acquired data were randomly divided into training

datasets (70%) and testing datasets (30%). The training dataset

is used to develop and verify the framework while the testing

datasets are utilized in order to assess the framework’s capability

to estimate the rockburst levels that use previously unobserved

data. On the testing dataset, the KNN’s forecasting outcomes

were obtained. Various performance indices including precision,

recall, and F1-score have been employed by the researchers to

evaluate the performance of a classification model (71). In this

study, precision, recall, and F1-score have been used to predict

the outcomes of the proposed KNN algorithm when associated

with ISOMAP and FCM.

The Python programming language was used to generate

the classification report for the testing dataset. The classification

report provides insight into the effectiveness of the framework

on the rockburst events, which is depicted in Table 4. The

testing dataset had almost the accuracy of 96% confirming the

approximate fitting of the model.

In comparison to level 1, the precision value for level

0, 2 and 3 produced superior results. In terms of precision,

the level 0, 1, 2, and 3 have values of 100, 86, 100,

and 100%, respectively. The recall values for levels 1,

2, and 3 outperformed level 0 in terms of findings. In

FIGURE 9

Confusion matrix of KNN on testing dataset.

comparison to level 0 and 1, the F1-score value for level 2

and 3 attained superior results. The average and weighted

recall scores could reach high values of 98 and 96% as

a trade-off between precision, recall, and F1-score. The

accuracy of the testing dataset was 96%, supporting the

proposed model’s approximation of fitting. Hence, the proposed

KNN based ISOMAP and FCM algorithm demonstrates

favorable classification results for the developed KNN model

in successfully identifying the rockburst risk in underground

civil structures.

Figure 9 demonstrates the confusion matrix that’s been

generated for the KNN algorithm. The data on the primary

diagonal represent the number of samples that the KNN

accurately predicted. As can be observed, the KNN successfully

classified the majority of rockburst samples. In the whole short-

term rockburst dataset, only one rockburst level has been

incorrectly predicted. In more detail, one level (0) is incorrectly

labeled as level (1). Hence, the KNN algorithm performed

well in forecasting the rockburst level in underground

civil structures.

Conclusion

This study developed ISOMAP + FCM + KNN

framework to effectively and accurately anticipate rockburst

levels. By examining the results for the proposed model

using several performance metrics, the robustness of the

generated framework was demonstrated. During this study,

three approaches that are frequently used in geotechnical

engineering—ISOMAP, FCM, and KNN model—were used

to forecast the rockburst level. More specifically, the data

used in this study is collected from several microseismic
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monitoring occurrences. The statistical performance is

used to assess the short-term rockburst level in order to

approximation the resilient framework for the best effective

model in connection with data prediction. The results of

the ISOMAP, FCM, and KNN model demonstrate that it

is capable of generating highly precise predictions of the

rockburst level.

As a result, it is recommended to employ the ISOMAP +

FCM + KNN model developed in this study as a reliable and

effective model for predicting the intensity levels of rockbursts.

Due to the suggested model’s accurate prediction performance

in various rock environments, it can be used as a rockburst

mitigation and warning system. By keeping several additional

geological and rock mechanics data, the model can be made

more comprehensive. This model can be utilized as a practical

and useful tool for determining rockburst risk. The suggested

model can be used to predict the level of rockburst in the early

stages of underground mining projects in order to reduce the

injuries and fatalities from rockburst.

It is important to take into account the range and volume of

trainings because this has an impact on the data-driven models’

ability to make logical inferences. The proposed model will be

further expanded by developing certain cutting-edge machine

learning techniques and contrasting the results of those models

with the results of the model attained in this work.
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