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Road closure is an e�ectivemeasure to reducemobility and prevent the spread

of an epidemic in severe public health crises. For instance, during the peak

waves of the global COVID-19 pandemic, many countries implemented road

closure policies, such as the tra�c-calming strategy in the UK. However, it

is still not clear how such road closures, if used as a response to di�erent

modes of epidemic spreading, a�ect the resilient performance of large-scale

road networks in terms of their e�ciency and overall accessibility. In this

paper, we propose a simulation-based approach to theoretically investigate

two types of spreading mechanisms and evaluate the e�ectiveness of both

static and dynamic response scenarios, including the sporadic epidemic

spreading based on network topologies and trajectory-based spreading

caused by superspreaders in megacities. The results showed that (1) the

road network demonstrates comparatively worse resilient behavior under the

trajectory-based spreading mode; (2) the road density and centrality order, as

well as the network’s regional geographical characteristics, can substantially

alter the level of impacts and introduce heterogeneity into the recovery

processes; and (3) the resilience lost under static recovery and dynamic

recovery scenarios is 8.6 and 6.9%, respectively, which demonstrates the

necessity of a dynamic response and the importance of making a systematic

and strategic recovery plan. Policy and managerial implications are also

discussed. This paper provides new insights for better managing the resilience

of urban road networks against public health crises in the post-COVID era.
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1. Introduction

Since 2020, the global COVID-19 pandemic has not only

triggered major shifts in city operations, but has also had a

considerable impact on people’s travel behaviors, as well as

their abilities to work and their mental health (1–4). Many

countries have adopted strict public health control measures to

contain the spread of this unprecedented and highly infectious

virus, such as travel restrictions, road closures, and social

distancing. While road closures, for instance, are considered

effective in isolating certain high-risk areas and communities

so that the infectious spread may be quickly controlled, such

“no access” restriction measures could substantially harm not

only the local accessibility and road network connectivity but

also many other unexpected aspects of our daily life. For

example, a recent study on the impact of COVID-19 related

“stay-at-home” restrictions on food prices in Europe showed

that vegetable prices increased by 3.36% in the high restriction

group compared to the low-restriction group (5). Despite the

knowledge of the general impacts of the access control measures,

there is still very little known about how those strict control

measures, as responses to the various types of virus spreading,

could affect the resilience performance of the road networks in

megacities. More importantly, investigation on this topic might

reveal useful implications for better preparing for the challenges

in the post-COVID time.

The key theme this paper is focusing here is about the

resilience of the urban road networks, and this topic has been

extensively studied by many scholars, under the context of

various types of natural and man-made disasters. However,

studies on the resilience of urban road networks against

infectious diseases have been relatively limited, which leads to

a lack of knowledge on building resilient urban transportation

systems in the context of emergency response management for

public health crises. Such scarcity is even more prominent when

considering various types of contagious spreading mechanisms

including the sporadic and trajectory-based occurrence of the

disease. The former refers to the cases that are scattered or are

in a small cluster and separated in place so that little or no

connection exists among them, and more importantly, those

cases also do not show a recognizable common source. The

latter is also known as the superspreader spreading mode. A

superspreader is often considered an infected individual who

has infected others disproportionately (6, 7). In this paper,

we adopt the definition as those who infect many others

along their trajectories of movement. Furthermore, from the

perspective of quickly recovering the systemic serviceability in

emergency responses, it is also not very clear howmuch dynamic

recovery strategies outperform static recovery strategies under

the two abovementioned spreading mechanisms. Addressing

these unclear questions has both practical and managerial

implications for a better urban management. As a result, the

objectives of this paper can be summarized as follows.

1. To conduct an in-depth assessment of resilience on urban

road networks against the two aforementioned epidemic

spreading mechanisms and reveal their dissimilar negative

effects in terms of the performance loss;

2. To perform comparative studies between the static

and dynamic recovery strategies and quantitatively

reveal the effectiveness and shortcomings in terms of

the performance restoration.

To achieve the objectives, this paper conducts a simulation-

based comparative investigation to understand the epidemic

spreading and the recovery processes on urban road networks.

Taking Beijing, China, as an illustrative case study, we used

the classic susceptible-infectious-recovery (SIR) model and

network analytics to simulate the sporadic occurrence and

trajectory-based occurrence. Additionally, we comparatively

analyze the performance of urban road networks under two

recovery strategies, namely the “First-Close-First-Reopen”

(FCFR) recovery strategy and the dynamic recovery strategy.

The resilience, in terms of performance loss, from all cases

is evaluated to quantitatively benchmark their heterogeneous

effectiveness, which yields several critical implications for

practical COVID-19 emergency responses in megacities.

The main contributions of this paper can be summarized

as following:

• This paper quantitatively measures the advantages of

the dynamic road recovery strategy over the widely

applied static one under the context of various epidemic

spreading mechanisms, providing additional new evidence

and insights for relevant decision makers and stakeholders.

• This study lays a foundation for better understanding the

impacts of the emergency road closures (either temporary

or permanent) on the efficiency of road networks, which

is useful for local authorities to manage more efficient

responses to future public health crises in urban emergency

management.

• To the best of our knowledge, this paper is one of the

earliest studies that discuss the superspreader spreading

mechanism in the field of transportation resilience, which

fills a clear gap for the development of the frontier.

The remainder of this paper is organized as follows: Section 2

reviews the state-of-the-art knowledge on two resilience-related

topics, namely resilience assessment and infectious spreading on

urban roads, and identifies and further clarifies the knowledge

gaps and missing links. Section 3 describes the proposed

simulation-based analytical approach and the applied methods,

including details on two spreading mechanisms and two

recovery strategies. Section 4 outlines the essential background

information about the case study and data. Section 5 presents

the main findings of this investigation. Then, Section 6 discusses

and summarizes several managerial implications, followed by
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the conclusion and future research directions of the paper in

Section 7.

2. Literature review

2.1. Assessment of resilience on urban
road networks

The resilience of urban road networks is crucial to the

operation of modern cities, especially when disruptions occur

and prompt responses are needed. This particular stream

of research occupies a large share of the resilience-related

fields in infrastructure studies. Many studies discussed the

assessment of road network resilience against natural disasters

such as earthquakes, floods, landslides, heavy snow, etc. For

example, Aydin et al. (8) developed a method to assess

the resilience of urban road networks under seismic hazards

using graph theory and stress testing methods, and Zhou

et al. (9) studied the connectivity of post-earthquake road

networks by using percolation based method. Gao et al.

(10) used the Bayesian network (BN) as a modeling tool

to assess road network resilience and component importance

under different earthquake magnitudes, which showed that

the higher the earthquake level is, the lower the system

resilience. Morelli and Cunha (11) proposed a novel method

for measuring urban road resilience against floods based

on travel distribution, and Zhang et al. (12) quantitatively

assessed the vulnerability and resilience of urban traffic under

different rainfall intensities. Aside from those previous examples

focusing on single events, some scholars approached the

issue from the perspective of multiple hazards. Der Sarkissian

et al. (13) assessed road resilience to different natural hazards

with a developed network analytic method and Zhou et al.

(14) developed a novel two-layer framework to assess the

robustness of transportation networks considering multiple

hazard events. Additionally, there are many studies on the

resilience of road networks, readers can refer to some recent

studies in this field such as Zhou et al. (15) and Serdar et al.

(16).

From the above, resilience assessment highly hinges on

different scenarios, causing difficulties in simulation-oriented

studies. Recovery modeling and simulation on different

infrastructure networks, such as interdependent utility networks

and electric power networks, have been not uncommon in the

relevant fields (17–23). For example, Li et al. (24) simulated

the effect of road closures caused by pluvial flash floods

in multiple scenarios with a GIS-based model. Wang and

Liu (25) proposed a mathematical model for measuring the

recovery of urban road networks in snow events and established

snow removal resource location and allocation optimization

models to resolve the issue. In addition, some studies also

introduced other methods to discuss the simulation recovery

on road networks. For instance, Vodák et al. (26) introduced

a modified ant colony optimization algorithm to study the

recovery process of road networks after disasters, which

can be used for planning construction work when damage

occurs. Zhan et al. (27) employed traffic congestion on road

networks as a case study and proposed a new framework for

modeling the evolution of functional failures and recoveries in

complex road networks. Sohouenou and Neves (28) compared

the effects of several link-repair strategies on road network

resilience across a multitude of perturbation scenarios and

analyzed the characteristics of the optimal recovery strategy.

The findings showed that it was important to consider and

model the recovery processes for critical disruption scenarios

that affect a large number of links. In addition, Tang et al.

(29) tested the effect of different sensor recovery schedules on

the resilience of traffic-sensor networks through the analysis

of the spatial-temporal vehicle patterns in Cambridge, UK.

The simulation results suggested that a prioritized sensor

maintenance recovery plan would enable more efficient use of

public resources.

2.2. Infectious spreading on urban roads

The spread of infectious diseases has had great impacts

on the public health and transportation sectors and thus,

has been well-documented in many previous studies (30–

33). The rapid development of the urban built environment

and transportation infrastructure can facilitate the spread of

infectious diseases and amplify their scale (34). For years,

numerous efforts have been dedicated to building models

for studying infectious diseases in public transportation

systems. For example, Qian and Ukkusuri (21) developed

a novel Trans-SEIR modeling approach to connect urban

transportation systems with the spread of infectious diseases.

The results can guide the optimal placement of entrance

control over the public transportation system, such as buses

and metros, and thus, help to mitigate the risks of infectious

diseases. Mo et al. (35) proposed a time-varying weighted

public transit (TWPT) encounter network to model disease

spreading through transit systems, considering social activity

contacts at both local and global levels. The results showed

that early identification and isolation of infected passengers

can effectively reduce the spread. Using the susceptible-or-

infected (SI) and susceptible-infected-recovery (SIR) models,

Chatterjee et al. (36) studied the dynamic process of epidemic

outbreaks and information diffusion on urban bus networks

in six Indian cities. They discovered that the characteristic

path length is vital for information diffusion and epidemic

spreading. In addition, Zhang et al. (37) analyzed the

transmission mechanism of the COVID-19 epidemic along

traffic routes based on population migration, using an improved

SEIR model.

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1023176
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tang et al. 10.3389/fpubh.2022.1023176

Moreover, a few studies have also addressed the relationship

between transportation systems and several specific diseases

such as dengue and tuberculosis. Li et al. (38) studied the

spatial and temporal changes in dengue spread and its spatial

relationship with road networks in southern Chinese cities.

Their results indicated that cases were concentrated near

narrow roads and that the epidemic spread mainly along

high-density road network areas, which partially explains the

underlying mechanism of the occurrence of sporadic epidemic

hotspots during the early spreading stage. Ge et al. (39)

examined the association between tuberculosis (TB) incidence

and four types of transportation networks at the provincial

level, identifying spatial clusters of TB incidence linked with

transportation networks in different regions. COVID-19 has

been a popular research focus in transportation studies in

recent years (40, 41). Among them, analyzing the control

measures and policy implications is of great value for the

transportation sector (42, 43). For instance, Zhou et al. (44)

studied the impact of different entry restriction policies on

international air transport connectivity during COVID-19 and

Zhou et al. (45) proposed a layered weighted network efficiency

(LWNE) metric to study the vulnerability of the worldwide

air transportation network in response to different levels of

disruptions. Anke et al. (46) investigated the impact of SARS-

CoV-2 on mobility behavior and found a profound impact

on mobility behavior with decreases in public transport and

increases in car usage, walking and cycling. Furthermore,

they also found that lockdown in the behavioral changes was

minimal, which suggested isolated differences between policies

with and without lockdown. Readers can also refer to further

studies about infectious spreading on various transportation

systems at different scales, including studies by Muley et al. (47),

Kutela et al. (48), Choi (49), Hu et al. (50), Zhao et al. (51), and

Severo et al. (52).

2.3. Research gap

From the above review, we found that recovery simulation

of road networks, including many other types of infrastructure

networks, based on different scenarios have been discussed

extensively. All of them have substantially contributed to

how we might effectively assess the resilience of urban road

networks, optimize their recovery, and reveal the spreading

mechanism of infectious diseases on urban transportation

infrastructure. However, studies on recovery simulations of

road closures in the context of public health crises, such

as COVID-19 on road networks, with a good comparative

analysis between static recovery strategies and dynamic

recovery strategies are still needed. As stated in the previous

section, we address this gap with two clear objectives in

this paper.

3. Methodology

3.1. The analytical framework and basic
assumptions

Figure 1 depicts the proposed simulation-based analytical

framework that realizes the hybrid process of virus spread

and policy interventions with a given road network (because

most of the roads in the study area are dual-way roads, we

therefore construct the network model as undirected). We

design two spreading mechanisms (i.e., sporadic spreading and

trajectory-based spreading) and two recovery strategies (i.e.,

static and dynamic recovery strategies) to simulate the spreading

of infectious diseases and the recovery process of the network.

Finally, we obtain the network performance profiles based on

simulation outcomes and quantify the effectiveness of these two

recovery strategies on road network resilience under different

spreading mechanisms. Several basic, yet essential, assumptions

should be presented as the prerequisites and cornerstones for

the analysis.

1. In the simulation, we assume that all spreadings follow

the topology of the road networks with a 100% infection

rate. This is based on the fact that a contagious disease

spreads among populations due to intensive human mobility

activities, and humanmobility often hinges on the urban road

topology. The discussion of (1) the actual spreading pathways

from one individual to another and (2) the effect of dynamic

population changes on epidemic spreading are not in our

scope.

2. Unlike many previous studies, the affected objects in the

simulations are not individual human beings or acting

agents but road segments. The infected road segments are

assumed to be disconnected from the road networks. That is,

once a confirmed positive case is identified along a particular

road segment or in the community that is adjacent to a

road segment, this segment is assumed infected, and as a

response, this road segment is closed by the local government

immediately; in other words, it is removed immediately

from the network’s accessibility due to its disconnection.

Although this is a very strong assumption based on the “All-

or-Nothing” principle (i.e., it is either full access or no access

at all, limited or time-variant access is not considered), in real

world practice, it is considered acceptable and realistic. For

instance, for several countries that implement strict control

policies, such as China, once a confirmed case is identified,

the whole vicinity and community will be isolated and closed

for full-screen sanitization, and thus, the roads around that

area will be closed. Even in a less strict situation, if the vicinity

is not completely isolated, people would still deliberately

avoid those roads as soon as they know that there is a high risk

of being infected around that particular vicinity, which is also

roughly equivalent to road closure from a holistic perspective.
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FIGURE 1

The proposed simulation-based analytical framework.

3. Disconnected road segments are assumed to be able to

“reopen” after being treated with thorough sanitization

or being identified as low-risk areas following restricted

inspections (as an analog to the term “recover” in the typical

failure-recovery paradigm). Moreover, in contrast to many

previous studies assuming that recovery only starts after

the completion of attacks/failures/removals, we let both the

processes of closures and reopening happen simultaneously

at each time step to simulate more realistic actions delivered

by a city’s emergency response team. In addition, we also

assume that each road segment only experiences one closure

in one round of simulation, i.e., we do not consider

reinfections within those already-reopened segments.

4. Two types of spreading mechanisms are considered in

this study, namely, the sporadic spreading mode and the

trajectory-based spreadingmode. We assume that the former

follows edge betweenness centrality and the latter has a

certain associated infection range. Based on the previous

study from Li et al. (38) and Tantrakarnapa et al. (53), the

former spreading mode considers that the disease might

sporadically occur at those highly populated spots where

the density of roads and edge betweenness centrality are

high, while the latter one mimics the negative impacts from

superspreaders where the roads adjacent to (or within a

certain range of) his or her trajectory will be considered

high-risk areas that are very likely to be infected as well.

Solid examples supporting this assumption in real world

events can be found. For example, in January 2021, a

super-spreader in Jilin Province, China, was identified to

have had close contact with ∼140 other individuals (54)

and most of them later became confirmed positive cases,

which directly incurred a city-level emergency response,

includingmassive road closures and large-scale screening and

testing. Super-spreaders may have no symptoms or slight

symptoms, but they are highly infectious and unpredictable,

i.e., scholars have dedicated considerable effort to decoding

its fundamental mechanism, yet it still remains unclear (55).

5. The risk of infectious disease spreading based on a

topological road network considers the following three

scenarios: (1) all roads are assumed to be pedestrian

accessible; (2) the commuting mode of super-spreaders on

the road network could be both public transport trips or

private car trips. The former may generate risks due to direct

contact with other passengers. The latter may exacerbate risks

due to random stops, such as staying at service stations and

waiting at toll booths.

3.2. Road network performance

As mentioned in the literature review, various methods have

been applied for road network performance quantification (56–

59). Related topics are also popular in the field. In this study,

one of the network connectivity indicators, network efficiency,
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is used to compute the network performance at each time step,

as it is a well-defined indicator that considers both the network

topology and the connection situation, which can directly link

to the performance of the mobility flows on road networks. The

network efficiency of the current road network G is defined

in Equation (1). The equation computes the average reciprocal

nearest distance among all the junction pairs in the network. As

seen, the shorter the distance between nodes i and j is, the larger

the network efficiency, and therefore, the better the connectivity

of the road network.

E(G, t) = 1
n(n−1)

∑

i 6=j∈G(t)

1
d(i,j) (1)

where E(G, t) is the network efficiency of network G at time

t. d(i, j) is the shortest distance between nodes i and j in the

network structure at time t. n is the total number of nodes in

network G.

To facilitate multilateral comparison and the calculation of

the resilience in the later stages, we normalize the network

efficiency to ensure that the initial network performance before

any edge removals starts from 1 (i.e., 100% efficiency). The

normalized network efficiency is determined by Equation (2),

where E(G, 0) is the initial network efficiency of network G.

E(G, t) = E(G,t)
E(G,0) (2)

3.3. Disease spreading mechanisms for
simulations

3.3.1. Sporadic spreading mode

The sporadic spreading mode considers that the infectious

may sporadically occur at populated locations with high edge

betweenness. In network theory, the edge betweenness centrality

strongly indicates the centrality of each edge based on the

shortest paths in all possible origin-destination (OD) pairs

and describes the probability that an edge may be frequently

passed by the OD movements, which on road networks

indicates frequent traveler visits. Therefore, the betweenness-

based propagation intuitively shows that crowded places have

a higher infection probability (53). The edge betweenness

centrality can be defined as Equation (3). Among all the shortest

paths between all OD pairs on the road network, the more

paths that pass the edge, the higher betweenness centrality the

edge possesses.

B(e) =
∑

s 6=t

σs,t(e)
σs,t

(3)

where s, t ∈ V and V is the set of vertices in the network.

σ(s, t) is the total number of shortest paths among s and t. σs,t(e)

is the total number of shortest paths from s, t pairs that pass

edge e.

At each time step in this spreading mode, the road edges

with top s(t) betweenness centrality values are set as infected.

The betweenness centrality was recomputed at each time step

to fully consider the dynamic influence of virus spread and

updates of epidemic control policies. The spreading process is

illustrated in Figure 2 by a grid network when the spreading

speed is 1 edge/time step. At each time step, the edge with

the highest betweenness centrality is identified as infected and

therefore closed, which means this edge is removed from the

network. Next, the betweenness centrality value of each edge

is recomputed. The betweenness centrality value of each edge

dynamically changes as the time step proceeds.

For the betweenness-based spreading mode, it is also

essential to determine the spreading speed at each time step.

Here, we select the most classic and widely applied SIR model.

A typical SIR model can be depicted as Equations (4)–(6). For

the basic theoretical implementation of this model, please refer

to Hethcote (60) and Newman (61). This model describes the

important temporal relationship among three groups during the

epidemic propagation process, i.e., the susceptible group, the

infected group, and the removed group (62). In this study, S

indicates the group of edges that are susceptible to the virus in

time step t. The number S(0), however, is smaller than the total

number of edges in the graph tomimic the typical characteristics

in the sporadic spreading mode. The variable I indicates the

group of infected edges in time step t. The variable R indicates

the group of recovered edges at time step t. R(0) equals 0 since

no edge is reopened at the beginning of the propagation process.

dS(t)

dt
= −aS(t)I(t) (4)

dI(t)

dt
= aS(t)I(t)− bI(t) (5)

dR(t)

dt
= bI(t) (6)

where S is the number of susceptible edges, I is the number

of infected edges, and R is the number of reopened edges. a

and b are two real, positive constant parameters used to control

the model.

Based on the SIR model, the spreading speed at each time

step can be inferred by Equation (7). The spreading speed equals

the total number of infected and reopened road segments at time

step t minus that of the last time step t − 1.

s(t) = I(t)+ R(t)− I(t − 1)− R(t − 1) (7)

where s(t) is the propagation speed at time step t.

Correspondingly, the recovery speed r(t) at each time step can
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FIGURE 2

Network topology-based free spread model illustration (yellow: infected edge; green: travel path).

be determined based on the time differences of the total number

of removed edges.

r(t) = R(t)− R(t − 1) (8)

3.3.2. Trajectory-based spreading mode

This mode is defined as the superspreader spreading mode

in this paper. Super spread events have drawn increasingly high

public attention in recent years (63). In this spreading mode,

a superspreader’s traveling path is first defined by assuming

he or she would always go for the shortest distance to the

destination (for simulating a shortest-path-based trip chain in

daily commuting behaviors) and travel along this path with a

predefined constant speed. At each time step, the surrounding

road edges within a predefined given radius of the vicinity

are identified to be high-risk segments that local authorities

would close to prevent further cascading spreading, whichmight

be caused by this particular superspreader in a worst case

emergency response plan. Therefore, the spreading speed s(t)

is coupled with and determined by the superspreader’s traveling

speed and vicinal road density (i.e., the faster the traveling speed

and the higher the vicinal road density are, the more road

segments might be infected and then closed at each time step).

Figure 3 illustrates the mechanism of the trajectory-based

spreading mode when a superspreader travels from the bottom

corner to the middle of the grid. For a better visualization,

the infected (closed) road segments are colored rather than

removed. The green lines indicate the superspreader’s travel

path, and the yellow lines denote the closed vicinal road

segments. The breadth first search algorithm proposed by

Eppstein (64) is used to determine the vicinal road segments at

each time step in this set of simulations.

3.4. Recovery strategies

3.4.1. First-close-first-reopen (FCFR) recovery
(static recovery strategy)

The FCFR strategy, a common practice of recovery and

maintenance schemes in previous studies and real world

practices, is used as the benchmark for comparative analyses.

As self-explained, this recovery strategy reopens the closed road

segments based on their infection sequence; the first closed

road segment will be treated and reopened first in the recovery

process. Figure 4 shows an illustration of such a recovery process

given the spreading mode from Figure 2. Although FCFR is

the most widely applied and intuitive response principle in

emergency events, it is obviously not a proactive approach as

it does not dynamically consider the influence of the reopened

road segment on the rest of the closed roads or the changes in

the overall network performance. Thus, we refer to the FCFR

recovery strategy as the static strategy here in this study.

3.4.2. Local optimization-based recovery
(dynamic recovery strategy)

Given that the infections occurring on the road network

follow either the spreading mode of Figure 2 or Figure 3,

finding the global optimal reopening sequence of those closed

segments is a nondeterministic polynomial (NP) problem.

Especially as the number of infected edges increases, the

complexity of this problem exponentially increased due to the

increased number of combinations and system functionality

quantification (65). Moreover, when the future propagation

process remains unknown, making the global optimal recovery

decision in the current time step is even more difficult. To

ensure the simulations are both practically and computationally

approachable, using the local optimization as the decision

principle could be a simplified yet very feasible solution here. In

this study, the dynamic recovery strategy is defined as reopening

the road edges that can maximally improve current network

performance (i.e., the network efficiency) compared to the last

time step (Equation 9). Figure 5 illustrates the process of the

local optimization-based dynamic recovery strategy when the

reopening speed is 1 edge/time step.

argmax[p(t + 1|ai)− p(t)] (9)

where p(t) is the network performance at time step t, which

is the efficiency in this paper (cross-referencing Equation 2),
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FIGURE 3

Trajectory-based cascading spread model illustration (yellow: infected edge; green: travel path).

FIGURE 4

Trajectory-based cascading spread model illustration (yellow: infected edge; green: travel path).

p(t + 1|ai) is the network performance at time step t + 1

after reopening the road segment ai, and argmax indicates that

the optimization function is to find the best argument ai that

provides the maximum value from the function.

3.5. Simulation settings and pseudo
codes

It has been proven that minor access roads play critical

roles in maintaining the overall accessibility of road networks.

Thus, we do not trim off those short and minor access

roads in the selected network to simplify the topology for

levitating computational burdens. In this vein, to facilitate the

computation and ease the intense load, parallel computing

and memory control processing techniques have been used

in the iterative computations of the network efficiency in all

simulations. The computing process is modified by the Python

package, Networkx (64).

Two scenarios based on spreading mechanisms are

simulated separately in this study to illustrate the influences

of different emergency responses. Both recovery strategies are

applied to these scenarios. Figure 6 represents the pseudocode

for the sporadic spreading case, where the disease spreading

speed and road reopening speed are determined by the SIR

model. Hence, the input requires the road network information,

the parameters from the SIR model, and the recovery strategy.

The output is the resultant network performance which is

quantified by Equation (1) at each time step.

Figure 7 represents the pseudocode of the trajectory-based

spreading simulations. The input requires the road network

information, the recovery strategy, and a predefined trajectory

path of the superspreader. The spreader is assumed to travel

along the trajectory with a fixed traveling speed. At each time

step, the location of the traveler along the trajectory is used to

identify the vicinal road segments within a given range. Here,

this range is set as within N segments, i.e., all segments that can

reach the current superspreaders location within the distance of

N linked road segments. Hence, the number of total infected

road segments predominantly hinges on the local road density.

In contrast to the first scenario, the reopening speed of the

trajectory-based spreading simulations is set as a constant for the

purpose of simplification and later for comparative analysis.

4. Case study

Beijing, the capital city of China, was selected as an

illustrative case study here. It is known as a representative

megacity and ranked as one of the top 10 cities in the 2021Global

Cities Index (66). As a high-density megacity and an important

hub of the Beijing-Tianjin-Hebei agglomeration, Beijing had a

large population of 21.89 million permanent residents in 2020

and an unparalleled annual traffic volume (67). A virus outbreak

in Beijing would lead to severe impacts on the management of

urban operations and people’s travel behaviors (68). However,
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FIGURE 5

Illustration of the local optimization-based recovery process.

FIGURE 6

Algorithm I: Sporadic spreading scenario.

Beijing suffered second wave of COVID spread in 2020, and

there was no local transmission within 56 consecutive days

under extremely strict control measures (69). Therefore, it is of

practical importance to take Beijing as a case study to investigate

how megacities should respond to the spread of the virus and

learn from it. Here, the study area is confined within the inner

third-ring road of Beijing (Figure 8). This study area covers

the very core of its massive road network, including 16,008

junction nodes, 22,062 road segments, and a total road length

of∼2,300 km.

Figure 9 shows the descriptive analysis of the road network

statistics. Figure 9A indicates the edges’ betweenness centrality

values when all the road segments are functional. The road

segments with higher betweenness centrality are shown in red,

where we can clearly see that those high-betweenness edges

are concentrated around the center of the study area and are

mainly trunk roads or major urban streets. Figure 9B displays

the degree distribution of the nodes; most of the nodes have a

degree of 3, which often represents a “T” shape junction in the

topology (a node with degree 4 represents a normal four-way

intersection), and this number is in line with the findings from

FIGURE 7

Algorithm II: Trajectory-based spreading scenario.

previous studies. A few nodes’ degree is larger than 4, which

may be caused by the extra ramps on highways or roundabouts.

From the road edge length distribution (Figure 9C), it is clear

that most of the road segment lengths are <500 m, and a few

road segments have lengths of over 1,000 m.

5. Results

5.1. Sporadic spreading scenario

From the methodology, we utilize the SIR model to

determine the spreading speed s(t) and recovering speed r(t)

in this simulation scenario. Two parameters that control the

SIR model, the infection rate a and recovery rate b, are

selected from Cooper et al. (70) to imitate a real pandemic

spreading process. The number of susceptible road segments

is set as 1,000, which accounts for ∼4.5% of the total road

segments. a and b in Equations (3)–(5) are set as 0.35 and

0.035 based on the referred study (we reproduced the SIR

simulation strictly following the instructions in the paper.

Readers can refer to it for more details on the SIR model
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FIGURE 8

The study area. (A) China. (B) Beijing. (C) The study area.

FIGURE 9

Node degree distribution of Beijing Road network. (A) Betweenness centrality degree. (B) Node degree distribution. (C) Road length distribution.

construction and simulation settings). The time-dependent

evolving processes of the susceptible group, infected group,

and reopened group are shown in Figure 10A. The results of

the SIR model indicate that the number of susceptible road

segments gradually decreases at the beginning as the disease

begins to spread. After ∼5 time steps, the gradient of the

curve of infected road segments increases, and a large portion

of the susceptible group has been infected. The simulation

is ended at 50 time steps (to cover a long enough wave of

epidemic strike). All the susceptible road segments are infected,
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FIGURE 10

SIR model simulated propagation process. (A) Number of each group. (B) Propagation and recovery speed.

but a small portion of road segments are not recovered at

the end of the simulation. The corresponding spreading speed

and recovery speed are shown in Figure 10B. The largest

spreading speed occurs at ∼12 time-steps, where most road

segments are infected but the recovery process was just about

to initiate, and then the spreading process almost finished after

the 20 time-steps. As described in the study framework (cross-

referencing Figure 1), the segments are dynamically closed and

reopened based on the spreading speed and recovery speed. It

should be noted that with the betweenness centrality of each

edge being recomputed at each time step, the infected road

segments at each time step can be different when using different

recovery strategies.

Figure 11 shows the road network performance curves

in the context of the two proposed recovery strategies. A

relatively similar network performance decrement trend

between the FCFR recovery and dynamic recovery can

be observed at the initial stage of spreading process.

The discrepancy between the two became more obvious

after ∼10 time-steps, which corresponds to the increasing

recovery speed as seen in Figure 10B. Although the network

performance touches its lowest point at a similar time

step regardless of the recovery strategy, the dynamic

recovery clearly demonstrates a much higher performance

value than the FCFR method, which indicates a better

and more resilient performance by losing less total

system functionality.

The advantage of using the dynamic strategy is even

more critical during the later stage of the spreading process,

and it can be observed that the dynamic recovery strategy

almost achieves 100% of the original performance whereas

the FCFR strategy only reaches ∼95% of the pre-event

performance level. Overall, the performance loss of the dynamic

recovery strategy is only ∼4.63, which is 9.1% of the total

performance area, while that of the FCFR recovery strategy

reaches 6.49 (12.7%), which again quantitatively confirms

FIGURE 11

Hybrid influence of restriction and reopen influence of the

di�erent recovery models.

the advantages of the dynamic recovery compared to the

FCFR recovery.

However, we can also see from the simulation result that

the sporadic occurrence of disease can cause considerable

harm to the road network as the performance level drops

sharply within the first 10 time-steps. Because it is sporadic

in space, it can occur so irregularly and widely separated in

place that one single emergency response team might find it

struggle to quickly react to those successive but very distant

outbreak spots. Thus, to deploy an effective dynamic recovery

strategy in this spreading mode, a centralized control center

that can put multiple emergency response units into in-time

actions should be considered. In practice, it is true that many

cities establish centralized epidemic control centers in their

local authorities.
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FIGURE 12

The trajectories of superspreader-based infections propagation. The traveling speed is set as 10 road segments/time step. The closest five

segments adjacent to the traveler are assumed to be infected. The total moving time is 11 time steps. (A) Time step 0, (B) time step 2, (C) time

step 0, (D) time step 6, (E) time step 8, (F) time step 10.

5.2. Trajectory-based spreading scenario

5.2.1. A simple non-commuting trip

Because there could be no typical symptoms, a

superspreader very often does not have self-awareness of

being a superspreader until the ones infected by him/her

are positively confirmed, causing this mode of spreading to

be extremely difficult to control. Figure 12 demonstrates the

superspreader’s traveling path and infected road edges. For

this randomly selected OD trip, the superspreader starts from

the southern left corner, which is close to the location of the

Beijing south high-speed railway station (a very crowded place

with numerous commuters on weekdays), to the north of the

study area (a place where commercial offices and residential

neighborhoods are clustered). In this demonstrative case, the

superspreader would pass the center of the road network for

the shortest path from his or her origin to the destination,

which is intuitively not optimistic for epidemic control as it is

highly populated and the road density is also high in the city

center. Consequently, this leads to more road segments being

infected in the center area in this spreading scenario than on the

previous scenario.

Based on the demonstrative case in Figure 12, we set the

recovery speed as 50 road segments/time step, and thus, the

number of infected road segments at each time step (spreading

speed) can also be inferred, which is shown in Figure 13. This

curve demonstrates that the spreading speed is highly correlated

with the road density in the network. The spreading speed

increases when the superspreader travels from the southwest

corner to the center of Beijing city. Around the 6th time step,

the spreading speed decreases due to the shorter but denser

road segments that are close to the center area. After that, the

spreading speed increases again and eventually decreases after

closing to the destination. A total of 1,477 road edges are infected

during this spreading process.

Figure 14 shows the resilience curves of the network

performance in this superspreader spreading scenario when

implementing the proposed two recovery strategies. The

total simulation time is longer than the travel time as the

recovery process continues after the superspreader reaches the

destination. Two similar-shaped performance drops can be

observed in the first 10 time steps when using the FCFR

recovery strategy and the dynamic recovery strategy, where

a minor rebound occurred in the middle of the drop. One
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FIGURE 13

The number of infected roads at each time step of

trajectory-based propagation.

FIGURE 14

Trajectory-based recovery results.

possible explanation for this minor rebound could be due to the

large recovery speed compared to the superspreader’s traveling

speed (the effects from various recovery speeds are discussed

in the following). Once the trip is completed, the merits of

implementing the dynamic recovery strategy become more

significant; it can be seen that the dynamic recovery strategy

reopens those critical road segments much faster than the FCFR

does, which again leads to a more resilient recovery process.

Quantitatively, the performance loss in FCFR is ∼3.98 (12.4%),

whereas that figure in the dynamic recovery strategy is only 3.06

(9.6%), showing a 2.9% improvement for a single superspreader

(Considering the large scale of the network in megacities, this

improvement could already be pretty impressive). Furthermore,

it only takes a second to realize that this single superspreader

can cause almost the same level of damage as a series of sporadic

spreads (as shown in Section 5.1).

5.2.2. Sensitivity to the changes of trip
trajectory

To test the robustness of the merits of the dynamic

recovery strategy, another four scenarios with heterogeneous

trajectory paths and recovery speed are designed and simulated.

An illustration of the four trajectory paths with different

orientations in the city is shown in Figure 15A. The traveling

speed is kept at 10 road segments/time step. The infection

range is considered as 3 segment distances in this round of

simulation. As shown in Figures 15B–E, the travel directions

from south to north (SN), west to the east (WE), southwest

to northeast (SW-NE), and southeast to northwest (SE-NW)

are simulated. The recovery speeds are varied from 50 road

segments/time step to 5 road segments/time step to facilitate the

comparative analysis, where Figure 15B with recovery speed of

50 road segments/time step, Figures 15C,D has a recovery speed

of 10 road segments/time step and Figure 15E with recovery

speed of 5 road segments/time step. The appropriateness of

this parameter setting can be explained as follows: (1) because

there were no similar studies as references, in this study, we

perform several sets of trials based on the simulation settings,

and it was found that the parameters selected above are optimal

in terms of simulation accuracy and computation time; (2)

considering the virus propagation speed and realistic medical

resource allocation, an excessively fast recovery speed may

reduce the benefits of optimal decision-making, so this study set

the recovery speed from 50 road segments/time step to 5 road

segments/time step; and (3) this study may provide a reference

for the setting of these types of parameters in future studies.

Comparing the performance curves from each orientation

(Figure 16), the minimum impact to the road network scenario

is when the superspreader travels from south to north with

a recovery speed of 50 road segments/time step, which

is an intuitive observation as the faster the response and

reopening speed, the less the negative influence caused by

the superspreader (regardless of which recovery strategy), i.e.,

performance loss of 1.59 (8.8%) in FCFR and 1.45 (8.1%) in

dynamic. It can also be seen that the influence of superspreaders

on network efficiency from southeast to northwest is more

severe than that from south to north, i.e., performance loss of

12.85 (8.4%) in FCFR and 8.71 (5.7%) in dynamic. It is likely

that this case affects more segments and many of the infected

segments are in the central region. Graphically, we can see that

the superiority of adopting a dynamic recovery strategy can be

observed in all simulated scenarios. Comparing the scenarios

with respect to different recovery speeds (Figures 16A,B,D, the

corresponding performance loss indices are shown in Figure 17),

which indicates that the superiority of the dynamic strategy is

more obvious when the recovery speeds are slow.

This comparison also indicates that a slower recovery speed

leads to a greater performance loss, and thus, less resilient

network functionality (Figure 17), which further corroborates
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FIGURE 15

The trajectories with di�erent orientations of a superspreader. (A) An illustration of possible traveling paths of superspreaders. (B) South to

North. (C) West to East. (D) South-west to North-east. (E) South-east to North-west.

that the negative impact on the road network caused by

superspreaders could be more severe than expected. Thus, this

mode of virus spread is the one that most attention should be

given to in airborne epidemic emergencies, such as COVID-19.

Numerically, even superspreaders behave differently according

to various orientations and road densities in the simulations,

the averaged performance loss from the FCFR recovery is∼6.98

(8.6%), while it is of only 5.25 (6.9%) from the dynamic recovery.

6. Discussion and implications

In terms of the comparison between the two recovery

strategies, this study quantifies the considerable advantage of

dynamic strategies over static FCFR strategies. Given that

in many countries or regions it is not always possible for

public health resources to be greatly reinforced in the short

time of the spreading, thus, it is undeniably necessary to

implement active, dynamic and strict epidemic prevention

and control measures from early stage. This is intuitive, yet

very often neglected in practice; observation again reiterates

the importance of dynamically updating decision-making in

fighting epidemics. In reality, this quick reaction often means

a joined effort from different city authorities such as local

public health authorities, land and transportation authorities,

and emergency management authorities. Moreover, in the

simulation, the dynamic recovery strategy has comparable

advantages against trajectory-based spreading (the resilience

of the dynamic recovery strategy is 3.6% higher than that of

the FCFR recovery strategy). The same pattern observed in

other testing cases indicates that this advantage of the dynamic

recovery strategy is stable and generic. Meanwhile, we also found

that the spreading speed of superspreaders is highly correlated

with the road density (and orientations), which could imply that

city managers should pay more attention to urban areas with

denser roads from the perspective of epidemic prevention and

design with extra care in urban street planning, especially in the

post-pandemic era.

To reduce the risks of infection caused by super spreaders,

it is effective to use smart and digital technologies for

epidemic prevention and control, especially in tracking the

trajectories of confirmed cases, analyzing crowded gathering

hotspots and human mobility patterns, applying contactless

transportation, etc. For example, using telecom technology
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FIGURE 16

Final recovery results with di�erent traveling paths and recovery speeds. (A) Recovery results of SN path (R = 50 roads/time step). (B) Recovery

results of WE path (R = 10 roads/time step). (C) Recovery results of SW-NE path (R = 10 roads/time step). (D) Recovery results of SE-NW path (R

= 5 roads/time step).

and data analytics, Vodafone, a telecoms and technology

service provider, created heatmaps to help government in

Lombardy, Italy learn about population movements (71). In

China, AI-powered autonomous vehicles are used to deliver

medical supplies and necessities to hospitals or isolated

communities under remote video monitoring, which helps

minimize direct contact between people (72). The Hyderabad

state in India used an automatic license plate recognition

system based on advanced learning algorithms to monitor

travel speeds to help the government enforce the driving

restriction order (i.e., citizens should not drive more than

3 km from their homes) (73). In addition to engaging

technologies, policy measures are critical for dealing with

superspreaders in urban transportation, such as initiating traffic-

calming schemes (low-traffic neighborhood) (74). In fact, as

part of the COVID-19 response, traffic-calming trials have

been fast-tracked in many cities across the UK. However, due

to multiple factors in personal travel behaviors, it remains

challenging to deal with superspreading cases. In China, some

optimistic examples of successfully controlling superspreaders

exist, yet with appalling costs and sacrifices associated with

the painstakingly strict control measures, such as in-depth

epidemiological investigations and high-resolution tracing of

contact trajectory.

To ensure a resilient and efficient urban road network,

although many factors contribute to the spread of the virus,

promoting proactive action plans with dynamic strategic

measures should be taken as a bottom-line attitude regardless

of the spreading mode. With the increasing emergence of

various new variants of the new coronavirus, COVID-19,

threats will continue, and the discussion of epidemic control

will continue to emerge as well. For urban mobility, this

might also continue triggering a growing number of relevant

debates in public in the future. For example, the traffic-

calming scheme mentioned above that was originally proposed

to support social distancing and actively respond to COVID

spreading by transforming dense-street residential areas has

recently been heavily criticized due to critical cited concerns over

congestion, emergency access issues and increasing inequity

in local communities. Based on the findings and discussion
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FIGURE 17

Performance loss with di�erent traveling paths and recovery

speeds.

in this paper, several policies and practical implications for

improving the resilience of urban roads can be summarized

as follows:

• In response to the spread of highly infectious epidemics,

such as COVID-19, on urban roads, it will be more effective

to combine dynamic recovery strategies with continuous

preventive strategies rather than adopting one-size-fits-all

static solutions, and this often requires a joint effort from

multiple local authorities.

• To prevent and minimize the spreading risk caused

by super-spreaders, city managers should consider

even more proactive measures and seek diverse

assistance from cutting-edge digital tools to achieve

multiobjective epidemic control, such as tracking

trajectories, monitoring real-time traffic, strengthening

vehicle mobility management (e.g., congestion hotspot

monitoring) and hierarchical control schemes for

risk-prone areas.

• To maintain a more resilient urban road network during

the pandemic time, if without an in-time response and

a proper dynamic recovery strategy to ensure quick

restoration, it is essential to acknowledge the following

before implementing any epidemic control measures: The

measure (such as road closure) could have negative

impacts on road network resilience and might lead to

severe consequences on accessibility and efficiency. In

some cases, it could even exacerbate and provoke new

issues, such as social inequity. For decision- and policy-

makers, this is particularly noteworthy and should be

borne in mind throughout the whole decision-making and

policy-framing process.

7. Conclusion

This paper performs a simulation-based comparative

investigation of the four different combinations of epidemic

spread and recovery processes and quantitatively studies their

impact on the resilience of Beijing’s road network. We

defined two modes of spreading mechanisms (i.e., sporadic

occurrence and trajectory-based occurrence) and comparatively

analyze the performance of urban road networks under

two recovery strategies, namely, the “First-Close-First-Reopen”

(FCFR) recovery strategy and the dynamic recovery strategy,

to quantitatively benchmark their heterogeneous effectiveness,

which provides several critical implications for practitioners.

The results show that (1) in terms of negative impact,

the superspreader can cause much worse consequences for

the overall accessibility of urban road networks. Given the

real-world pandemic control cases, sporadic spreading and

trajectory-based spreading could occur in tandem if no proper

action is taken; (2) the road density and centrality order, as

well as the network’s regional geographical characteristics, can

significantly affect the spreading speed of the virus and introduce

heterogeneity into the recovery processes; and (3) In terms

of better recovery strategy, we confirmed the superiority of

the dynamic strategy; it considerably outperforms the common

practice (i.e.,the static FCFR strategy). In the sporadic spreading

scenario, the performance loss of the dynamic recovery strategy

is only ∼4.63, which is of 9.1% of the total performance

area, while that of the FCFR recovery strategy reaches 6.49

(12.7%). In the trajectory-based spreading scenario, the average

performance loss from the FCFR recovery is∼6.98 (8.6%), while

it is of only 5.25 (6.9%) from the dynamic recovery.

This study provides insightful policy and managerial

implications for city managers and policy-makers, which could

inspire new strategies in managing public health emergencies

during and even after the COVID-19 crisis. Like many

other simulation-based analyses, we also acknowledge several

limitations of this study as potential caveats for future roll-

outs. First, our findings on the sporadic spreading mode rely

on the basic assumptions and the parameter settings of the SIR

model. Some assumptions of this paper might need to be further

examined using more empirical data. For example, one of these

assumptions is that the reopened road segments are assumed

not to be infected and closed again. Urban roads, of course,

could also be reclosed again due to the recurrence of the virus.

This setting can be tested in future work. Another assumption,

i.e., a 100% infection rate, was made to simplify the simulation

process and to capture the worst spreading scenario. In the

future, comparative studies based on various infection rates can

be tested. Second, as the authors are writing this paper, new

COVID variants have been periodically emerging. For instance,

a SARS-CoV-2 variant named ‘Omicron’ has spread from South

Africa and it was suggested that people who previously had
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COVID-19 may be more likely to become reinfected with

this variant (75). Thus, future work could consider simulating

spreading with various levels of infection rates. Third, the travel

paths of road users may not always be perfectly in line with the

road topology. However, in megacities, such as Beijing, China,

it is very common for pedestrians to walk on the streets and for

drivers to park vehicles on roadside parking lots. Nevertheless,

the uncertainty of human behaviors is not considered in our

simulations and can be included in future explorations. Fourth,

the betweenness centrality and network efficiency considered in

this study are unweighted. However, pandemics can also occur

in non-central areas. In future studies, we will consider assessing

the resilience of road networks using weighted metrics, such as

the weighted network efficiency mentioned in the paper by Zhou

et al. (76). Finally, focusing on only onemegacity case study from

China could also be a shortcoming of this study. More cities with

heterogeneous characteristics will be explored as additional case

studies in future research.
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4. Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Kłoda K, Simeone M,
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