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Background: As the worldwide spread of coronavirus disease 2019 (COVID-

19) continues for a long time, early prediction of the maximum severity is

required for e�ective treatment of each patient.

Objective: This study aimed to develop predictive models for the maximum

severity of hospitalized COVID-19 patients using artificial intelligence

(AI)/machine learning (ML) algorithms.

Methods: The medical records of 2,263 COVID-19 patients admitted to 10

hospitals in Daegu, Korea, from February 18, 2020, to May 19, 2020, were

comprehensively reviewed. The maximum severity during hospitalization was

divided into four groups according to the severity level: mild, moderate, severe,

and critical. The patient’s initial hospitalization records were used as predictors.

The total dataset was randomly split into a training set and a testing set in a 2:1

ratio, taking into account the fourmaximum severity groups. Predictivemodels

were developed using the training set and were evaluated using the testing

set. Two approaches were performed: using four groups based on original

severity levels groups (i.e., 4-group classification) and using two groups after

regrouping the four severity level into two (i.e., binary classification). Three

variable selection methods including randomForestSRC were performed. As

AI/ML algorithms for 4-group classification, GUIDE and proportional odds

model were used. For binary classification, we used five AI/ML algorithms,

including deep neural network and GUIDE.

Results: Of the four maximum severity groups, the moderate group had

the highest percentage (1,115 patients; 49.5%). As factors contributing to

exacerbation of maximum severity, there were 25 statistically significant

predictors through simple analysis of linear trends. As a result of model

development, the following three models based on binary classification

showed high predictive performance: (1) Mild vs. Above Moderate, (2) Below
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Moderate vs. Above Severe, and (3) Below Severe vs. Critical. The performance

of these three binarymodels was evaluated using AUC values 0.883, 0.879, and,

0.887, respectively. Based on results for each of the three predictive models,

we developed web-based nomograms for clinical use (http://statgen.snu.ac.

kr/software/nomogramDaeguCovid/).

Conclusions: We successfully developed web-based nomograms predicting

the maximum severity. These nomograms are expected to help plan an

e�ective treatment for each patient in the clinical field.

KEYWORDS

COVID-19, artificial intelligence, machine learning, severity, nomogram

Introduction

The coronavirus disease 2019 (COVID-19) pandemic
is a rapidly evolving global emergency that continues to
strain healthcare systems (1). Vaccinations are currently being
implemented worldwide, but the pandemic persists and it leads
to increases in the demand for medical resources. The clinical
course of COVID-19 patients is known to appear in various
forms ranging from asymptomatic to critical. A large cohort
study that included 44,672 patients with COVID-19 from China
showed that most cases were classified as mild to moderate
(81%). However, 14% were severe, and 5% were critical (2).
Therefore, to date, studies on various clinical parameters have
been conducted to develop predictive scores or algorithms to
identify clinical courses in the early stage.

Age and underlying diseases are known factors associated
with higher risks of increased severity or mortality in patients
with COVID-19 (3–5). In other studies, clinical symptoms,
and laboratory or radiologic findings were included in the
factors predicting severity or mortality associated with COVID-
19 (6–8). There are several studies considering all of these
clinical factors. For example, a retrospective study conducted
in China showed that old age, coronary heart disease
condition, lymphopenia, elevated procalcitonin, and D-dimer
were independently related to mortality (9). Another study
conducted in Switzerland for predicting severe disease courses
requiring ICU admission demonstrated that male sex, low
hemoglobin, the elevation of inflammatory parameters [C-
reactive protein (CRP) or leucocyte counts], hyperglycemia,
and impaired renal function were the most predictive risk
factors (10).

As pointed out by Kim et al., it is important to prioritize
patients in need of intensive care to avoid unnecessary
consumption of medical resources on mild patients (11). This
importance was further emphasized as the sudden COVID-
19 outbreak intensified the shortage of hospital beds, critical
care equipment, and medical professionals (12). To efficiently
manage limited medical resources, it is important to predict the

clinical course of patients during hospitalization. It is expected
to properly triage patients, monitor the clinical progress of the
disease, and allocate proper resources including intensive care
facilities or healthcare staff by predicting the maximum severity
of clinical progress.

Various nomograms have been developed for predicting
the probabilities of disease progression or COVID-19-related
mortality using baseline characteristics of patients (13–15).
Specifically, we previously developed nomograms that predict
the triage for COVID-19 patients based on 5,601 Korean
patients (15). Although a large number of patients were
included at the time, there were some restrictions on
data access and software availability imposed by the Korea
Disease Control and Prevention Agency (KDCA). Only
three traditional machine learning (ML) algorithms [i.e.,
logistic regression (LR) (16), random forest (RF) (17), and
support vector machine (SVM) (18)] could be applicable.
For laboratory data, only five blood cell-centric findings
were available. In addition, as initial chest X-ray and
inflammatory laboratory findings have been reviewed as factors
for severity prediction (1, 19), we further collected these
radiologic and laboratory findings to develop more accurate
predictive models.

In this study, we developed early predictive models of
the maximum severity after the diagnosis of COVID-19. In
addition to the three ML algorithms used in our previous
study, we were able to apply more sophisticated artificial
intelligence (AI)/ML algorithms such as GUIDE (20) and
deep neural network (DNN) (21) because newly collected data
were used instead of the public data provided by KDCA.
We also added initial chest X-ray infiltration and various
additional laboratory findings including inflammatory index
(i.e. CRP) and organ dysfunction markers [i.e., aspartate
transaminase (AST), creatinine, lactate dehydrogenase (LDH)]
as candidate predictors (22). Our studies provide evidence
that AI/ML applied to clinical parameters are expected
to enable the development of tools that can predict the
maximum severity.
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TABLE 1 Four groups of disease severity.

Disease

severity

Description

Mild No pneumonia

Moderate Diagnosis of pneumonia but not requiring oxygen therapy

Severe Diagnosis of pneumonia and the need for oxygen therapy

Critical Diagnosis of pneumonia, need for mechanical ventilation therapy

or extracorporeal membrane oxygenation, or death

Materials and methods

Study design

This is a multicenter retrospective cohort study of
polymerase chain reaction-confirmed COVID-19 patients
admitted to 10 hospitals in Daegu, Korea (23). The cohort
includes data from 2,263 patients followed from February 18,
2020, to May 19, 2020. The data records consist of demographic
characteristics, physical measurement, vital signs, clinical
findings (i.e., symptoms), co-morbidities, radiologic findings,
and laboratory findings. For readmitted patients, first admission
records were used.

A total of 46 variables were used in this study. Excluding
an outcome variable (i.e., maximum severity during
hospitalization), 45 variables were used as predictors. Records
for 45 predictors with an average missing rate of 16% (IQR:
6–19%) were collected from each patient on the first day of
admission. In this study, the original data was used as it is.
This study was approved by the institutional review board of
KyungpookNational University Hospital (KNUH 2020-03-044).

Data preprocessing

Excluding those who died on the first day of admission,
2,254 of 2,263 patients were used in this study. To define
the outcome, a disease severity variable was used. The disease
severity was divided into four groups: mild, moderate, severe,
and critical (23). The disease severity was systematically defined
by reflecting the opinions of infectious disease specialists in
the clinical field. Detailed definitions of the four groups are
given in Table 1. Each patient’s diagnosis places them among the
four severity groups, depending on the patient’s condition (i.e.,
body temperature, diagnosis of pneumonia, oxygen therapy)
during hospitalization. The highest level of severity for a patient
diagnosed during hospitalization was called maximum severity.
This is to predict and prepare in advance for high-risk patients
for conditions such as pneumonia, ICU admission, and death
that occur suddenly during hospitalization.

Of the 45 predictors, 2 demographic variables, 4 vital signs,
and 12 laboratory findings were continuous variables. Note that
the body temperature belonging to the four vital sign predictors
is the body temperature measured only on the first day of
admission. Based on the opinions of clinicians for practical
use in the clinical field, an optimal cutoff was selected for
dichotomizing each continuous predictor. To this end, the
maximally selected rank statistics (24) were used. Thus, all
predictors used in this study were discrete variables. For each
predictor variable, the Cochran-Armitage Trend test (CA) (25)
was performed to identify the predictor with a linear trend
of the maximum severity. Specifically, a one-sided test was
performed to identify predictor with increasing linear trend.
That is, in the case of significant variables, the proportion
increases as the severity of the disease increases in the group
exceeding the cutoff. Bonferroni correction was applied to
handle multiple testing problem (26). A p-value < 0.05 was
considered significant.

Multiple marker selection

The overall workflow is shown in Figure 1. To avoid
overfitting in the predictive model, we randomly split the
total dataset into training and testing datasets in a 2:1 ratio,
taking into account the maximum severity proportions of the
four groups. While developing the predictive model for the
maximum severity, two types of classification were considered:
4-group classification and binary classification. For the 4-group
classification, we developed a predictive model using four
maximum severity groups as they are. For multiple marker
selection, Akaike information criterion (AIC)-based stepwise
selection (27) was used.

For the binary classification, we combined the four
maximum severity groups into two groups: (1) Mild vs. Above
Moderate (2) BelowModerate vs. Above Severe (3) Below Severe
vs. Critical. Above Moderate refers to a group that combines
moderate, severe, and critical. Below Moderate refers to a group
that combines mild and moderate. Above Severe refers to a
group that combines severe and critical. Below Severe refers
to a group that combines mild, moderate, and severe. For
each outcome with a binary group, multiple predictive markers
were selected using the area under the receiver operating
characteristic curve (AUC)-based stepwise selection (28), the
least absolute shrinkage and selection operator (LASSO) (29),
and randomForestSRC (30). For randomforestSRC, we used
both GINI index and AUC as a splitting rule. To compare
the performance of LR-based predictors (stepwise and LASSO)
and randomforestSRC given the same number of predictors,
we matched the number of predictors with the average number
(i.e., 5) of LR-based predictors when selecting the top ranked
predictors in the randomforestSRC. For each binary outcome,
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FIGURE 1

The overall workflow for predictive model development.

the top five predictors were selected based on the variable
importance result of randomforestSRC.

Model development and evaluation

For the 4-group classification, the proportional odds model
(31) and GUIDE were used (Figure 1). The proportional odds
model is an extended logistic regression for the ordinal outcome
as follows:

log[Pr
(

Y ≤ j|X
)

/Pr
(

Y>j|X
)

] = αj−βTX, (1)

where Y is the outcome with four ordinal categories (j =

mild, moderate, severe), αj is an intercept corresponding to the
jth category and β is a vector of coefficients. In the case of the
proportional odds model, the proportionality assumption was
confirmed through the likelihood ratio test, which compares
the proportional odds model and the cumulative logit model
(32). GUIDE is an improved decision tree-based method and
develops a predictive model by selecting predictors based on the
Chi-square test (20). As evaluation measures, precision, recall,
and F1-score were calculated by comparing each category to the
rest using a one-vs-all strategy. For each of these measures, two
types of averages were calculated with considering the sample
size and without considering the sample size. In addition, the

accuracy was used by calculating the proportion of correctly
classified observations in the confusion matrix.

For the binary classification, we developed three predictive
models: (1) Mild vs. Above Moderate (2) Below Moderate vs.
Above Severe (3) Below Severe vs. Critical. During the marker
selection process, a 5-fold cross-validation (CV) was performed.
We considered five AI/ ML algorithms: LR, RF, SVM, DNN, and
GUIDE. For RF, SVM, and DNN, we tuned hyperparameters
via 5-fold CV to identify optimal hyperparameters with the
highest mean of AUCs. In addition to AUC, balanced accuracy,
specificity, recall (i.e., sensitivity), precision, and F1-score were
used as evaluation measures. A parsimonious model, a simple
model with a high predictive ability for each outcome, was
considered the final predictive model.

Results

Patient’s characteristics

For the total of 2,254 COVID-19 patients, the maximum
severity was classified into four groups. The four groups are
mild (n = 548; 24.3%), moderate (n = 1,115; 49.5%), severe
(n = 397; 17.6%), and critical (n = 194; 8.6%). Table 2 shows
the clinical characteristics of 2,254 patients for the four groups.
For age, the proportion of severe and critical groups over 60
years was very high compared to those under 60 years old (adj.
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TABLE 2 Patient’s characteristics for each group of the maximum severity.

Characteristics Mild

[n = 548;

24.3%]

Moderate

[n = 1,115;

49.5%]

Severe

[n = 397;

17.6%]

Critical

[n = 194;

8.6%]

P-value* adj.

P-valueU

Demographics

Age [>60 year] 95 (17%) 433 (39%) 290 (73%) 171 (88%) 6.2E-100 2.8E-98

Sex [Male] 205 (37%) 343 (31%) 147 (37%) 108 (56%) 9.6E-05 0.0043

Physical measurement

BMI [>25 kg

m2 ] 103 (25%) 194 (27%) 82 (33%) 46 (40%) 2.6E-04 0.0117

Initial vital signs

Body temperature [>37.4◦C] 0 (0%) 249 (22%) 110 (28%) 62 (32%) 2.0E-32 9.0E-31

SBP [>140 mmHg] 166 (31%) 376 (35%) 141 (36%) 74 (39%) 0.0218 0.9810

Heart rate [>100 beats
min ] 92 (17%) 186 (17%) 69 (17%) 48 (25%) 0.0270 1

Respiration rate [>20 breaths
min ] 45 (8%) 105 (10%) 90 (23%) 93 (49%) 6.2E-41 2.8E-39

Clinical findings [Yes]

Cough 114 (34%) 491 (50%) 192 (51%) 66 (35%) 0.1543 1

Sputum 106 (32%) 362 (37%) 139 (37%) 64 (34%) 0.2413 1

Sore throat 44 (13%) 141 (15%) 43 (12%) 10 (5%) 0.9964 1

Runny nose 48 (15%) 100 (10%) 34 (9%) 10 (5%) 0.9993 1

Muscle aches 47 (15%) 233 (24%) 87 (25%) 21 (12%) 0.5682 1

Fatigue 5 (2%) 31 (3%) 21 (6%) 16 (9%) 2.7E-06 1.2E-04

Shortness of breath 26 (8%) 140 (14%) 130 (36%) 100 (54%) 1.1E-47 4.9E-46

Headache 51 (15%) 254 (26%) 66 (18%) 12 (7%) 0.9982 1

Altered consciousness 0 (0%) 3 (0%) 4 (1%) 15 (8%) 9.3E-14 4.2E-12

Vomiting 10 (3%) 71 (7%) 33 (9%) 11 (6%) 0.0300 1

Diarrhea 38 (12%) 149 (15%) 51 (14%) 16 (9%) 0.8123 1

Comorbidities & past history

[Yes]

Diabetes 43 (8%) 152 (14%) 105 (27%) 76 (41%) 3.8E-32 1.7E-30

Heart failure 3 (1%) 11 (1%) 17 (5%) 11 (6%) 1.7E-09 7.6E-08

Hypertension 74 (14%) 270 (24%) 184 (47%) 113 (59%) 2.1E-49 9.4E-48

Chronic cardiac disease 7 (1%) 43 (4%) 40 (11%) 20 (11%) 1.9E-13 8.5E-12

Asthma 11 (2%) 33 (3%) 12 (3%) 9 (6%) 0.0139 0.6255

COPD 5 (1%) 11 (1%) 10 (3%) 5 (3%) 0.0030 0.1350

Chronic kidney disease 4 (1%) 6 (1%) 13 (4%) 14 (9%) 9.6E-12 4.3E-10

Cancer 10 (2%) 39 (4%) 18 (5%) 20 (12%) 3.4E-08 1.5E-06

Chronic liver disease 5 (1%) 19 (2%) 11 (3%) 4 (2%) 0.0173 0.7785

Chronic neurological disorder 1 (0%) 4 (0%) 2 (1%) 8 (5%) 6.0E-07 2.7E-05

Chronic hematologic disease 3 (1%) 7 (1%) 5 (2%) 4 (2%) 0.0413 1

RDAD 2 (1%) 7 (1%) 3 (1%) 3 (2%) 0.1020 1

Dementia 4 (1%) 54 (6%) 69 (21%) 48 (29%) 6.8E-33 3.1E-31

Smoking 46 (10%) 58 (7%) 30 (9%) 21 (12%) 0.1777 1

Radiologic finding [Yes]

Chest X-ray infiltration 0 (0%) 565 (51%) 263 (67%) 155 (82%) 1.7E-116 7.6E-115

Laboratory tests

CRP [>3 mg/dL] 1 (1%) 72 (14%) 140 (61%) 122 (91%) 1.1E-92 4.9E-91

Procalcitonin [>0.25 mg/dL] 2 (2%) 8 (2%) 27 (12%) 42 (37%) 7.2E-26 3.2E-24

AST [>40 U/L] 24 (7%) 113 (11%) 121 (31%) 107 (55%) 3.9E-54 1.7E-52

ALT [>40 U/L] 36 (11%) 121 (12%) 83 (22%) 39 (20%) 2.3E-06 1.0E-04

(Continued)
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TABLE 2 (Continued)

Characteristics Mild

[n = 548;

24.3%]

Moderate

[n = 1,115;

49.5%]

Severe

[n = 397;

17.6%]

Critical

[n = 194;

8.6%]

P-value* adj.

P-valueU

Creatine kinase MB

[>5 ng/mL]

2 (1%) 7 (2%) 13 (6%) 23 (17%) 4.8E-11 2.2E-09

LDH [>400 ng/mL] 127 (41%) 514 (57%) 224 (68%) 113 (77%) 2.9E-17 1.3E-15

Creatinine [>1.3 mg/dL] 5 (2%) 26 (3%) 41 (11%) 55 (28%) 2.8E-36 1.3E-34

Hemoglobin [>10 g/dL] 323 (98%) 954 (96%) 348 (90%) 158 (81%) 1 1

Lymphocyte [>50%] 19 (6%) 48 (5%) 6 (2%) 2 (1%) 0.9999 1

PT-INR [>1.5] 0 (0%) 7 (1%) 4 (2%) 11 (7%) 2.8E-06 1.3E-04

Platelet [> 150 103

uL
] 317 (95%) 857 (86%) 293 (76%) 128 (66%) 1 1

White blood cell [> 4 103

uL
] 292 (88%) 768 (77%) 307 (80%) 174 (90%) 0.3503 1

For each binary predictor, the number in the square bracket indicates the cutoff for binarization. The percentage of each group represents the proportion of the number of groups that
meet the > cutoff excluding missing values. *The p-value was calculated using the Cochran-Armitage Trend test. U The adjusted p-value was calculated using the Bonferroni correction
method. BMI, Body mass index; SBP, systolic blood pressure; COPD, Chronic obstructive pulmonary disease; RDAD, Rheumatic disorder/Autoimmune disease; CRP, C-reactive protein;
AST, Aspartate transaminase; ALT, Alanine transaminase; LDH, Lactate dehydrogenase; PT-INR, Prothrombin time international normalized ratio.

p-value = 2.8E-98; CA test). In terms of sex, the maximum
severity was more severe for men than women (adj. p-value =
0.0043; CA test). Body mass index (BMI) and two vital signs
(i.e., body temperature, and respiration rate) were statistically
significant predictors showing a linear trend with the maximum
severity. Among the other predictors, three initial clinical
findings were fatigue, shortness of breath, altered consciousness,
8 comorbidities [i.e., diabetes, heart failure, hypertension,
chronic cardiac disease (CCD), chronic kidney disease, cancer,
chronic neurological disorder (CND), dementia], chest X-ray
infiltration, and 8 laboratory findings [i.e., CRP, Procalcitonin,
AST, alanine transaminase (ALT), Creatine kinase MB, LDH,
Creatinine, prothrombin time international normalized ratio
(PT-INR)] showed the linear trend with the maximum severity
(Table 2).

Predictive models for 4-group
classification

First, we developed predictive models using the four
ordinal groups which represent triage COVID-19 patients more
informatively. To select multiple markers associated with the
maximum severity, we used the proportional odds model and
GUIDEmodel. As a result of AIC-based stepwise selection, eight
predictors were selected including age, SBP, cough, sore throat,
shortness of breath, hypertension, ALT, and lymphocyte. Based
on these eight predictors, the proportional odds assumption
was held (p-value = 0.9980). Thus, we developed a predictive
model using the proportional odds model and evaluated its
performance on the testing data. In the case of the proportional
odds model when evaluating the performance, the probability of
being a specific category j was calculated by using the difference

between the cumulative probability corresponding to j and j− 1
[i.e., P

(

Y = j
)

= P
(

Y ≤ j
)

− P
(

Y ≤ j− 1
)

]. Each sample of
the testing data is classified into the group with the highest
probability. The evaluation results of the proportional odds
model are shown in Table 3. The accuracy and the weighted
averages of precision, recall, and F1-scores for the proportional
odds model was 0.524, 0.407, 0.499, and 0.408, respectively.
For the GUIDE model, six predictors were selected as follows:
CRP, respiration rate, age, headache, cough, and PT-INR. The
prediction results of the GUIDE model were also low (Table 3).
In both the proportional odds model and GUIDE, it seems that
most groups were predicted to be the moderate group with the
highest proportion of the four severity groups.

Predictive models for binary classification

By extending the approach of our previous study, we
developed predictive models based on more sophisticated
AI/ML algorithms using a variety of predictors such as
radiologic and laboratory findings reported to be associated with
severity.We combined the four outcome groups into two groups
[i.e., (1)Mild vs. AboveModerate, (2) BelowModerate vs. Above
Severe, and (3) Below Severe vs. Critical]. For each of the three
binary outcomes, the variable selection was performed using
AUC-based stepwise, LASSO, and randomForestSRC methods.
For each outcome, predictive models were developed using
selected variables based on five AI/ML algorithms: LR, RF, SVM,
DNN, and GUIDE. Table 4 shows the model and performance
results. For each binary outcome, a parsimoniousmodel with the
best predictive performance using fewer predictors was chosen
as the final model.
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TABLE 3 Predictive models and performance for 4-group classification in testing data.

Model Accuracy Weighted average Macro average

Precision Recall F1-score Precision Recall F1-score

Proportional odds model 0.524 0.407 0.499 0.408 0.329 0.296 0.270

GUIDE 0.564 0.553 0.562 0.542 0.513 0.433 0.449

F1-score is defined as the harmonic mean of precision and recall.

For (1) Mild vs. Above Moderate model, three predictors
including chest X-ray infiltration, body temperature, and age
were finally selected for the final model. The final model showed
good performance with an AUC of 0.882, balanced accuracy
of 0.811, and F1-score of 0.874 for GUIDE. In particular, the
predictive performance of the GUIDE for binary classification
is much better than a model for 4-group classification, when
converting the 4 × 4 confusion matrix of 4-group classification
to a 2 × 2 version (33). Figure 2 shows the results of GUIDE
using training data. The number between 1 and 15 of each node
represents the label of the node. At each split, an observation
goes to the left branch if and only if the condition is satisfied.
The predicted class (in red) and sample size (in italics) are
printed below the terminal node. Terminal nodes with classes
predicted to be Above Moderate = 1 are shown in green, and
classes predicted to be Mild = 0 are shown in yellow. Sample
proportions by class for Mild = 0 and Above Moderate = 1
are displayed next to the node. From the tree, the importance
of the variables can be inferred in the order of chest X-ray
infiltration, body temperature, and age. In that an observation
moves to the left branch when the condition is met, all
predictors can be inferred to have positive effects on the Above
Moderate group.

For (2) BelowModerate vs. Above Severemodel, 5 predictors
were finally selected as the final model: age, shortness of
breath, chest X-ray infiltration, CRP, and AST. Based on LR
with the highest performance, all predictors showed positive
effects on the Above Severe group (Table 5). When ranked
based on statistical significance, CRP had the highest, followed
by shortness of breath. A positive association between CRP
level and the severity of COVID-19 has been reported (34).
In addition to CRP, age, shortness of breath, and chest X-
ray infiltration were also well-known factors predicting the
severity of COVID-19 (15, 35). The model showed predictive
performance with the highest performance with AUC = 0.879
(balanced accuracy= 0.799, F1-score= 0.730) for LR.

For (3) Below Severe vs. Critical model, 6 predictors
were finally selected as the final model: CRP, respiration
rate, chronic kidney disease, AST, age, and diabetes. As
with the Below Moderate vs. Above Severe model, based
on LR with the highest AUC value, all predictors showed
positive effects on the Critical group (Table 5). When ranked

based on statistical significance, CRP ranked highest. CRP
has also been studied as a factor to predict the need for
mechanical ventilation (36). In addition to CRP, respiration
rate and age have been reported as predictors for an increased
risk of mechanical ventilation (37). Chronic kidney disease
and diabetes were also risk factors contributing to death in
hospitalized COVID-19 patients (38, 39). The model had the
highest AUC value of 0.887 and the highest balanced accuracy
of 0.848 for LR. For these three predictive models, we developed
nomograms to predict the maximum severity of each COVID-
19 patient using the coefficients of the LR model (Figure 3).
The nomogram is available at http://statgen.snu.ac.kr/software/
nomogramDaeguCovid/ and is expected to help plan effective
treatment for each patient in a clinical setting.

Discussion

As the COVID-19 pandemic continues for a long time,
the importance of proper preparation and distribution of
medical resources at an early stage is growing. Early prediction
of the high-risk group for severe COVID-19 pneumonia is
important because it can reduce mortality by providing timely
treatment to critically ill patients such as the elderly (40, 41).
For early prediction, this study successfully developed AI/ML-
based models that predict the maximum severity of COVID-
19 patients during hospitalization. Of the two approaches used
in this study, the binary classification approach performed
much better than the 4-group classification approach. Based
on the binary classification results with higher performance,
we developed web-based nomograms useful for clinical practice
as follows: (1) Mild vs. Above Moderate, (2) Below Moderate
vs. Above Severe, and (3) Below Severe vs. Critical. The Mild
vs. Above Moderate model showed the predictive performance
of AUC = 0.882 using only three clinicopathologic predictors
(i.e., chest X-ray infiltration, body temperature, and age). This
implies that three predictors without laboratory findings are
sufficient to predict the Mild vs. Above Moderate model.
Conversely, models predicting (2) Above Severe or (3) Critical
groups required laboratory findings such as CRP and AST.
For these two models, the predictive performance was further
compared to the best model when predictors were selected
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TABLE 4 Predictive models and performance for each binary outcome.

Binary

outcome

NumU Variable

selection

method

AI/ML Training Testing

AUC Acc. Spe. Prec. Rec. F1 AUC Acc. Spe. Prec. Rec. F1

Mild vs.

Above

Moderate

8 Stepwise LR 0.918 0.867 0.996 0.998 0.739 0.849 0.894 0.847 0.985 0.992 0.710 0.827

RF 0.915 0.857 0.941 0.973 0.774 0.862 0.879 0.825 0.901 0.950 0.749 0.838

SVM 0.911 0.867 0.992 0.996 0.742 0.850 0.881 0.843 0.969 0.983 0.716 0.829

DNN 0.916 0.865 0.974 0.988 0.755 0.856 0.890 0.838 0.937 0.967 0.738 0.837

4 LASSO LR 0.895 0.845 1.000 1 0.691 0.817 0.871 0.844 1.000 1 0.689 0.816

RF 0.863 0.815 0.923 0.977 0.706 0.820 0.836 0.807 0.925 0.978 0.689 0.808

SVM 0.896 0.845 1.000 1 0.691 0.817 0.871 0.845 1.000 1 0.689 0.816

DNN 0.894 0.832 0.961 0.988 0.703 0.822 0.870 0.807 0.864 0.964 0.749 0.843

5 RandomForestSRC

(Split rule: GINI)

LR 0.883 0.850 1 1 0.700 0.823 0.861 0.853 1 1 0.705 0.827

RF 0.822 0.818 0.835 0.970 0.801 0.877 0.741 0.757 0.711 0.944 0.804 0.868

SVM 0.880 0.841 0.988 0.997 0.694 0.818 0.863 0.847 1 1 0.694 0.819

DNN 0.875 0.830 0.945 0.989 0.715 0.828 0.867 0.816 0.884 0.978 0.747 0.845

5 RandomForestSRC

(Split rule: AUC)

LR 0.845 0.800 0.981 0.993 0.620 0.763 0.823 0.788 0.980 0.993 0.595 0.744

RF 0.855 0.803 0.977 0.992 0.630 0.771 0.831 0.791 0.980 0.993 0.601 0.749

SVM 0.849 0.796 1 1 0.591 0.743 0.827 0.786 1 1 0.572 0.728

DNN 0.852 0.802 0.980 0.993 0.623 0.766 0.828 0.788 0.984 0.995 0.593 0.743

3* GUIDE 0.891 0.835 0.841 0.942 0.830 0.882 0.882 0.811 0.797 0.927 0.826 0.874

Below

moderate vs.

above severe

8 Stepwise LR 0.915 0.838 0.851 0.729 0.825 0.774 0.878 0.825 0.824 0.653 0.825 0.729

RF 0.919 0.849 0.905 0.802 0.794 0.798 0.875 0.821 0.804 0.632 0.837 0.720

SVM 0.912 0.839 0.867 0.747 0.810 0.777 0.877 0.816 0.794 0.621 0.838 0.713

DNN 0.915 0.831 0.865 0.741 0.797 0.768 0.876 0.810 0.839 0.661 0.780 0.715

5* LASSO LR 0.899 0.827 0.869 0.759 0.786 0.772 0.879 0.799 0.864 0.726 0.733 0.730

RF 0.902 0.830 0.887 0.783 0.772 0.778 0.873 0.806 0.841 0.704 0.771 0.736
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TABLE 4 (Continued)

Binary

outcome

NumU Variable

selection

method

AI/ML Training Testing

AUC Acc. Spe. Prec. Rec. F1 AUC Acc. Spe. Prec. Rec. F1

SVM 0.901 0.830 0.887 0.782 0.772 0.777 0.877 0.802 0.822 0.683 0.781 0.729

DNN 0.899 0.825 0.889 0.783 0.760 0.771 0.873 0.797 0.866 0.727 0.728 0.728

5 RandomForestSRC

(Split rule: GINI)

LR 0.892 0.828 0.885 0.778 0.771 0.775 0.856 0.797 0.794 0.656 0.800 0.721

RF 0.892 0.828 0.889 0.784 0.767 0.775 0.859 0.801 0.733 0.733 0.869 0.733

SVM 0.890 0.828 0.889 0.784 0.767 0.775 0.859 0.801 0.869 0.733 0.733 0.733

DNN 0.890 0.829 0.868 0.761 0.789 0.773 0.856 0.796 0.848 0.707 0.745 0.725

5 RandomForestSRC

(Split rule: AUC)

LR 0.890 0.823 0.896 0.791 0.749 0.770 0.859 0.794 0.804 0.667 0.785 0.721

RF 0.895 0.828 0.831 0.719 0.825 0.768 0.855 0.797 0.790 0.656 0.804 0.723

SVM 0.888 0.822 0.899 0.794 0.744 0.768 0.862 0.794 0.804 0.667 0.785 0.721

DNN 0.888 0.820 0.863 0.754 0.778 0.763 0.859 0.786 0.839 0.697 0.733 0.713

4 GUIDE 0.793 0.738 0.698 0.477 0.778 0.592 0.776 0.716 0.650 0.444 0.782 0.566

Below severe

vs. critical

6* Stepwise LR 0.928 0.876 0.855 0.496 0.896 0.639 0.887 0.848 0.774 0.304 0.923 0.457

RF 0.928 0.878 0.820 0.453 0.935 0.610 0.878 0.832 0.856 0.375 0.808 0.512

SVM 0.928 0.870 0.805 0.433 0.935 0.592 0.885 0.838 0.753 0.286 0.923 0.436

DNN 0.922 0.857 0.865 0.500 0.848 0.629 0.886 0.822 0.829 0.338 0.815 0.478

1 LASSO LR 0.845 0.846 0.775 0.394 0.916 0.551 0.819 0.819 0.740 0.307 0.897 0.457

RF 0.845 0.845 0.775 0.394 0.916 0.551 0.819 0.819 0.740 0.307 0.897 0.457

SVM 0.845 0.846 0.775 0.394 0.916 0.551 0.819 0.819 0.740 0.307 0.897 0.457

DNN 0.846 0.570 0.356 0.163 0.784 0.270 0.820 0.566 0.347 0.134 0.785 0.228

5 RandomForestSRC

(Split rule: GINI)

LR 0.909 0.845 0.769 0.389 0.921 0.547 0.858 0.820 0.754 0.307 0.886 0.456

RF 0.901 0.827 0.823 0.428 0.831 0.565 0.826 0.779 0.644 0.241 0.914 0.380

SVM 0.902 0.825 0.696 0.333 0.955 0.494 0.843 0.790 0.665 0.252 0.914 0.395

DNN 0.911 0.842 0.788 0.405 0.896 0.556 0.857 0.805 0.759 0.304 0.851 0.447

5 RandomForestSRC

(Split rule: AUC)

LR 0.916 0.846 0.877 0.524 0.815 0.638 0.868 0.819 0.715 0.305 0.923 0.459

(Continued)

F
ro
n
tie

rs
in

P
u
b
lic

H
e
a
lth

0
9

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fpubh.2022.1007205
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hwangbo et al. 10.3389/fpubh.2022.1007205

T
A
B
L
E
4

(C
o
n
ti
n
u
e
d
)

B
in
ar
y

o
u
tc
o
m
e

N
u
m
U

V
ar
ia
b
le

se
le
ct
io
n

m
et
h
o
d

A
I/
M
L

T
ra
in
in
g

T
es
ti
n
g

A
U
C

A
cc
.

S
p
e.

P
re
c.

R
ec
.

F
1

A
U
C

A
cc
.

S
p
e.

P
re
c.

R
ec
.

F
1

R
F

0.
92
0

0.
84
7

0.
87
9

0.
52
8

0.
81
5

0.
64
1

0.
85
6

0.
81
9

0.
71
5

0.
30
5

0.
92
3

0.
45
9

SV
M

0.
91
3

0.
84
2

0.
85
7

0.
49
0

0.
82
6

0.
61
5

0.
87
3

0.
81
6

0.
70
8

0.
30
0

0.
92
3

0.
45
3

D
N
N

0.
91
3

0.
84
5

0.
85
1

0.
49
5

0.
84
0

0.
61
9

0.
86
5

0.
81
4

0.
71
0

0.
30
1

0.
91
8

0.
45
3

3
G
U
ID

E
0.
80
5

0.
78
8

0.
90
2

0.
39
3

0.
67
4

0.
49
6

0.
72
3

0.
71
2

0.
88
5

0.
30
7

0.
53
8

0.
39
1

U
T
he

nu
m
be
r
of

va
ri
ab
le
s
se
le
ct
ed

by
th
e
va
ri
ab
le
se
le
ct
io
n
m
et
ho

d.
* T
he

fin
al
m
od

el
us
ed

to
de
ve
lo
p
th
e
no

m
og
ra
m

fo
r
ea
ch

bi
na
ry

ou
tc
om

e.
F1

sc
or
e
is
de
fin

ed
as

th
e
ha
rm

on
ic
m
ea
n
of

pr
ec
is
io
n
(P
re
c.
)
an
d
re
ca
ll
(R
ec
.)
.S
pe
ci
fic
it
y,
re
ca
ll
(R
ec
.;

se
ns
it
iv
it
y)
,p
re
ci
si
on

(P
re
c.
),
an
d
F1

-s
co
re

at
th
e
th
re
sh
ol
d
co
rr
es
po

nd
in
g
to

th
e
m
ax
im

um
ba
la
nc
ed

ac
cu
ra
cy

(A
cc
.)
ar
e
di
sp
la
ye
d.
Fo

r
th
e
M
ild

vs
.A

bo
ve

M
od

er
at
e
m
od

el
,t
he

fin
al
m
od

el
in
cl
ud

es
ch
es
tX

-r
ay

in
fil
tr
at
io
n,

bo
dy

te
m
pe
ra
tu
re
,a
nd

ag
e.
Fo

r
B
el
ow

M
od

er
at
e
vs
.A

bo
ve

Se
ve
re

m
od

el
,t
he

fin
al
m
od

el
in
cl
ud

es
ag
e,
sh
or
tn
es
s
of

br
ea
th
,c
he
st
X
-r
ay

in
fil
tr
at
io
n,

C
R
P,
an
d
A
ST

.F
or

B
el
ow

Se
ve
re

vs
.C

ri
ti
ca
lm

od
el
,t
he

fin
al
m
od

el
in
cl
ud

es
C
R
P,
re
sp
ir
at
io
n
ra
te
,c
hr
on

ic
ki
dn

ey
di
se
as
e,
A
ST
,a
ge
,a
nd

di
ab
et
es
.A

cc
,A

cc
ur
ac
y;
Sp
e.
,S
pe
ci
fic
it
y;
P
re
c.
,P

re
ci
si
on

;R
ec
.,
R
ec
al
l.

FIGURE 2

GUIDE model for Mild vs. Above Moderate.

without laboratory findings. For the Below Moderate vs.
Above Severe, the final model used to develop the nomogram
showed higher predictive performance (AUC range: 0.873–
0.879; 5 predictors) than the best model (AUC range: 0.809–
0.825; 8 predictors which include age, chest X-ray, body
temperature, smoking, CND, respiration rate, hypertension,
and sex) when clinicopathological predictors were selected
without laboratory findings. Here, the 8 predictors based only
on clinicopathological variables are not the same as the 8
predictors (CRP, AST, age, shortness of breath, dementia,
diabetes, creatinine, and chest X-ray) selected by the stepwise
method in Table 4. The Below Severe vs. Critical model (AUC
range: 0.878–0.887; 6 predictors) used to develop the nomogram
also outperformed the best model (AUC range: 0.719–0.831; 8
predictors which include age, respiration rate, smoking, chest
X-ray, diabetes, body temperature, sex, and CCD) when only
clinicopathological predictors were selected.

Most of the predictors used to develop the nomogram
were found to be consistent with previously reported results
in the literature. Age, the common predictor of the three
models used in the nomogram, is known to be a major risk
factor for clinical severity (1). Chest X-ray infiltration was
previously reported as a predictor of detecting the moderate
and severe groups with an accuracy of 0.86 or better (42).
CRP, which serves as an early marker of inflammation, has
also been reported as an early predictor of COVID-19 severity
(34, 43). AST, which acts as a sign of liver damage, has
also been reported as one of the important predictors for
predicting severity (44). It is well-known that shortness of breath
is prevalent in severe patients (45). Respiration rate, chronic
kidney disease, and diabetes were reported risk factors for
mechanical ventilation or death corresponding to the critical
group (37–39).

Our study showed similar results in a large cohort
retrospective study conducted in the United States. The
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previous study used 64 input variables, including vital signs,
various laboratory findings, and comorbidities. As the previous
study found that age, male sex, and liver disease were
associated with higher clinical severity, the Below Severe
vs. Critical model in this study had a high predictive
performance with clinical parameters including age, male sex,
and elevated AST relating to liver diseases. In the previous
study, ferritin and d-dimer were used as input variables,
but in our study, cytokine storm syndrome-related these
blood tests occurring in severe COVID-19 were not included.
However, a high predictive model was presented without using
these laboratory findings, and through this, convenience in
predicting the disease severity in clinical situations can be
expected. Our study demonstrated that the predictive model
has the potential to predict the maximum disease severity
of patients with COVID-19 with high accuracy and to help
healthcare systems in planning for surge medical capacity for
COVID-19, especially in a situation where medical resources
are limited.

Compared to our previous study (15), the main
characteristics of this study are as follows. Firstly, in this
study, the maximum severity defined based on the opinions
of infectious disease specialists is expected to arouse sympathy
from other clinicians in the clinical field. As a result, this
model may be useful in clinical practice and the design of
further clinical studies. Secondly, various AI/ML algorithms
including DNN and GUIDE were used as comparison
methods. The predictive performance based on various
AI/ML algorithms suggests that the logistic model used
to develop the nomogram outperforms other comparative
models. Lastly, the results of this study suggest that various
laboratory findings such as CRP and AST contribute to
the higher predictive performance with a smaller number
of predictors.

Most of the existing methods have focused on classifying
two groups, such as mild and severe patients (46). However,
a predictive model based on the 4-group classification
allows for ease of diagnosis for four groups of COVID-19
patients without the need for three predictive models. In
addition, for more accurate classification, it is necessary to
develop a predictive model using the ordinal information
of four groups (47). Although the predictive performance
for the four groups was not good because most of the
four groups were predicted as the moderate group with
the highest proportion, the results are expected to be
useful for designing future analysis plans such as an
approach reflecting weights depending on the proportion
of the outcome.

However, this study has some limitations. Firstly, we
could not evaluate the impact of COVID-19 treatment, new
COVID-19 variants, and vaccination status on the clinical
severity course because this study was conducted in early
COVID-19 pandemic patient groups. Secondly, full therapeutic

TABLE 5 Fitted results of the logistic regression model for the Below

Moderate vs. Above Severe model and Below Severe vs. Critical model.

(A) Binary outcome: Below moderate vs. above severe

Estimate Std. Error Pr(>|z|)

(Intercept) −3.197 0.270 2.4E-32

Age [>60 year] 1.204 0.253 1.9E-06

Shortness of breath [Yes] 1.431 0.261 4.4E-08

Chest X-ray infiltration

[Yes]

0.540 0.257 0.035

CRP [>3 mg/dL] 2.270 0.251 1.3E-19

AST [>40U/L] 1.144 0.298 1.2E-04

(B) Binary outcome: Below severe vs. critical

(Intercept) −5.605 0.575 1.8E-22

CRP [>3 mg/dL] 2.688 0.455 3.4E-09

Respiration rate [>20

breaths /min]

1.420 0.333 1.9E-05

Chronic kidney disease

[Yes]

2.660 0.809 0.001

AST [>40U/L] 1.384 0.342 5.2E-05

Age [>60 year] 0.801 0.434 0.065

Diabetes [Yes] 1.085 0.346 0.002

options were not available such as remdesivir, tocilizumab
(anti-IL-6 receptor monoclonal antibody), baricitinib (janus
kinase inhibitor), and anti-SARS-CoV-2 monoclonal antibody.
Thirdly, laboratory findings related to cytokine storm syndrome
occurring in severe COVID-19 such as ferritin, interleukin 6
(IL-6), and d-dimer were not included. Ferritin (macrophage
activation indicator) and IL-6 (T lymphocyte activation) are
known to suspect cytokine storm syndrome in severe COVID-
19 exacerbation (48). If laboratory test results related to
these cytokine systems were included, it could help to create
a model that can better predict severe or critical disease
severity. We are continually updating data from 10 hospitals
in Daegu, and collecting new data at SMG-SNU Boramae
Medical Center in Seoul. Based on these updated data, we
are conducting new systematic analyzes including variant
information and therapeutic options. The new results will
be reported in a separate paper in the new future. Lastly,
although our study included only Korean, further research
on different races could help to predict clinical disease
severity more accurately. However, despite these limitations,
this study is a meaningful study in its way to determine
the maximum severity of the patient only from the initial
condition in the absence of variant information or treatment
for COVID-19.

In conclusion, three predictive models were developed
to predict the maximum severity during hospitalization
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FIGURE 3

An example of the nomogram for each outcome.

based on the initial hospitalization records. The five AI/ML
algorithms including DNN and GUIDE were used for model
development. Each of the three predictive models showed
excellent predictive performance using a few predictors.
Representatively, the Mild vs. Above Moderate model
showed the predictive performance of 0.882 for AUC using
three clinicopathologic predictors. Based on these three
predictive models, we successfully developed web-based
nomograms useful in the clinical field. These nomograms
are expected to help plan effective and timely treatment for
each patient.
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