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Background: Identifying patients at high risk of stroke-associated pneumonia

(SAP) may permit targeting potential interventions to reduce its incidence.

We aimed to explore the functionality of machine learning (ML) and natural

language processing techniques on structured data and unstructured clinical

text to predict SAP by comparing it to conventional risk scores.

Methods: Linked data between a hospital stroke registry and a deidentified

research-based database including electronic health records and

administrative claims data was used. Natural language processing was

applied to extract textual features from clinical notes. The random forest

algorithm was used to build ML models. The predictive performance of ML

models was compared with the A2DS2, ISAN, PNA, and ACDD4 scores using

the area under the receiver operating characteristic curve (AUC).

Results: Among 5,913 acute stroke patients hospitalized between Oct 2010

and Sep 2021, 450 (7.6%) developed SAP within the first 7 days after stroke

onset. The ML model based on both textual features and structured variables

had the highest AUC [0.840, 95% confidence interval (CI) 0.806–0.875],

significantly higher than those of the ML model based on structured variables

alone (0.828, 95% CI 0.793–0.863, P = 0.040), ACDD4 (0.807, 95% CI 0.766–

0.849, P = 0.041), A2DS2 (0.803, 95% CI 0.762–0.845, P = 0.013), ISAN

(0.795, 95% CI 0.752–0.837, P = 0.009), and PNA (0.778, 95% CI 0.735–

0.822, P <0.001). All models demonstrated adequate calibration except for the

A2DS2 score.

Conclusions: The ML model based on both textural features and structured

variables performed better than conventional risk scores in predicting SAP. The

workflow used to generateML predictionmodels can be disseminated for local

adaptation by individual healthcare organizations.
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Introduction

The global burden of stroke is huge and rising (1).

According to the most updated statistics from the World Stroke

Organization, the global incidence of strokes exceeds 12 million

annually and the number of prevalent strokes is more than 100

million worldwide (2). Apart from direct neurological damage,

stroke patients are prone to medical complications such as

infection (3). Approximately 21−30% of stroke patients develop

post-stroke infections, with pneumonia accounting for a third

to half of them (4, 5). Stroke-associated pneumonia (SAP) is

not only associated with substantial morbidity and mortality

(6–8) but also increases direct healthcare costs (9). Despite the

advances in acute stroke treatment over the past decades, the

frequency of SAP remains unchanged (4). Effective strategies

and interventions are therefore urgently needed to reduce the

burden of pneumonia, a potentially preventable complication

of stroke.

To prevent SAP, a fundamental first step is the early

recognition of high-risk patients, for whom appropriate

preventive measures can be taken. Besides, the high-risk patient

group is also the main target population for which clinical

trials can be designed to test novel interventions for the

prevention of pneumonia. Analysis of patient data stored in

the Virtual International Stroke Trials Archive showed that

most post-stroke pneumonias occurred in the first week and

its incidence peaked on the third day after stroke onset (10).

Consequently, the risk of developing pneumonia should be

assessed as early as possible following stroke. To date, several

integer-based risk scores have been developed for predicting

SAP (11). Most of the risk models make predictions based on

similar predictor variables, such as age, stroke severity, and

the presence of dysphagia (11). Hence it is no surprise that

these risk models perform comparably regarding discrimination

and calibration (11–13). On the other hand, almost all existing

SAP prediction models were developed using logistic regression

analysis, thus ignoring the potential complex interactions

between variables.

With the advances in data science and artificial intelligence,

data-driven machine learning (ML) approaches have been

increasingly used to develop prediction models in the medical

domain (14). These approaches have also been introduced

to develop SAP prediction models (15, 16). Compared to

conventional parametric techniques like logistic regression, ML

approaches have several advantages such as the capability of

dealing with high-dimensional data and modeling complex and

non-linear relations between data. Furthermore, the ubiquitous

adoption of electronic health record (EHR) systems provides an

opportunity to use various types of structured and unstructured

data for data-driven prediction of clinical outcomes (17–19).

Using natural language processing techniques, information

extracted from unstructured clinical text has the potential to

improve the performance of clinical prediction models (20, 21).

Inspired by these ideas, we aimed to explore the value of

combining both structured and unstructured textual data in

developing ML models to predict SAP.

Materials and methods

Data sources

The data sources for this study were the hospital stroke

registry and the Ditmanson Research Database (DRD), a

deidentified database comprising both administrative claims

data and EHRs for research purposes. Supplementary Table 1

lists the general specifics of the data sources. The DRD currently

holds clinical information of over 1.4 million patients, including

0.6 million inpatient and 21.5 million outpatient records.

It includes both structured data (demographics, vital signs,

diagnoses, prescriptions, procedures, and laboratory results)

and unstructured textual data (physician notes, nursing notes,

laboratory reports, radiology reports, and pathology reports).

The hospital stroke registry has prospectively registered all

consecutive hospitalized stroke patients since 2007 conforming

to the design of Taiwan Stroke Registry (22). Currently, it

has enrolled over 12,000 patients. The stroke registry consists

of structured data only. Stroke severity was assessed using

the National Institutes of Health Stroke Scale (NIHSS) while

functional status was evaluated using the modified Rankin

Scale (mRS). Information regarding patients’ demographics,

risk factor profiles, treatments and interventions, complications,

and outcomes were collected by trained stroke case managers.

To create the dataset for this study, the stroke registry was

linked to the DRD using a unique encrypted patient identifier.

The study protocol was approved by the Ditmanson Medical

Foundation Chia-Yi Christian Hospital Institutional Review

Board (approval number: 2022060). Study data were maintained

with confidentiality to ensure the privacy of all participants.

Study population

The derivation of the study population is shown in

Supplementary Figure 1. The stroke registry was queried for all

stroke hospitalizations, including both acute ischemic stroke

(AIS) and intracerebral hemorrhage (ICH), between Oct 2010

and Sep 2021. Only the first hospitalization was considered

for each patient. Patients who suffered an in-hospital stroke or

already had pneumonia on admission and those whose records

could not be linked were excluded. Patients with missing data

that made the calculation of pneumonia risk scores impossible

were excluded. The study population was randomly split into a

training set that consisted of 75% of the patients and a holdout

test set comprising the remaining 25% of the patients.
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Predictor and outcome variables

The outcome variable was SAP occurring within the first 7

days after stroke onset (23). As per the protocol of the Taiwan

Stroke Registry (22), the diagnosis of SAP was made according

to the modified Centers for Disease Control and Prevention

criteria (23). Because risk stratification at an early stage after

stroke is preferred so that appropriate interventions can be

applied, only information available within 24 h of admission was

considered. Candidate predictors comprised demographics, pre-

stroke dependency (defined as an mRS score of ≥3), risk factors

and comorbidities, prior use of medications, physiological

measurements, neurological assessment (NIHSS, Glasgow coma

scale, and bedside dysphagia screening), as well as routine

blood tests (Supplementary Table 2). For predictors that had

multiple measurements after admission, such as physiological

measurements, neurological assessment, and routine blood

tests, only the first measurement was used. Missing values for

continuous variables were imputed using the mean of non-

missing values. Then each continuous variable was rescaled to

a mean of zero and a standard deviation of one.

In the study hospital, admission notes are written in English.

To extract predictor features from clinical text, we experimented

with three approaches of text representation: a simple “bag-of-

words” (BOW) approach, a fastText embedding approach (24),

and a deep learning approach using the bidirectional encoder

representations from transformers (BERT) (25).

The free text from the History of Present Illness (HPI)

section of the admission note was preprocessed through the

following steps: spell checking, abbreviation expansion, removal

of non-word symbols, lowercase conversion, lemmatization,

marking of negated words with the suffix “_NEG” using the

Natural Language Toolkit mark_negation function with default

parameters (https://www.nltk.org/_modules/nltk/sentiment/

util.html), and stop-word removal. Lemmatization, negation

marking, and stop-word removal were not needed for the

BERT approach.

Supplementary Figure 2 shows an example of feature

extraction and preprocessing using the BOW approach. Having

no prior knowledge of what information the text can provide,

we used an “open-vocabulary” approach (26) to detect features

predictive of SAP. We built a document-termmatrix where each

column represents each unique feature (word or phrase) from

the text corpus while the rows represent each patient’s clinical

document. The preprocessed text was vectorized using the BOW

approach with three different types of feature representation

(27). In other words, the cells of the document-term matrix

represent the counts of each word within each document (term

frequency), the absence or presence of each word within each

document (binary representation), or the term frequency with

inverse document frequency weighting, respectively. Because

medical terms are commonly comprised of two words or even

more, we also experimented with adding word bigram features

(two-word phrases) to the basic BOW model. To reduce noise

such as redundant and less informative features as well as to

improve training efficiency (28), feature selection was performed

by selecting the top 20 words or phrases that appeared in the

documents of patients with SAP and those without based on

chi-square statistics (29). Supplementary Figures 3–6 show the

top 20 selected words or phrases for each feature representation

method.

The fastText subword embedding model is an extension of

Word2Vec, which uses skip-grammodel to represent each word

in the form of character n-grams (24). It allows handling out-of-

vocabulary words in the training samples. We resumed training

of themodel from a pre-trainedmodel called BioWordVec using

the training set. Then the clinical text was vectorized using

the trained model. BioWordVec was originally created from

unlabeled biomedical text from PubMed and Medical Subject

Headings using the fastText subword embedding model (30).

Later, the original BioWrodVec was extended by adding the

Medical Information Mart for Intensive Care III clinical notes

to the training text corpus (31).

The BERT model is a contextualized word representation

model, which allows modeling long-distance dependencies in

text. The BERT model is pre-trained based on masked language

modeling and next sentence prediction using bidirectional

transformers on the general Toronto BookCorpus and English

Wikipedia corpus (25). For this study, we used a domain-specific

BERT model, i.e., ClinicalBERT (32), which was pre-trained on

the Medical Information Mart for Intensive Care III clinical

notes. We fine-tuned the BERT model using the training set to

predict SAP. The text from the training set was preprocessed

and split into BERT tokens. Since the BERT model can only

accommodate 512 tokens, the input text was truncated to 512

tokens. For BERT fine-tuning, the batch size was set at 16. The

learning rate of the Adam optimizer was set at 2× 10−5 and the

number of epochs was 3. Then text from the training and test sets

was vectorized by averaging all contextualized word embeddings

output by the fine-tuned BERT model.

SAP risk scores

To compare the predictive performance of ML models, four

conventional SAP risk scores (Table 1) were used as comparison

models based on variables available in the dataset. The total

score of each SAP risk score is calculated by summing up the

scores of all its items. A higher total score indicates a greater

risk of developing SAP. The A2DS2 score was derived from

clinical data of patients with AIS from the Berlin Stroke Register

(33). It comprised age (1 point for ≥75), atrial fibrillation (1

point), dysphagia (2 points), male sex (1 point), and NIHSS (3

points for 5–15 and 5 points for ≥16). The 22-point ISAN score

was developed using data of patients with AIS or ICH from
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TABLE 1 Risk scores for predicting stroke-associated pneumonia.

A2DS2 ISAN PNA ACDD4

Age

≥70 +1

≥75 +1 +1

60–69 +3

70–79 +4

80–89 +6

≥90 +8

Male +1 +1

Diabetes +1

AF +1

CHF +1

Pre-stroke dependency +2

NIHSS

5–15 +3 +5 +3

≥16 +5 +5

16–20 +8

≥21 +10

Dysphagia +2 +4

Dysarthria +1

AF, atrial fibrillation; CHF, congestive heart failure; NIHSS, National Institutes of Health

Stroke Scale.

a national United Kingdom registry (34). It consisted of pre-

stroke dependency (2 points), male sex (1 point), age (3 points

for 60–69, 4 points for 70–79, 6 points for 80–89, and 8 points

for ≥90), and NIHSS (5 points for 5–15, 8 points for 16–20, and

10 points for ≥21). The PNA score, created using data of AIS

patients from a single academic institution, included age (1 point

for ≥70), history of diabetes (1 point), and NIHSS (3 points for

5–15 and 5 points for >15) (35). The ACDD4 score, developed

based on a single-site cohort of patients with AIS or ICH, was

composed by age (1 point for ≥75), congestive heart failure (1

point), dysarthria (1 point), and dysphagia (4 point) (36).

Machine learning models

ML models were constructed based on structured variables,

features extracted from the text, or a combination of

both (Supplementary Figure 7). For comparison of classifier

performance, simple logistic regression was used as the baseline.

Because the performance of ML classifiers can be affected by

class imbalance, we experimented with both oversampling and

under-sampling methods to maintain the ratio of majority and

minority classes as 1:1, 2:1, or 3:1 (37). The random forest

(RF) algorithm was used to build classifiers. RF is a classifier

ensemble method that consists of a set of decision tree classifiers.

During the learning process, RF iteratively adopts the bootstrap

aggregating method to select samples and randomly selects a

subset of predictors. In each iteration, each set of bootstrap

samples with a subset of predictors is used to generate a decision

tree. In the end, the algorithm outputs a whole forest of decision

trees, which can be used for prediction by a majority vote of

the trees.

During the training process (Supplementary Figure 7),

we first experimented with different combinations of text

vectorization techniques and resampling methods without

hyperparameter tuning. We repeated 10-fold cross-validation

10 times to estimate the performance of classifiers. The best

combination of text vectorization and resampling methods was

determined based on the area under the receiver operating

characteristic curve (AUC). Next, for each text vectorization

technique with its corresponding best resampling method, we

trained classifiers with hyperparameter tuning using 10 times

of 10-fold cross-validation to determine the best number of

decision trees in the random forest. Then we trained the

final ML models from the whole training set using the best

hyperparameter. The generated ML models were tested on

the holdout test set. Shapley additive explanations (38) was

used to interpret the model output. The experiments were

carried out by using scikit-learn, imbalanced-learn, gensim,

transformers, sentence-transformers, and SHAP libraries within

Python 3.7 environment.

Statistical analysis

Categorical variables were presented with counts and

percentages. Continuous variables were reported as medians and

interquartile ranges. Differences between groups were tested by

Chi-square tests for categorical variables and Mann-Whitney U

tests for continuous variables.

Because accuracy may not be appropriate for model

evaluation under imbalanced scenarios (39), the AUC was

chosen as the primary evaluation metric for comparing the

performance of prediction models on the holdout test set. The

AUC for SAP risk scores was calculated using the receiver

operating characteristic (ROC) analysis to determine the ability

of each risk score to predict SAP. The method for ROC

analysis was detailed in the Supplementary Methods in the

Supplementary material. AUCs were calculated and compared

using DeLong’s method (40). The AUC ranges from 0 to 1,

with 0.5 indicating random guess and 1 indicating perfect

model discrimination. A model with an AUC value above

0.7 is considered acceptable for clinical use (41). The point

closest to the upper left corner of the ROC curve (42),

which represents the optimal trade-off between sensitivity and

specificity, was considered the cut-off value for each SAP score.

Then each SAP score was transformed into a binary variable for

calculating accuracy, precision (positive predictive value), recall

(sensitivity), and F1 score. Model calibration was evaluated by
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theHosmer-Lemeshow test and visualized by the calibration plot

(43), which depicts the observed risk vs. the predicted risk.

All statistical analyses were performed using Stata 15.1

(StataCorp, College Station, Texas) and R version 4.1.1 (R

Foundation for Statistical Computing, Vienna, Austria). Two-

tailed P values of 0.05 were considered significant.

Results

Characteristics of the study population

The study population consisted of 5,913 patients including

4,947 (83.7%) with AIS and 966 (16.3%) with ICH. A total of

450 (7.6%) patients developed SAP. Table 2 lists their baseline

characteristics. Patients with SAP were older, more likely to be

male, and more likely to have atrial fibrillation, congestive heart

failure, pre-stroke dependency, dysarthria, and dysphagia, but

less likely to have hyperlipidemia. They had a higher pre-stroke

mRS, NIHSS, and white blood cell (WBC) count as well as a

lower consciousness level than those without SAP. The training

set consisted of 4,434 patients and the remaining 1,479 patients

comprised the holdout test set (Supplementary Table 3).

Construction of ML models

Supplementary Figure 8 shows the estimates of AUC

obtained from 10 times of 10-fold cross-validation in the

training set. In general, the RF algorithm outperformed logistic

regression when structured variables or both structured and

textual features were used to build classifiers. By contrast,

logistic regression models had higher AUCs than RF classifiers

when only textual features were used. Resampling methods

generally improved the performance of ML classifiers. Overall,

RF classifiers based on both structured variables and textual

features attained higher AUCs than the other classifiers. Text

representation using the BOW approach performed better

than that using the fastText embedding or BERT approach.

The highest AUC was achieved by the ML model using

the combination of text vectorization with BOW (binary

representation) and 1:2 under-sampling of data.

Supplementary Table 4 shows the performance of ML

models on the holdout test set and the number of decision

trees used to build the RF classifiers. Supplementary Table 5

lists P values for pairwise comparisons of AUCs between these

models. In general, ML models based on both structured and

textual features achieved higher AUCs than those based on

textual features alone. The ML model using the combination

of text vectorization with BOW (binary representation) also

had the highest AUC among all ML models. Therefore, it was

chosen as the final model (ML Model A). For comparison with

conventional risk scores, the ML model based on structured

variables alone (ML Model B) was also evaluated.

Comparison with conventional risk
scores

By determining the point closest to the upper left corner of

the ROC curve (42) the cut-off value for predicting SAP was

4.5 points for A2DS2, 9.5 points for ISAN, 4.5 points for PNA,

and 1.5 points for ACDD4, respectively. The cut-off value for

ML models was set at the probability of 0.5. Accuracy, precision,

recall, and F1 score were calculated based on these cut-off values.

Table 3 lists the performance of ML models and conventional

SAP risk scores on the holdout test set. Among all prediction

models, MLModel A attained the highest AUC, accuracy, and F1

score. Figure 1 plots the ROC curves of the four SAP risk scores

and twoMLmodels. All the prediction models achieved an AUC

value >0.7. ML Model A had the highest AUC [0.840, 95%

confidence interval (CI) 0.806–0.875], which was significantly

higher than those of ML Model B (0.828, 95% CI 0.793–0.863,

P = 0.040), ACDD4 (0.807, 95% CI 0.766–0.849, P = 0.041),

A2DS2 (0.803, 95% CI 0.762–0.845, P = 0.013), ISAN (0.795,

95% CI 0.752–0.837, P= 0.009), and PNA (0.778, 95% CI 0.735–

0.822, P <0.001). Figure 2 shows the calibration plots and P

values for the Hosmer-Lemeshow test for the prediction models.

ML Model A was well-calibrated over the entire risk range with

all points lying close to the 45-degree line (P = 0.579). All the

other prediction models also demonstrated adequate calibration

except for the A2DS2 score (P = 0.023).

Influential features selected by ML
models

Figure 3A shows the top 20 most influential features selected

by ML Model A ordered by the mean absolute Shapley

value, which indicates the global importance of each feature

on the model output. Figure 3B presents the beeswarm plot

depicting the Shapley value for every patient across these

features, demonstrating each feature’s contribution to the model

output. According to the magnitude and direction of the

Shapley value, higher values of NIHSS, WBC count, heart rate,

blood glucose, international normalization ratio, and aspartate

aminotransferase were associated with a higher risk of SAP,

while lower values of Glasgow coma scale total score and its

component (verbal, motor, and eye) scores, body mass index,

platelet count, and triglyceride were associated with a higher

risk of SAP. Male patients and those with dysphagia, dysarthria,

or current smoking were more likely to have SAP. Among the

textual features, the presence of “numbness”, “deny”, or “acute”

in the HPI of the admission note was associated with a decreased
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TABLE 2 Baseline characteristics of the study population.

Characteristic Total (N = 5,913) SAP (N = 450) No SAP (N = 5,463) P†

Age 70 (59–78) 72 (61–80) 69 (59–78) <0.001

Male 3,643 (61.6) 308 (68.4) 3,335 (61.0) 0.002

Hypertension 4,739 (80.2) 361 (80.2) 4,378 (80.1) 0.966

Diabetes 2,422 (41.0) 188 (41.8) 2,234 (40.9) 0.714

Hyperlipidemia 3,167 (53.6) 187 (41.6) 2,980 (54.6) <0.001

AF 822 (13.9) 106 (23.6) 716 (13.1) <0.001

CHF 226 (3.8) 30 (6.7) 196 (3.6) 0.001

COPD 397 (6.7) 34 (7.6) 363 (6.6) 0.458

Smoking 2,431 (41.1) 202 (44.9) 2,229 (40.8) 0.090

Pre-stroke dependency 562 (9.5) 80 (17.8) 482 (8.8) <0.001

Pre-stroke mRS 0 (0–0) 0 (0–1) 0 (0–0) <0.001

NIHSS 5 (3–11) 17 (9–27) 5 (3–10) <0.001

GCS 15 (14–15) 13 (8–15) 15 (15–15) <0.001

Dysphagia 1,195 (20.2) 282 (62.7) 913 (16.7) <0.001

Dysarthria 3,039 (51.4) 338 (75.1) 2,701 (49.4) <0.001

Glucose (mmol/L) 7.38 (6.11–9.99) 7.77 (6.27–10.43) 7.33 (6.11–9.96) 0.030

WBC (109/L) 7.68 (6.19–9.61) 8.49 (6.63–10.96) 7.63 (6.16–9.47) <0.001

A2DS2 4 (1–5) 6 (4–6) 3 (1–5) <0.001

ISAN 7 (4–10) 11 (8–14) 7 (4–9) <0.001

PNA 4 (1–5) 5 (4–6) 4 (1–5) <0.001

ACDD4 1 (0–2) 5 (2–5) 1 (0–2) <0.001

†P values are comparisons between patients with SAP and those without SAP for each variable.

Data are given as n (%) and median (interquartile range).

AF, atrial fibrillation; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; GCS, Glasgow coma scale; mRS, modified Rankin Scale; NIHSS, National Institutes of

Health Stroke Scale; SAP, stroke-associated pneumonia; WBC, white blood cells.

TABLE 3 Performance of prediction models for predicting SAP.

Model AUC (95% CI) Accuracy Precision Recall F1 score

MLmodel A 0.840 (0.806–0.875) 83.2% 0.254 0.634 0.363

ML model B 0.828 (0.793–0.863) 76.3% 0.212 0.786 0.334

A2DS2 0.803 (0.762–0.845) 75.1% 0.197 0.741 0.311

ISAN 0.795 (0.752–0.837) 76.9% 0.202 0.696 0.313

PNA 0.778 (0.735–0.822) 75.9% 0.189 0.661 0.294

ACDD4 0.807 (0.766–0.849) 73.5% 0.193 0.786 0.310

AUC, area under the receiver operating characteristic curve; CI, confidence interval; ML, machine learning; SAP, stroke-associated pneumonia.

risk of SAP. The top 20 most influential features selected by ML

Model B are shown in Supplementary Figure 9 for reference.

Discussion

In this exploratory study, the predictive performance of ML

models was nominally higher than those using conventional

SAP risk scores in terms of discrimination. Notably, the ML

model built on both structured and unstructured textual data

performed significantly better than the ML model built on

structured data alone as well as all the conventional risk scores.

Besides, we discovered several influential features or predictors

of SAP using Shapley values. These predictors might help

early stratification of stroke patients who are more likely to

develop SAP.

Predictors of SAP

Among the top 20 influential predictors selected by the

ML model, NIHSS score, Glasgow coma scale score, dysphagia,

dysarthria, current smoking, male sex, WBC count, and blood

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1009164
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tsai et al. 10.3389/fpubh.2022.1009164

FIGURE 1

Receiver operating characteristic curves for predicting
stroke-associated pneumonia in the holdout test set by existing
pneumonia risk scores and two ML models. ML Model A was
built using both structured variables and features extracted from
the text. ML Model B was built using structured variables alone.
The AUC (95% CI) is shown for each model. AUC, area under the
receiver operating characteristic curve; CI, confidence interval;
ML, machine learning.

glucose were known predictors of SAP, which have been

included in conventional SAP risk scores (11, 33–36). A

higher value of international normalized ratio in the context

of stroke generally denotes the use of vitamin K antagonist

and preexisting atrial fibrillation, which is also a known risk

factor for SAP (11, 33). Interestingly, the ML model identified

additional predictors, such as lower values of body mass index,

platelet count, and triglyceride as well as higher values of

heart rate and aspartate aminotransferase. Previous studies have

found significantly lower body mass index, platelet count, and

triglyceride as well as higher aspartate aminotransferase in

stroke patients with SAP than those without (16, 44, 45). All

these factors indicate poorer nutritional status, which may have

a role in the development of SAP (45). Higher heart rate at

rest was associated with poorer functional status in the elderly

and predicted subsequent functional decline independently of

cardiovascular risk factors (46). Higher initial in-hospital heart

rate also predicted poorer stroke outcomes (47). The potential

influence of these additional predictors on the development

of SAP may warrant further research. We speculate that these

factors are missing in conventional SAP risk scores either

because logistic regression models cannot handle complex

interactions and non-linear relationships among variables, or

simply because they were not expected to be predictors of SAP

and thus not investigated in previous studies.

Hidden information from clinical text

The key finding of the present study was that the information

extracted from unstructured clinical text could improve the

prediction of SAP. However, the reason why the identified

textual features (words) were associated with the risk of SAPmay

not be readily discernible unless these words and their context

are examined simultaneously. For example, stroke patients who

complain of “numbness” are generally fully conscious and may

suffer a pure sensory stroke or sensorimotor stroke due to

a small ischemic lesion (48, 49), which carries a low risk of

pneumonia. Likewise, patients who can provide a history of their

illness and “deny” the presence of certain symptoms are likely

to have clear consciousness and may have mild neurological

impairment. Furthermore, the mode of symptom onset can

influence the pre-hospital delay of stroke patients (50). Patients

experiencing “acute” symptoms are generally admitted to the

stroke unit earlier while stroke unit care is associated with a

lower frequency of SAP (4). These findings demonstrate that

useful and informative predictors could be uncovered from

unstructured clinical text through natural language processing

and ML without human curation.

Clinical significance and implications

SAP has traditionally been attributed to aspiration secondary

to dysphagia, impaired cough reflex, or reduced level of

consciousness (3). Nonetheless, up to 40% of SAP may be

unrelated to aspiration (8). Other causes such as bacteremia

due to dysfunction of the gut immune barrier (51) and stroke-

induced immune suppression (3, 52) may also contribute to

the development of SAP. So far there is no sufficient evidence

from clinical trials to demonstrate the effect of dysphagia

screening protocols on the prevention of SAP (53). Meta-

analyses of randomized trials have also failed to support the use

of preventive antibiotic therapy to decrease the risk of SAP in

acute stroke patients (54, 55). Furthermore, only weak evidence

exists about whether intensified oral hygiene care reduces the

risk of SAP (56, 57). Therefore, it is still a major challenge to

find new therapeutic approaches to prevent SAP.

Despite this, adequate stratification of SAP risk is not

without value. First, a good understanding of the risk of this

serious complication of stroke will improve communication

between physicians, patients, and caregivers. Second, the

identification of at-risk patient groups allows recruiting suitable

patients into clinical trials to test preventive interventions for

SAP. Up to two-thirds of SAP occurs in the first week, with

a peak incidence on the third day after stroke onset (10).

Therefore, early stratification of SAP risk is beneficial in both

clinical practice and research settings. The ML model developed

in this study, which was based on information available within

24 h of admission, is well–suited for use in this context.
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FIGURE 2

Calibration plots for predicting stroke-associated pneumonia in the holdout test set by existing pneumonia risk scores and two ML models. The
P value for the Hosmer-Lemeshow test is shown for each model. ML, machine learning.

Limitations

This study has several limitations to be addressed. First,

even though data-driven ML modeling has the potential to

identify novel predictors, the predictor-outcome relationships

discovered from data do not translate into a causal relationship

(58). Second, we only extracted textual information from the

HPI section of the admission note and did not investigate

other clinical notes such as nursing notes and image reports.

Further studies may examine the usefulness of information

extracted from different kinds of clinical notes. Third, this

study used oversampling and under-sampling techniques to

solve the problem of data imbalance. Other data preprocessing

approaches, such as synthetic minority oversampling technique

or its variants (37), can be explored in future studies. Fourth,

several criteria exist to determine the most appropriate cut-

off value for tests with continuous outcomes (42). The use of

different criteria can result in different cut-off values for SAP

risk scores, hence different results of accuracy, precision, recall,

and F1 score. Fifth, high percentages of missingness for certain

potential predictors, such as glycosylated hemoglobin, might

prevent the ML algorithm from identifying their significance.

Finally, this is a single-site study, and the generalizability of the

study findings is limited. For example, the vocabulary and terms

used for clinical documentation may differ across healthcare

settings. Nevertheless, the procedure of model development can

be replicated in individual hospitals to generate customized

versions of SAP prediction models.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1009164
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tsai et al. 10.3389/fpubh.2022.1009164

FIGURE 3

The top 20 most influential features identified by the model based on both structured variables and features extracted from the text. The average
impact of each feature on the model output was quantified as mean absolute Shapley values (A). Each feature’s individual Shapley values for
each patient are depicted in a beeswarm plot (B), where a dot’s position on the x-axis denotes each feature’s contribution to the model
prediction for the corresponding patient. The color of the dot specifies the relative value of the corresponding feature. AST, aspartate
aminotransferase; BMI, body mass index; GCS, Glasgow coma scale; HR, heart rate; INR, international normalization ratio; NIHSS, National
Institutes of Health Stroke Scale; WBC, white blood cells.

Conclusions

We demonstrated that it is feasible to build ML models

to predict SAP based on both structured and unstructured

textual data. Using natural language processing, pertinent

information extracted from clinical text can be applied to

improve the performance of SAP predictionmodels. In addition,

ML algorithms identified several novel predictors of SAP. The

workflow used to generate these models can be disseminated for

local adaptation by individual healthcare organizations.
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