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The coronavirus disease (COVID-19) outbreak has turned the world upside

down bringing about a massive impact on society due to enforced measures

such as the curtailment of personal travel and limitations on economic

activities. The global pandemic resulted in numerous people spending their

time at home, working, and learning from home hence exposing them to

air contaminants of outdoor and indoor origins. COVID-19 is caused by

the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which

spreads by airborne transmission. The viruses found indoors are linked to

the building’s ventilation system quality. The ventilation flow in an indoor

environment controls themovement and advection of any aerosols, pollutants,

and Carbon Dioxide (CO2) created by indoor sources/occupants; the quantity

of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique

used to track a person’s COVID-19 risk, but high or low CO2 levels do not

necessarily mean that the COVID-19 virus is present in the air. CO2 monitors,

in short, can help inform an individual whether they are breathing in clean air.

In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring

systems use various sensors that are available in the marketplace. This work

presents a review of scientific articles that influence intelligent monitoring

development and indoor environmental quality management system. The

paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266

microcontroller support the development of low-cost indoor air monitoring at

learning facilities.
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1. Introduction

The COVID-19 outbreak has had a significant impact

on daily lives affecting work, school, the healthcare system,

and the pursuit of pleasure. Since the outbreak became an

altering global health crisis, the pandemic is nearing its

end. Nevertheless, the public faces the threat of COVID-19

common symptoms such as coughs, headaches, eye irritation,

dizziness, fatigue, and death. The rapid transmission of the

deadly virus led to a strong emphasis on health precautions

and prevention techniques by government officials and health

institutions worldwide to curb its spread. Several situations

can exacerbate the number of COVID-19 cases, particularly

from a socio-demographic level, including lack of essential

services, slums and impoverished settlements, the density of

public transportation, the duration of a journey, and the state

of a country’s infrastructure. Furthermore, climatic factors such

as temperature, airflow, air quality, and humidity may also

contribute to increased COVID-19 cases. In Spain’s capital

city of Madrid, the mortality rate was 312 deaths per 100,000

inhabitants on 5 May 2020 (1). Individuals suffering from

respiratory disease and people aged 60 years and above

who were exposed to poor air quality (2) had a higher

mortality rate. During Spain’s first outbreak, the lifestyle of

its residents underwent a drastic change because the entire

Spanish population was placed under a 24/7 lockdown for

45 days. As such, people were mandated to stay at home

and could only leave to perform essential activities (1). In

the education sector, the pandemic affected class attendance,

academic performance, and children’s health. Consequentially,

numerous countries had to grapple with a health crisis as well

as economic shocks that affected human capital, productivity,

and society.

According to the World Health Organization, the primary

mechanism of COVID-19 transmission is between people,

particularly in situations where there is extended and

unprotected virus exposure (3). The SARS-CoV-2 virus—

which causes COVID-19—is emitted from a contagious person’s

respiratory system and transmitted to a responsive host. There

are three major routes for the spread of COVID-19, namely

droplet transmission, close contact, and airborne transmission

(4–8). Particulate matter (PM) is also known as particle

pollution in the air that comes in solid and/or liquid form. The

size of the virus particles ranges from sub-micrometers to a few

micrometers whilst the pathogens are contained in fluid-based

particles that are aerosolized from respiratory tract sites during

activities such as coughing, breathing, sneezing, and speaking

(9). Previous studies found that indoor air circulation is a crucial

factor behind virus viability, therefore, poor ventilation, loud

vocalization, density occupancy, and stay duration (7, 10, 11)

increase environmental risk factors in transmitting the virus.

The research conducted by Baboli revealed that the essential

condition which harbors the presence of the virus indoors

includes low levels of humidity and temperature, a high PM

level, and the absence of any air filtration (12).

In addition, outdoor temperatures are hotter than usual

due to global warming which can influence people’s choices to

spend time indoors working, learning, and relaxing. Therefore,

it is important to measure indoor air quality as it is one

of the most significant real-time indicators for today’s urban

environment given how it significantly influences human health,

safety, and comfort (13); the Air Quality Index (AQI) represents

a quantitative level of air pollution. Indoor air pollution is

influenced by how building ventilation systems are planned,

managed, and maintained thus when rooms are not well-

ventilated, there is a risk of cross-infection. Minimizing indoor

air pollution is the first and best measure to ensure indoor

environmental quality whereas providing sufficient ventilation

supports mitigation strategies of airborne disease transmissions.

Adequate ventilation helps to control the movement and

advection of any aerosols, pollutants, and CO2 created by

indoor sources/occupants (14). One of the essential parameters

of indoor CO2 level scales quite accurately with the number

of individuals in a room and their activity level (8, 15).

As such, measuring CO2 levels can indicate the presence of

sufficient ventilation which in turn, aids in the prevention of

respiratory virus infections in humans. Indoor CO2 monitoring

is, thus, an effective technique to assess an individual’s COVID-

19 risk. However, high, or low CO2 levels cannot directly

detect COVID-19 whilst close contact poses the highest risk for

COVID-19 transmission.

The SARS-CoV-2 virus will not disappear given that it has

anchored itself as part of our lives. Even though people have

received COVID-19 vaccinations and normal activities resumed

by wearing face masks, the risk of reinfection still lingers.

The SARS-CoV-2 virus infects the upper respiratory system

and is dangerous and potentially lethal given that infected

persons could develop severe symptoms and illnesses while

those who have recovered may suffer from “Long COVID”.

A COVID-19 infection could lead to hospitalizations which

can be particularly expensive in some countries. The elderly,

unvaccinated people and persons with underlying medical

conditions are the most at-risk groups due to a weakened

immune system. The SARS-CoV-2 virus is known for its rapid

transmission, yet no person is naturally immune to the virus

underscoring the extreme danger of the illness. Essentially,

maintaining a safe and healthy environment is crucial to

breaking the COVID-19 chain of infection. In terms of COVID-

19 risk mitigation, zoning can be implemented by remote

sensing and Geographic Information System (GIS) with several

parameters such as hazard data, socioeconomic data, and

biophysical data enabled to categorized of five zones that are

representative of colors, beginning with a very high-risk zone

(red), the high-risk (orange), the moderate zone (blue), the

low-risk zone (green), until the very low zone (pink) (16–18).

Certain countries such as Germany, India, the USA, and South
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Africa have experienced more than two COVID-19 waves (19).

Meanwhile, other countries have reported mutations of the

SARS-CoV-2 virus in addition to cases of themonkeypox disease

that also spreads through respiratory droplets (20). Most disease

transmissions occur indoors thus the development of intelligent

air monitoring and management system—boosted by cutting-

edge technologies, like cloud computing and the Internet

of Things (IoT)—is vital. Intelligent indoor air monitoring

comprises many sensors that are sold at various prices in

the marketplace. Low-cost sensors based on Electrochemical

Cell (EC), Metal-oxide Semiconductor (MOS), Non-Dispersive

Infrared (NDIR), nephelometry, and Optical Particle Counters

(OPC) promise the indoor air-monitoring as user-friendly,

easy deployment portable devices (15, 21, 22). This study

aims to analyze the potential of indoor air monitoring and

alternative solutions to minimize disease transmissions. In

this paper, the self-assembly of an indoor monitoring system

using inexpensive sensors is aimed to support the realization

of a healthy indoor environment, particularly in reducing

COVID-19 risks.

The structure of this paper is as follows: the first section

reviews the background and previous research, the method is

explained in methods and result section presents the research

results. To deepen the understanding of other objective studies,

features a discussion section. The conclusion is outlined in

conclusion section along with future research directions.

2. Methods

To accomplish this study, several electronic databases

inclusive of Scopus, Web of Science (WoS), ScienceDirect, IEEE

Xplore, Google Scholar, and EBSCO databases as well as the

keywords “indoor ventilation transmission COVID19”, “indoor

room monitoring COVID19”, “air quality index COVID19”,

“cloud computing COVID19”, “internet of things COVID19”

were used in systematic searching. The Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

approach is an evidence-based minimum set of items to conduct

a Systematic Review for the identification, screening, evaluation,

and analysis of the eligibility of all published studies relevant to

a certain Research Topic (23).

There were 1,980 extracted papers from the electronic

databases mentioned above which have been peer-reviewed and

were published between 2019 and 28th February 2022. After the

extraction process, 1,550 duplicate records were removed, and

430 papers were screened based on the title and the abstract.

In total, there were 158 eligible articles, but 104 were excluded

for a few reasons: not available in English, it was a conference

abstract, or the focus was not on indoor monitoring. A file

(“.ris” format) in the Mendeley Reference Manager contained

54 full-text electronic English references. Figure 1 shows the

working of PRISMA method in the flow diagram.

TABLE 1 Percentage papers from database.

Database Percentage (%)

Scopus 4.4

Science direct 26.7

Google scholar 34.5

Web of science (WoS) 0.4

IEEE Xplore 1.4

EBSCO 32.6

FIGURE 1

PRISMA flow diagram.

3. Results

The corpus contained five databases in which Google

Scholar had the highest percentage and the WoS had the lowest,

as shown in Table 1. Figure 2 shows the distribution of the

examined publications which has increased since 2019 and

reached a peak in publications in 2021.

The journals from Elsevier had the most publications

and the most frequently identified was the journal Sensors

from MDPI publishers. Table 2 shows the classification of

study types conducted by the researchers which consist of 45

experimental study papers and 9 review papers from various

interdisciplinary studies.

Table 3 represents the classification data references present

in the corpus. The Building and Environment journal in the

building domain focuses on building science, urban physics,

and human interaction with the indoor and outdoor built

environment (67). The Sensors journal accommodates the

original contribution submission in science and technology of

sensors and their application (68). The Journal of Sustainable

Cities and Society specializes in environmentally sustainable and
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FIGURE 2

Paper distribution.

TABLE 2 Classification of study type.

Study Type of study

Adam (5), Agarwal (2), Burridge (4), Chojer

(15, 22), Dinoi (24), Elsaid (25), Eykelbosh

(8), Hajjaji (23), Noorimotlagh (3), Singh (26)

Review

Aguilar (27), Assante (28), Asthana (29),

Baboli (12), Barrio (30), Bidila (31), Carlotti

(32), Chandel (16), Chen (33), Chen (34),

Choe (35), Cicceri (36), Dhanalakshmi (37),

Dinh (38), Dominguez (1), Gilio (39), Goyal

(40), Guo (41), Hoang (42), Hou (7), Huang

(43), Jo (44), Kaliszewski (45), Kanga (17, 18),

Kenarkhoohi (46), Khan (47), Kim (48), Ko

(49), Ladekar (50), Li (51), Marques (52),

Miller (10), Ng (53), Palanisamy (54), Pareek

(55), Peng (56), Petrovic (57), Pietrogrande

(58), Rantas (59), Ren (6), Rivas (60), Stufano

(61), Vanus (62), Wall (63), Wang (64), Yang

(65), Yang (66)

Experimental study

TABLE 3 Classification data references present in the corpus.

Journal Domain

Elsevier 29 Building 8

Sustainable Cities and Society 3

Environment 6

Others 12

MDPI 6 Sensors 4

Others 2

Others 19 Others 19

socially resilient cities (69). The Environmental Research journal

welcomes a multi-disciplinary approach aimed at anthropogenic

issues of global relevance and applicability in a wide range

of environmental disciplines and demonstrates environmental

application in the real-world context (70).

Chinese academics and researchers have contributed toward

COVID-19 mitigation, meanwhile, academics and researchers

from Italy and the Republic of Korea have demonstrated a

TABLE 4 Author’s country.

Author’s country #Papers

Egypt 1

Canada 1

China 7

France 1

India 6

Iran 3

Italy 7

Poland 1

Portugal 1

Republic of Korea 6

Romania 1

Spain 4

Singapore 2

USA 4

Tunisia 1

UK 1

Taiwan 3

# means numbers of paper.

strong interest in deepening the study concerning COVID-19

indoor monitoring topics. Table 4 represents the classification

data based on the Author’s country. The experimental study on

indoor monitoring used a wide range of locations comprising

university classrooms, university laboratories, university offices,

classrooms in daycare centers, hospital rooms, and houses.

Researchers expanded their focus beyond measuring CO2

by also measuring temperature and humidity (27, 35, 65, 66).

To simplify the monitoring process, wireless technologies such

as ZigBee were additionally utilized (52, 65, 71). Although

researchers deployed their low-cost indoor monitoring system,

no explanation has been provided about the significance of

monitoring measures in reducing COVID-19 cases. Regardless,

indoor monitoring data can be used to predict COVID-19 risks.

Table 5 shows the potential area of indoor air monitoring,

the duration of observation, and the sensors/technologies used

in building non-commercial indoor air monitoring monitors.

Kim and the team evaluated indoor air quality based on the

national guidance centers in South Korea and discovered that

most indoor air contaminants were found during the opening

hours of daycare centers (a public area) even though the centers

operated per the Regulations for Building Systems (Ministry of

Land, Infrastructure, and Transport) and the Indoor Air Quality

Control Act (Ministry of Environment) in South Korea (72).

They found that CO2, PM10, and PM2.5 possessed the capability

of becoming a media for infectious viruses and that the density
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TABLE 5 Indoor air monitoring sensors/technology.

Study Case/
duration

Observation
time

The main objective Keyword Technology/
sensors

Aguilar (27) Educational

building/2 h

n.a Assement ventilation rate and

ventilation strategies in

educational building

Indoor air quality,

coronavirus, COVID-19,

lockdown, social distancing,

air purifiers, Air Quality

Index, AQI forecasting,

Indoor air quality

improvement, impact or

effectiveness, ventilation, face

masks

HOBOMX1102

Barrio (30) Classrooms/6 h 3rd−13th March 2020,

11th−22nd January 2021

Analyzing energy efficiency

and indoor environment,

compare indoor

environmental parameters

Monitoring, COVID, IAQ,

IEQ, natural ventilation, HRV,

temperature, CO2

n.a

Bidila (31) Classrooms/

more than an

hour

6 months Measuring the density of

people with the level of

TVOC in a room

Indoor air quality, sensor

systems, Internet of Things,

risk of COVID-19

transmission

ESP8266

microcontroller,

HTU21D, CCS811,

MQTT protocol

Carlotti (32) Rooms/n.a n.a Determining the airborne

transmission of COVID19

through droplets in

suspension

COVID-19, aeraulics, Wells

model, Doseeffect, VLES,

indoor air quaility, classroom

Software FDS Classroom

simulation by NIST

Choe (35) Classrooms/n.a n.a Evaluating the improvement

of IAQ, identification the

characteristics and factors

affecting IAQ

School, Particulate matter,

carbon dioxide, indoor air

quality, perceived air quality,

air purifier

PPD42NS, S-300-3V

sensor CO2

Dinh (38) n.a n.a Developing a non-dispersive

infrared (NDIR) analyzer with

a wide range of measurements

(ppmv to percentage levels)

for measuring carbon dioxide

(CO2) in an indoor

environment

carbon dioxide; indoor air;

NDIR; pathlength;

interference

Non-dispersive infrared

(NDIR) analyzer

Gilio (39) School

classrooms/5 h

18th January−8th

February 2021

Developing a surveillance

activity based on real-time

monitoring of CO2 levels as a

proxy of SARSCoV-2

transmission risk

CO2 , COVID-19,

SARS-CoV-2 transmission

risk mitigation, Indoor

ventilation conditions, School

re-opening, NDIR sensor

commercial NoseC

non-dispersive infrared

(NDIR) sensors

Ladekar (50) House or an

industry at

various

places/n.a

n.a Notification by email and

SMS

indoor air quality, real time

air quality monitoring,

Internet of Things,

visualization, alert

NodeMCU ESP8266,

Raspberry pi, AWS IoT

(MQTT), Kibana

visualization,

GP2Y20100UF, MH-Z19

NDIR, Gas grove

Ng (53) Dry lab/n.a n.a Deploy the ScAlN-based

pyroelectric detectors utilizing

8-inch wafer level technology

and 12 percent Scdoped AlN

deposited at 200◦C

Pyroelectric detector,

Scandium aluminum nitride

(ScAlN), CO2 gas sensor,

MEMS, CMOS compatible,

Non-dispersive infrared

NDIR CO2 gas sensing

Vanus (62) training center

room/n.a

Spring and fall 2018 Investigate the possibility of

improving the accuracy of

CO2 forecasts in Smart Home

Care (SHC) by determining

the occupancy hours of a

monitored SHC room using

IBM SPSS software tools in

the IoT

Smart Home Care (SHC),

monitoring, prediction, trend

detection, Artificial Neural

Network (ANN), Radial Basis

Function (RBF), Wavelet

Transformation (WT), SPSS

(Statistical Package for the

Social Sciences) IBM, IoT

(Internet of Things), Activities

of Daily Living (ADL)

Siemens QPA2062

(Continued)
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TABLE 5 (Continued)

Study Case/
duration

Observation
time

The main objective Keyword Technology/
sensors

Wall (63) kitchen/n.a 28th July−11th August

2020, 5th−19th

November 2020

Developing IAQ monitoring

based on four layer IoT

architecture

IoT, Indoor, air, quality,

analytics, tutorial

ESP32 microcontroller,

Bosch BME680 sensor

Kim (48) Daycare

center/12 h

1 year (Opening 12 h)

September 2019–June

2020

Monitoring and evaluating

indoor air contaminant

variables quality based on the

national guidance centers in

Korea

Daycare center, air

contaminant, indoor air

quality, field study,

COVID-19, machine learning

CESCO EM2001

Marques (52) Laboratory

environment/n.a

2 months Building the architecture of

low-cost and open-source

CO2 real-time monitoring

(iAirCO2) based on IoT

system

AAL (Ambient Assisted

Living), enhanced living

environments, Health

informatics, IAQ (Indoor Air

Quality), IoT (Internet of

Things), Smart cities

MH-Z19 NDIR (CO2)

produced Winsensor,

ESP8266 Thing Dev

(Sparkfun)

microcontroller

Salman (71) Office/max

30min

n.a Building an IAQ map of

building with a low-cost

Wireless Sensor Network

(WSN), streaming IAQ data

for real time processing and

analysis

wireless sensor network,

spatial prediction, indoor air

quality

Sensirion SCD 30

(NDIR), XBee

communication, ARM

microcontroller

Yang (65) Campus

classroom/15 h

During student final

exam week

Developing a prototype of an

intelligent indoor

environment monitoring

system using sensors in the

Cloud computing and Big

Data environment based on

an ideal Temperature and

Humidity Index (THI) value

Sustainability, iDEMS,

environmental sensors, cloud

computing, big data, Hbase

ZigBee WSN,

temperature sensor,

humidity sensor, Carbon

Monoxide (CO),

Formaldehyde, Volatile

Organic Compounds

(VOCs), HBase, CO2

sensor, OpenStack

Yang (66) library/n.a n.a Evaluating current PM

monitoring methods,

Presenting the incorporation

of AI and IoT

Particulate Matter (PM),

AIoT, Microsensor, PM

monitoring, IoT

NBIoT, temperature

sensor, humidity sensor,

Formaldehyde, Volatile

Organic Compounds

(VOCs), PM2.5 , CO2

sensor

and activity of indoor occupants are the driving factors of indoor

air contaminants.

Most of the research found a correlation between seasonality

and increased COVID-19 cases. The researchers from our

study concluded that SARS-CoV-2 spreads slower in the

summer than in the winter demonstrating the significant

role of humidity and temperature. Elsaid (25) provided

guidelines and recommendations to achieve indoor air quality

in air-conditioned areas. It includes ensuring the height of an

exhaust air line is at least 5 meters from the end of a building’s

ceiling and increasing the exhaust fan size. Another suggestion

is to reach an indoor temperature of 25–27◦C and relative

humidity of 50–70% which can suppress the SARS-CoV-2 virus

from spreading (25, 73). However, Meraj and his teams (74)

found that the spreading of COVID-19 was not influenced by

temperature significantly when they investigated three areas

with distinct climatic (subtropical, desertic, coastal) in India.

Agarwal (2) found that there was a positive correlation

between air pollution (NO2 and PM2.5) and COVID-19

contamination in the air quality index. Natural ventilation uses

vents, louvers, windows, or mechanical ventilation systems. In

addition, an effective non-medical action that can considerably

reduce infection risk is social distancing in indoor areas.

Marques (52) introduced a solution to CO2 real-time

monitoring using an IoT system and called it the iAirCO2

platform. There are some sophisticated technological features

of the iAirCO2 as it consists of Web as well as smartphone

software for data consulting in addition to a hardware mock-

up for the collection of latent data. Ultimately, the objective is

for doctors to be able to access these data in the future to help

them make a medical diagnosis. Compared to other systems,

the iAirCO2 relies on open-source technology and offers a

comprehensive wireless system with benefits such as scalability,

flexibility, affordable pricing, and a simple installation. These

findings demonstrate that the production of a system can

serve as a credible indoor air quality assessment and facilitates

the prediction of technical adjustments that lead to a better

living environment.

Salman et al. (71) described the design and implementation

of wireless sensor units to examine indoor air quality for
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real-time data capture. This is accomplished using infrared

sensors that detect humidity, CO2, and temperature as well

as low-power wireless networking and geographical prediction

using geostatistical approaches. The platform contains anMBED

LPC 1768 board that collects the sensor unit data and delivers it

to a central base station through a ZigBee module where it is

analyzed and stored.

Gilio et al. (27) conducted experiments, split into two

evaluation stages, concerning CO2 levels real-time monitoring

during the reopening of schools in the Apulia Region of southern

Italy. The first evaluation was the preliminary procedure

where classroom activities in nine schools (11 classrooms)

were assessed. A detailed air ventilation operating protocol

was also implemented to determine whether there would be

an improvement. Even though the windows and doors were

opened for air circulation during the first assessment stage, six

classrooms (54%) reached CO2 concentration levels of more

than 1,000 ppm. It means all the classrooms exceeded the

prescribed CO2 levels of 700 ppm. The second evaluation

stage sought to improve the conditions from the first phase

by applying a detailed air ventilation operating protocol. NDIR

sensors were deployed to simultaneously visualize real-time CO2

levels as part of the CO2 monitoring process.

Ng et al. (53) tested NDIR CO2 gas sensing by applying

pyroelectric detectors that are CMOS compatible and MEMS

ScAlN-based. The researchers used an eight-inch wafer level

technology and 12 percent Sc-doped AlN stored at 200◦C to

create their ScAlN pyroelectric detectors. Using a blackbody

thermal emitter, a 10-centimeter (cm) long enclosed gas channel

with inlet and outlet holes connected to some tubing, and

carrying out tests utilizing two types of reference gases (synthetic

air and N2), the experiment resulted in a voltage signal

drop. The drop is believed to be caused by the CO2 gas

absorption—specifically at the 4.26µmwavelength—at CO2 gas

concentrations that ranged from 25 parts per million (ppm)

to 5,000 ppm. The findings suggest that affordable, monolithic,

wafer-level NDIR gas sensors with a minimal footprint that is

merged with CMOS circuits are possible to achieve by using

pyroelectric detectors.

Chojer investigated the development of low-cost indoor

air monitoring devices and found that most devices were

lack of assessment. Using the standard factory calibration

setting and ML models such as Multiple Linear Regression,

Support Vector Regression, and Gradient Boosting Regression

as sensor calibrations were needed for data reliability, especially

measuring the response time that played an essential role in

real-time monitoring (15, 22).

4. Discussion

The COVID-19 outbreak in the Hubei province, specifically

Wuhan, China had been initially considered pneumonia back in

December 2019. The quick-spreading nature of this coronavirus

disease became apparent as global case numbers rose and

nations reported cases of the SARS-CoV-2 virus in their

respective countries. This demonstrates how infectious diseases

are frequently caused by viruses. Characteristics of diseases

include being highly pathogenic and contagious as well as

being easily transmissible in congested or poorly ventilated

indoor spaces, such as health facilities and public locations.

People spend nearly three-quarters of their day indoors

hence exposing them to a variety of external and internal

air contaminants.

For indoor environments, the quality of the ventilation

construction system affects airborne transmission which is a

crucial route for the spread of contagious viruses. The CO2

concentration of indoor spaces possesses a significant impact on

airborne transmission by way of indoor air and it can impact

mental activity, increase reading errors, reduce cognitive and

behavioral responses, increase end-tidal CO2 levels, decrease

heart rate, spur breathing problems, and cause unconsciousness

(38). As such, an increase in CO2 concentration signals

inadequate ventilation and, if an infected person is nearby,

would boost the risk of a COVID-19 infection (1, 8, 72). In

addition, humidity level and temperature have been found to

exacerbate the transmission of the virus. Most research found a

correlation between seasonality and increased COVID-19 cases

where the spread of SARS-CoV-2 in the winter is faster than in

summer (25).

Learning activities in educational buildings, such as

classrooms were primarily observed as part of the monitoring

system (27, 28, 30, 31, 39, 62, 65). The prevention of

SARS-CoV-2 transmission inside such infrastructures and

the safe reopening of some public spaces and educational

facilities were implemented through mechanical or non-

mechanical means. The mechanical strategy adopts intelligent

air ventilation made up of sensors and the sensor data will

be transmitted to the cloud computing system thus easing

users in terms of monitoring and controlling (28, 65, 66).

Nowadays, CO2 monitors are available in the marketplace and

moreover, the Federation of European Heating, Ventilation

and Air Conditioning Associations (REHVA) recommends

installing CO2 sensors to alert against poor ventilation in

indoor areas (27). Eleven of the fifty four conducted studies

examined the use of sensors (31, 35, 36, 39, 43, 44, 49,

53, 56, 62, 63, 65, 66), and indicated that the NDIR sensor

is the simplest and most common technology (8, 15). The

mechanism of the NDIR sensor is to evaluate the value of

light that is absorbed across wavelengths. Because CO2 absorbs

light at wavelengths, other gases present provide minimal

interference although temperature and humidity react with

readout. Other than the NDIR sensor, the microcontroller

ESP8266 can also support the creation of low-cost indoor air

monitoring (31, 50). Powering the ESP8266 with a wireless

module allows for the supervision of ambient temperature
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in real time. The results from the monitoring system are

stored and projected on a screen that users can view

every 30min. Ensuring data reliability by calibrating the

devices of the low-cost indoor air monitoring before they

were used.

Constructing a building with a low-cost physical barrier

of at least 60 cm in height above the desk surface and

arranging the distance of personnel working areas (within

4m of the outlet) (6) are some preventive measures to

maintain a safe and healthy environment for open offices.

Initiatives including lockdown restrictions, using facemasks,

hand washing, practicing physical distancing of more than

2m, and using disinfectants on surfaces in crowded places are

supplementary, but also effective means.

5. Conclusion

By observing the indoor air quality of public places

like health facilities, education facilities, offices, and other

buildings, decision-makers can move forward with shaping

and enforcing policies as well as programs to prevent

the spread of COVID-19. Enhancing building ventilation

systems and using low-cost assembly sensors are some of

the ways to improve indoor air quality. The NDIR sensor

and ESP8266 microcontroller are used to monitor CO2 which

has a significant part in airborne transmission. Intelligent

indoor monitoring mitigates the SARS-CoV-2 spread and

the risks of other common symptoms such as coughs,

headaches, eye irritation, dizziness, and fatigue. Innovative

technologies may help alleviate the ongoing COVID-19

pandemic and help prevent similar global crises in the

future. From an engineering perspective, sensors equipped

with a cloud computing architecture can be used to build

hygienic ventilation systems with low energy consumption.

Other uncomplicated ways include wearing a face mask and

maintaining a physical distance. Although there have been

many contributions regarding this multidisciplinary subject,

most are still in the early stages of development and require

further refinement, providing an abundance of opportunities

for researchers.
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