AUTHOR=Wiryasaputra Rita , Huang Chin-Yin , Kristiani Endah , Liu Po-Yu , Yeh Ting-Kuang , Yang Chao-Tung TITLE=Review of an intelligent indoor environment monitoring and management system for COVID-19 risk mitigation JOURNAL=Frontiers in Public Health VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2022.1022055 DOI=10.3389/fpubh.2022.1022055 ISSN=2296-2565 ABSTRACT=

The coronavirus disease (COVID-19) outbreak has turned the world upside down bringing about a massive impact on society due to enforced measures such as the curtailment of personal travel and limitations on economic activities. The global pandemic resulted in numerous people spending their time at home, working, and learning from home hence exposing them to air contaminants of outdoor and indoor origins. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which spreads by airborne transmission. The viruses found indoors are linked to the building's ventilation system quality. The ventilation flow in an indoor environment controls the movement and advection of any aerosols, pollutants, and Carbon Dioxide (CO2) created by indoor sources/occupants; the quantity of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique used to track a person's COVID-19 risk, but high or low CO2 levels do not necessarily mean that the COVID-19 virus is present in the air. CO2 monitors, in short, can help inform an individual whether they are breathing in clean air. In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring systems use various sensors that are available in the marketplace. This work presents a review of scientific articles that influence intelligent monitoring development and indoor environmental quality management system. The paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266 microcontroller support the development of low-cost indoor air monitoring at learning facilities.