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Purpose: To apply deep learning (DL) techniques to develop an automatic

intelligent classification system identifying the specific types of myopic

maculopathy (MM) based on macular optical coherence tomography (OCT)

images using transfer learning (TL).

Method: In this retrospective study, a total of 3,945 macular OCT images from

2,866myopic patients were recruited from the ophthalmic outpatients of three

hospitals. After culling out 545 images with poor quality, a dataset containing

3,400 macular OCT images was manually classified according to the ATN

system, containing four types of MM with high OCT diagnostic values. Two DL

classification algorithmswere trained to identify the targeted lesion categories:

Algorithm A was trained from scratch, and algorithm B using the TL approach

initiated from the classification algorithm developed in our previous study.

After comparing the training process, the algorithm with better performance

was tested and validated. The performance of the classification algorithm in

the test and validation sets was evaluated using metrics including sensitivity,

specificity, accuracy, quadratic-weighted kappa score, and the area under the

receiver operating characteristic curve (AUC). Moreover, the human-machine

comparison was conducted. To better evaluate the algorithm and clarify the

optimization direction, the dimensionality reduction analysis and heat map

analysis were also used to visually analyze the algorithm.

Results: Algorithm B showed better performance in the training process.

In the test set, the algorithm B achieved relatively robust performance with

macro AUC, accuracy, and quadratic-weighted kappa of 0.986, 96.04% (95%

CI: 0.951, 0.969), and 0.940 (95% CI: 0.909–0.971), respectively. In the external

validation set, the performance of algorithm B was slightly inferior to that

in the test set. In human-machine comparison test, the algorithm indicators

were inferior to the retinal specialists but were the same as the ordinary

ophthalmologists. In addition, dimensionality reduction visualization and

heatmap visualization analysis showed excellent performance of the algorithm.
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Conclusion: Ourmacular OCT image classification algorithm developed using

the TL approach exhibited excellent performance. The automatic diagnosis

system for macular OCT images of MM based on DL showed potential

application prospects.

KEYWORDS

artificial intelligence, deep learning, pathologic myopia, myopia maculopathy, ATN

classification system, optical coherence tomography

Introduction

Myopicmaculopathy (MM) is themain cause for irreversible

visual impairment in pathologic myopia (PM) (1). Common

signs of MM include chorioretinal atrophy, lacquer cracks,

macular hemorrhage, myopic foveoschisis (MF), myopic

choroidal neovascularization (mCNV), etc. (2). Among these,

macular atrophy, mCNV, and macular hole show great

association with the deterioration of visual acuity. Although

visual symptoms of MF are often minimal or gradual, it has

been demonstrated that MF preceded formation of a macular

hole that could eventually lead to retinal detachment. Moreover,

the previous literature suggested that pathy chorioretinal

atrophy and lacquer cracks are preceding risk factors for the

development of mCNV (3).

Myopic maculopathy is a complex disease which cannot be

fully described by the current classification systems. The Meta-

Analysis of Pathologic Myopia (META-PM) classification, based

on the widely used color fundus photography, can only reflect

the limited information of main fundus structures, such as

morphology and color (4). Although color fundus photography

is effective for large-scale screening and identification for various

choroidal retinal atrophic lesions, obvious neovascularization,

and fundus hemorrhage, it may be insufficient for the

minimal, occult, or inner retinal lesion identification. Therefore,

more sophisticated examination techniques with comprehensive

classification system are desirable in MM research. Optical

coherence tomography (OCT), a non-invasive and efficient

approach to obtaining high-resolution retinal tomographic

images, has been widely used to evaluate various retinal diseases,

especially the macular abnormalities in recent years (5).

Artificial intelligence (AI) and DL techniques were firstly

applied in ophthalmic fundus photography and have shown

good clinical application potential. However, OCT can provide

more detailed information of retinal structure, which has great

value in the diagnosis of fundus diseases. Recently, with the

popularization of OCT, multiple intelligent algorithms for OCT

image identification have been developed. Similar to the case

in fundus photography, developing the AI-assisted automatic

screening and diagnosis system based on OCT images is also of

great significance in ophthalmic clinical practice, especially for

large scale screening task or community eye care service. Fang

et al. developed a novel framework combining convolutional

neural networks (CNN) and graph search methods (termed

CNN-GS) for automatic segmentation of nine-layer boundaries

on retinal OCT images (6). Lee et al. reported satisfying results

in automatic segmentation of macular edema OCT images and

automatic classification of age-related macular degeneration

OCT images using the DL technique (7, 8). The Devalla research

team developed a dilated-residual U-Net deep learning network

(DRUNET), which can capture both the local and contextual

information to segment the individual neural and connective

tissues of the optic nerve head tissues in OCT images (9).

Perdomo et al. developed a new DL algorithm OCT-NET for

diabetic macular edema (10).

Nevertheless, the AI application in myopia is still relatively

few. Li et al. trained four independent CNN models to identify

retinal holes, macular holes, retinal detachment, and mCNV

using macular OCT images of 1,048 highly myopic eyes (11).

Using macular OCT images of highmyopia,Wei et al. developed

a model applying five different deep learning (DL) architectures

that can predict the BCVA after cataract surgery and achieved

good results (12). Shen et al. developed a DL intelligent system

to detect and classify complications of high myopia retinopathy

based on OCT images, including macular choroid thinning,

macular Bruch membrane loss, subretinal hyperreflective

material, myopic tractional maculopathy (MTM), and dome-

shaped macula (13). Further development of the comprehensive

and intensive AI-assisted automatic identification systems are

desired to facilitate the clinical diagnosis and management

of MM.

The MM classification and grading system, namely the

ATN system, which combines the information of color fundus

photographs and OCT images, was proposed by an international

team of myopia experts (14). In the ATN classification system,

MM lesions are categorized as myopic atrophy maculopathy

(MAM), MTM, and myopic neovascular maculopathy (MNM).

Among these, the detailed grading of MAM basically refers to

the META-PM system, and color fundus photography alone is

sufficient in diagnosis and detailed grading. As for diagnosis and

detailed grading of MTM and MNM, OCT, fundus angiography

(FA), and other examinations have unique advantages. In

particular, all grades of macular retinoschisis, macular hole,

macular hole with retinal detachment, and active/inactive
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TABLE 1 Summary of the total dataset and external validation dataset.

Number of

images

with labels

Number of

participants

Mean age

(years)

Sex

(% female)

Spherical

equivalent

(diopters)

Total dataset

Normal macular 1,025 686 40.22± 7.78

(18 to 67)

52.2 1.13± 0.83

(−6.5 to−0.5)

Macular schisis 506 308 54.71± 12.52

(28 to 69)

57.6 −16.78± 4.01

(−22 to−8)

Full-thickness macular hole 556 387 55.48± 10.32

(29 to 64)

63.1 −15.32± 6.84

(−21.5 to−8.5)

MH with retinal detachment 230 213 58.19± 10.11

(28 to 69)

58.9 −16.45± 5.79

(−22.5 to−9.0)

mCNV 570 470 52.15± 12.12

(29 to 78)

57.6 −14.87± 3.23

(−21 to−7)

Others 513 402 46.71± 10.78

(29 to 70)

51.9 −1.07± 0.63

(−4.5 to−0.5)

External validation dataset

Normal macular 67 40 38.05± 14.47

(26 to 75)

53.1 −1.34± 0.81

(−5.5 to−0.5)

Macular schisis 187 141 57.41± 13.12

(30 to 71)

59.4 −17.98± 4.52

(−24 to−8)

Full-thickness macular hole 219 187 58.19± 12.37

(24 to 65)

57.4 −16.35± 7.16

(−23.5 to−6.5)

MH with retinal detachment 148 109 61.02± 11.71

(27 to 71)

60.1 −17.18± 7.04

(−23.5 to−8.5)

mCNV 159 135 54.724± 13.52

(27 to 81)

56.3 −15.37± 3.04

(−20 to−7)

Others 220 201 49.24± 11.38

(28 to 67)

53.2 −2.24± 0.84

(−5 to−0.5)

mCNV, myopic choroid neovascularization; MH, macular hole.

myopic choroid neovascularization (mCNV) are easy to be

distinguished with OCT images.

In our previous work, DL showed comparable ability

of ophthalmic fundus image classification and recognition

when compared with the ordinary ophthalmologists, and even

approached the level of retinal specialists (15). Meanwhile,

transfer learning (TL) has been widely used in the development

of medical DL algorithms, which means the infrastructure

used is pre-trained in the huge ImageNet database, and then

optimized with medical image data. In this study, we aimed to

develop an automatic classification system using DL technology

to identify the different types of MTM and MNM based

on the macular OCT images. Combined with the automatic

classification of MAM in our previous research, the full coverage

of the intelligent automatic classification and diagnosis of MM

using the ATN systemwas preliminarymaterialized. In addition,

we also developed a new OCT classification algorithm using

the TL approach based on the excellent classification algorithms

(Algorithm I and Algorithm II) which was developed in our

previous study (15).

Methods

Data collection

In this study, the use of OCT images was approved by

the Ethics Committee of the First Affiliated Hospital, School

of Medicine, Zhejiang University and adhered to the tenets

of the Declaration of Helsinki. Because the study was a

retrospective review and analysis of fully anonymized OCT

images, the medical ethics committee declared it exempt from

informed consent.

We collected 3,945 OCT images of 2,866 myopia patients

(Table 1) from the eye center of the First Affiliated Hospital

of School of Medicine, Zhejiang University; the First Affiliated

Hospital of University of Science and Technology of China;
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FIGURE 1

Typical OCT images of tractional component and neovascular component. (A) Inner or outer foveoschisis (T1). (B) Inner + outer foveoschisis

(T2). (C) Foveal detachment (T3). (D) Full-thickness Macular hole (MH) (T4). (E) MH + Retinal detachment (T5). (F) Active CNV (N2a). (G)

Scar/Fuch’s spot (N2s).

and the First Affiliated Hospital of Soochow University between

Jan 2020 and Jan 2021. Since February 2021, the manual

annotation and algorithm training of OCT images have been

carried out. All images were captured on two different SD-OCT

(Heidelberg Spectralis HRA + OCT and Rtvue XR). All three

eye centers used a similar imaging protocol, a horizontal or

vertical single-line scan (10mm) through the fovea. The pupil

dilation was decided by the examiners depending on the patient’s

ocular condition. Patient information attached to images was

anonymized before inclusion in the study.

The inclusion/exclusion criteria of the images were as

follows: Images obtained from eyes with refractive error

(spherical equivalent ≤ −0.50 D). Images of any MM must be

from highly myopic eyes (spherical equivalence ≤ −6.00 D).

Images obtained from eyes with MM accompanied by other

macular lesions were excluded. As the accurate preoperative

refractive error of patients had refractive surgery history could

not be obtained directly, the patients with previous refractive

surgery history were not involved. At the same time, images

with poor quality caused by cataracts, vitreous opacities, eye

movement, or other reasons were excluded to ensure readability.

Finally, a total of 545 ungradable images were excluded. A total

dataset containing 3,400 macular OCT images was established

and assigned to the expert teams for further annotation.

Diagnostic reference standard and
manual annotation

According to the ATN classification and grading system,

MM was divided into three types—MAM, MTM, and MNM

(14). Specifically, MAM is subdivided into A0–A4, which

basically corresponds to C0–C4 in the META-PM classification

(4). Myopic tractional maculopathy was subdivided into T0—

no macular schisis, T1—inner or outer foveoschisis, T2—

inner + outer foveoschisis, T3—foveal detachment, T4—full-

thicknessmacular hole (MH), T5—MHwith retinal detachment.

Myopic neovascular maculopathy was subdivided into N0—no

mCNV, N1—macular lacquer cracks, N2a—active CNV, N2s—

scar/Fuch’s spot. Typical OCT images of MTM and MNM were

shown in Figure 1.

The manual annotation protocol was in accordance with our

previous study (16). The 12 ophthalmologists were required to

learn the definition and test the intra- and inter-rater reliability

before starting the annotation process. After achieving a kappa

value ≥0.81 (almost perfect), the 12 ophthalmologists served

as the graders (17). They were randomly divided into three

teams, with each consisting of one retinal specialist (with more

than 10 years of experience) and three general ophthalmologists

(with more than 5 years of experience). Graders in the same
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FIGURE 2

Workflow diagram showing the overview of the development process.

team evaluated the same set of images. Each grader was

blinded to the annotation results made by the others and

the independent decisions on the OCT images were made.

The results recognized unanimously by the three graders in

the same team were taken as the ground truth. Results that

differed among the general ophthalmologists in the same team

were arbitrated by the retinal specialist for a final decision of

annotation. The workflow of manual annotation was illustrated

in Figure 2.

In this study, in view of the feasibility of image data

acquisition, accuracy of manual diagnosis, and clinical

significance of the lesions involved, the T1, T2, and T3

were combined as macular schisis; and the active mCNV

(N2a) and scar/Fuchs spots (N2s) were combined as mCNV.

The single modality of OCT images is not sensitive in the

diagnosis of macular LCs, which relies on FA or multimodal

diagnosis of near-infrared reflectance (NIR) images combined

with OCT images (18), and is therefore not addressed in

this study. If multiple myopic traction maculopathy were

found to be present on the same OCT image, only the

highest level was retained. After manual annotation, no

mCNV images were found to be combined with myopic

traction maculopathy, so each image carried only one

lesion label. In general, 3,400 OCT images were manually

classified as normal macular, macular schisis, full-thickness

macular hole, MH with retinal detachment, mCNV, and

the others.

Development of the deep learning
algorithms

After being processed by manual annotation, the total

dataset was randomly divided into the training dataset,

validation dataset, and test dataset, accounting for 70%, 20%,

and 10%, respectively. Each image was allowed to exist in one

dataset. All the rawOCT images were pre-processed by cropping

and resizing to meet the requirement of input image format with

a resolution of 512 ∗ 512 pixels. The images in the training and

validation datasets were pre-processed by the steps of gray-scale

transformations, geometric variation, and image enhancement,

in order to eliminate the irrelevant information and recover

the useful or true information in images. The features of input

images were then analyzed and extracted by the DL algorithm.
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FIGURE 3

Schematic diagram of algorithm architecture. (A) Architecture of classification algorithms in our previous study. (B) OCT image classification

algorithm is constructed by the transfer learning method.

The results of multiclass classification were given. The training

platform was implemented with the PyTorch framework, and all

of the DLSs were trained in parallel on four NVIDIA 2080 Ti

graphics processing units (16).

In this study, a total of two DL classification algorithms

were trained to identify the targeted lesion categories, and the

workflow was illustrated in Figure 2. The OCT classification

algorithm A, using the same deep residual network model

architecture reported in our previous work (15), was pre-trained

by ImageNet with no initialization parameters, and then the

labeled OCT images were added to finalize the training. The

OCT classification algorithm B was based on the classification

algorithm developed in our previous study (15), using a multi-

source cross-domain TL approach, sharing the prior distribution

of model parameters, learning the feature representation of the

OCT images, and further training to optimize the initialization

parameters of the model. Details of the relevant architecture

were shown in Figure 3.

Retrospective external validation and
expert-machine comparison

To further evaluate our algorithm, 1,000 OCT images from

813 myopic patients were recruited retrospectively according

to the same criteria at the Second Affiliated Hospital of School

of Medicine, Zhejiang University as an external validation

dataset (Table 1). The model of OCT was the same as

the one used in the training dataset. The protocol for the

human-machine comparison was consistent with our previous

study (15).

Visualization analysis: Dimensionality
reduction and heat map

We used a t-distributed Stochastic Neighbor Embedding

(t-SNE) method to reduce high-dimensional DL data features

to two-dimensions and visualize them to observe the feature

subspace aggregation capability of the algorithm. The t-SNE

converts similarities between data points and minimizes the

Kullback–Leibler divergence of the joint probabilities between

the low-dimensional embedding and the high-dimensional data

(19). The heat map analysis approach was consistent with our

previous study (16).

Statistics and reproducibility

The accuracy and cross-entropy loss curves of the two

algorithms during training were also recorded and compared.

The better one was selected to be further tested in the test

dataset and external validation dataset. The performance of

the algorithm in classifying lesions was evaluated using metrics

including sensitivity, specificity, and the area under the receiver

operating characteristic curve (AUC). The area under the macro

average of ROC (macro-AUC) for each class in a one-vs.-all

manner and quadratic-weighted kappa score was calculated.

The accuracy was recorded as the number of images judged

correctly in all classifications divided by the total number of

images participating in the test. The confusion matrices were

also demonstrated. Additionally, the Clopper-Pearson method

was used to calculate the 95% CI. Statistical data were analyzed

using Sigma Plot 14.0 and Python 3.7.3. The detailed calculation
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FIGURE 4

Comparison of the training process of the two algorithms. (A) Changes in accuracy during training. (B) Changes of cross-entropy in training.

Blue line: algorithm A; Orange line: algorithm B.

formulas are as follows:

sensitivity =
TP

TP + FN

specificity =
TN

FP + TN

accuracy =
TP + TN

TP + FP + TN + FN

TP: true positive, FN: false negative, FP: false positive, TN:

true negative.

Results

Our total dataset was filtered from 3,945 OCT scans to 3,400

gradable images for lesions classification. The workflow is shown

in Figure 2. Approximately 10% of the images were subjected to

a final adjudication by retinal experts. The characteristics and

summary of the dataset are shown in Table 1.

Comparison of the training process of
the two algorithms

After 240 epochs, the training of the two algorithms

ceased as the accuracy and cross-entropy loss did not improve

further (Figures 4A,B). After comparison based on the fundus

photo classification algorithm developed in our previous study,

algorithm B, which was trained based on the multi-source cross-

domain TL approach, was found to achieve faster accuracy

improvement and cross-entropy loss reduction. At the end of

the training, the accuracy of algorithm B was about 95%, which

was higher than that of algorithm A.

TABLE 2 The performance of the algorithm B in the test dataset.

Macro-AUC Accuracy Quadratic-

weighted

kappa

(95% CI) (95% CI) (95% CI)

Algorithm B 0.986 0.960 0.940

(0.979, 0.993) (0.951, 0.969) (0.909–0.971)

Classification AUC

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

Macular schisis 0.991

(0.998, 1.000)

94.12%

(0.924, 0.959)

98.79%

(0.980, 0.996)

Full-thickness

macular hole

0.962

(0.953, 0.971)

91.07%

(0.889, 0.932)

99.65%

(0.992, 1.000)

MH with retinal

detachment

0.988

(0.983, 0.993)

91.30%

(0.892, 0.934)

99.06%

(0.983, 0.998)

mCNV 0.997

(0.994, 0.999)

99.12%

(0.984, 0.998)

98.42%

(0.975, 0.994)

Others 0.978

(0.971, 0.985)

96.12%

(0.947, 0.976)

99.48%

(0.989, 1.000)

AUC, area under the receiver operating characteristic curve; CI, confidence interval;

mCNV, myopic choroid neovascularization; MH, macular hole.

Performance of the algorithm B in the
test dataset

Algorithm B achieved good performance in the test dataset.

Specifically, algorithm B achieved a macro AUC = 0.986 (95%

CI: 0.979, 0.993), accuracy = 96.04% (95% CI: 0.951, 0.969),

and a quadratic weighted kappa value = 0.940 (95% CI: 0.909,

0.971) in the classification task (Table 2, Figure 5A). For specific

lesion identification, the AUC of algorithm B for macular schisis

was 0.991 (95% CI: 0.998, 1.000), sensitivity was 94.12% (95%
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FIGURE 5

Receiver operating characteristic (ROC) curves of algorithm B in test dataset and external validation dataset. (A) The ROC curve of algorithm B in

the test dataset. (B) The ROC curve of algorithm B in the external validation dataset.

FIGURE 6

The confusion matrixes of algorithm B in both test and external validation datasets. (A) The confusion matrix of algorithm B in the test dataset.

(B) The confusion matrix of algorithm B in the external validation dataset.

CI: 0.924, 0.959), and specificity was 98.79% (95% CI: 0.980,

0.996); the AUC for full-thicknessMHwas 0.962 (95%CI : 0.953,

0.971), sensitivity was 91.07% (95% CI: 0.889, 0.932), specificity

was 99.65% (95% CI: 0.992, 1.000); AUC for MH with Retinal

detachment was 0.988 (95% CI: 0.983, 0.993), sensitivity was

91.30% (95% CI: 0.892, 0.934) with a specificity of 99.06% (95%
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TABLE 3 Comparison of the performance of the algorithm B and experts in external validation dataset.

Macro-AUC

(95% CI)

Accuracy

(95% CI)

Quadratic-weighted kappa

(95% CI)

Algorithm B 0.938

(0.923, 0.953)

0.906

(0.888, 0.924)

0.897

(0.871, 0.922)

General ophthalmologist NA 0.915

(0.898, 0.932)

0.928

(0.907, 0.950)

Retinal specialist NA 0.958

(0.978, 0.993)

0.991

(0.985, 0.997)

Algorithm B General ophthalmologist Retinal specialist

Classification AUC

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

Macular schisis 0.857

(0.839, 0.913)

0.856

(0.834, 0.877)

0.972

(0.961, 0.982)

0.877

(0.857, 0.897)

0.988

(0.981, 0.995)

0.984

(0.976, 0.992)

0.995

(0.991, 0.999)

Full-thickness macular hole 0.978

(0.966, 0.990)

0.945

(0.931, 0.959)

0.974

(0.965, 0.984)

0.964

(0.952, 0.975)

0.978

(0.969, 0.987)

0.991

(0.985, 0.997)

0.999

(0.997, 1.000)

MH with retinal detachment 0.936

(0.905, 0.967)

0.865

(0.844, 0.886)

0.984

(0.976, 0.991)

0.865

(0.844, 0.886)

0.987

(0.980, 0.994)

0.987

(0.979, 0.994)

0.999

(0.997, 1.000)

mCNV 0.984

(0.970, 0.997)

0.937

(0.922, 0.952)

0.983

(0.975, 0.991)

0.943

(0.929, 0.958)

0.987

(0.979, 0.994)

0.981

(0.973, 0.989)

0.996

(0.993, 1.000)

Others 0.876

(0.839, 0.913)

0.890

(0.871, 0.910)

0.992

(0.987, 0.998)

0.909

(0.891, 0.927)

0.958

(0.945, 0.970)

0.982

(0.974, 0.990)

0.994

(0.989, 0.999)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; mCNV, myopic choroid neovascularization; MH, macular hole; NA, not available.

CI: 0.983, 0.998); the AUC for mCNV was 0.997 (95% CI: 0.994,

0.999) with a sensitivity of 99.12% (95% CI: 0.984, 0.998) and a

specificity of 98.42% (95% CI: 0.975, 0.994); for others the AUC

was 0.978 (95% CI: 0.971, 0.985), sensitivity was 96.12% (95%

CI: 0.947, 0.976), and specificity was 99.48% (95% CI: 0.989,

1.000) (Table 2). The confusionmatrix for algorithm B in the test

dataset is shown in Figure 6A.

Performance of algorithm B in the
external validation dataset and
expert-machine comparison

Algorithm B performed remarkably well in the test dataset.

To further evaluate the performance and generalizability of the

algorithm B, we retrospectively collected 1,000 OCT images

as the external validation dataset. Algorithm B performed

slightly worse in the external validation dataset than in the test

dataset (Figures 5B, 6B). This result was consistent with the

previous research (8). In detail, algorithm B has regressed in its

performance in the identification of macular schisis, MH with

retinal detachment. In the expert-machine comparison, there

was indeed some gap between the accuracy of algorithm B and

that of the retinal specialist. However, the performance has been

very close to the general ophthalmologist. The difference in the

judgment of specific individual lesions was within 3% in terms

of accuracy, sensitivity, and specificity (Table 3, Figure 7).

Visual analysis of algorithm B in the test
dataset

The high-dimensional features of the classification

algorithm were visualized in Figure 8A after the dimensionality

reduction analysis of t-SNE. In the t-SNE plot, clustering

occurred for the same label and significant feature space

differences existed between different labels, indicating the good

classification performance of the algorithm. Figure 8B showed

the results of visual heat map analysis of algorithm B. The OCT

images of different lesions were processed by the visualization

layer and a heat map was attached to the original image. The

algorithm highlighted the areas on the original image that were

most critical to its classification judgment with hot color, and

the retinal specialist then assessed the consistency of the hot

zones with the actual lesion areas in the OCT image. The main

lesion areas including macular schisis, full-thickness macular

hole, MH with retinal detachment, mCNV, and others (PED)

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1005700
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2022.1005700

FIGURE 7

The comparison between algorithm B and experts on accuracy in external validation.

FIGURE 8

Visualization of algorithm B. (A) The t-SNE plot of algorithm 0: normal macular, 1: macular schisis, 2: full-thickness macular hole, 3: MH with

Retinal detachment, 4: mCNV, 5: others (PED). (B) Heatmap generated from deep features overlaid on the original images. The typical lesions

were observed in the hot regions.

were found to be within the hot zone, and the accuracy of their

extent was confirmed by the retinal specialist.

Discussion

The present study is an extension of our previous work

and demonstrates the potential of DL technique in processing

various modalities of ophthalmic imaging data. In this work, two

DL classification algorithms, algorithm A and B, were trained

to automatically identify six different types of macular OCT

images. Although the same algorithm infrastructure was applied

for the two algorithms, faster improvement of accuracy and

cross-entropy loss reduction were achieved with algorithm B,

which was developed using the multi-source cross-domain TL

approach based on the fundus photo classification algorithm

as described in our previous study (15). At this stage, despite

the certain gap between algorithm B and retinal experts, the

performance indicators of our algorithm basically reached the

level of general ophthalmologists (Figure 7).

In our algorithm development, the ATN classification

system was adopted as the gold standard, which provides

a unified standard for the image diagnostic standards and

relevant management for the MM. Four kinds of macular
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lesions sensitive to OCT examination in MTM and MNM

were included for further research. Considering the actual

clinical setting, normal macular and other macular degeneration

categories were also included. In fact, MM grades C0–C4

in the META-PM classification system overlap with MAM

grades A0–A4 in the ATN classification system, while the

“Plus” lesions in the META-PM classification system are similar

to MNM in the ATN classification system. Therefore, our

present study achieved a comprehensive intervention of DL

techniques in the main category of MM based on the ATN

classification system. However, in the external validation dataset

containing 1,000 macular OCT images constructed to further

test the effectiveness and generalizability of our algorithm, the

slight degradation of the algorithm performance was observed.

This is within the expectation and can be ascribed to the

discrepancy between the test data sources. Nevertheless, the

results in the external dataset were basically acceptable (Figure 5,

Table 3).

In our work, the TL approach played a critical role in the

training and testing process of the OCT classification algorithm.

Briefly, the TL approach is the application of knowledge or

feature distribution learned in a certain domain or task to

a different but related new domain or task. The purpose is

to transfer the network parameter distribution of the labeled

data or knowledge structure learned by the neural network

model from related fields and to initialize the neural network

to complete or improve the learning effect of the target field or

task (20). At present, the TL approach has been widely used

in the development of algorithms for medical image analysis.

The most common process of TL approach is as follows: Firstly,

pre-train the algorithm model using public large-scale non-

medical professional databases (such as ImageNet). Secondly,

fine-tune or freeze the convolutional layer of themodel (keep the

parameters unchanged). Finally, retrain the neural network and

the fully connected classification layer with the labeled medical

professional data. TL approach can speed up the convergence

speed of the network and improve the training accuracy of the

network. The effect of TL is based on the number of fine-tuning,

the choice of model architecture, the order of fine-tuning,

and the choice of pre-training database (21). The pre-training

database should be as close as possible to the current task

database to avoid unsatisfying results. In this study, we choose

the color fundus photography classification algorithm developed

in our previous study as the starting point for the development

of the OCT image algorithm and shared its model parameters

and weights. As expected, algorithm B, transferred from

the previous eye image classification algorithm, outperformed

algorithm A (pre-trained on ImageNet) developed from scratch

(Figure 4).

The visual heatmap analysis was used to show the areas

where the algorithm considered a positive contribution to

the classification results. The good correspondence between

the hot areas and the actual lesions in macular OCT

images validated the effectiveness of our OCT classification

algorithm from a clinical perspective (Figure 8). Of note, we

applied a novel visualization approach termed dimensionality

reduction analysis, which comprises the most effective non-

linear dimensionality reduction method termed t-SNE. The

dimensionality reduction analysis facilitates the understanding

and validation of the data or model through visualization.

Moreover, the t-SNE plots of images with the same label

clustered, while the t-SNE plots of images with different labels

showed significant differences, suggesting the good performance

of the algorithm (Figure 8).

It should be noted that there are three detailed subdivisions

for macular retinoschisis (inner or outer retinoschisis, inner and

outer retinoschisis, and macular detachment) and three detailed

subdivisions for MNM (LCs, active mCNV, and scars/Fuchs

spots) in the ATN classification system. However, our work

merged the two sub-level macular OCT images and classified

them into two major categories: macular retinoschisis and

mCNV. The reason is mainly due to the relatively limited data

volume. Certainly, it is better to classify the each subdivision

level separately, but a huge amount of data would be required

for training each classification so as to obtain a satisfying result.

Importantly, our algorithm at this stage aims to serve as a

screening tool from clinical application perspective. Therefore,

it is acceptable to adopt a broader classification system to

achieve better accuracy and efficiency. With the continuous

accumulation of subdivision-level image data, the more refined

OCT classification algorithm that fully corresponds to the ATN

classification system will be expected in our future work.

Despite the high diagnostic value of macular OCT images

for MTM and MNM in the ATN classification system, the

diagnosis was still made based on a single-modal algorithm

after all. Currently, the multiple clinical methods for fundus

examination are available, including color fundus photography,

OCTA, and FA, etc. Fundus angiography is the gold standard for

the diagnosis of mCNV, while OCTA also play important role

in clinical practice. The color fundus photography has a good

performance in the diagnosis of MAM, but macular OCT has

a good discriminative ability for MAM with the measurement

of choroidal thickness and scleral thickness (22, 23). Therefore,

the algorithms of multi-modal intelligent diagnosis of MMs

based on the ATN classification system will definitely be more

robust for automatic identification of the lesions and deserves

further investigation.

Although the DL algorithm developed in our study achieved

satisfactory performance in identification of the six categories

of macular OCT images, misclassification might still exist. The

potential contributory factors include: (i) The quality of OCT

images. Although images with poor quality caused by obvious

cataracts, corneal scar, vitreous opacities, eye movement, etc.

were excluded to ensure readability, some images with relative

low quality might still exist due to the mild opacity of the

refractive medium, small pupil diameter, and long eye axis of
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high myopia, which can be recognized accurately by human

experts but might be misclassified using DL algorithm. (ii) The

existence of multiple MTM lesions in one image. Although only

the highest lesion level was retained, the co-existence of multiple

types of MTM in one image might affect the classification to

some extent. (iii) The small dataset. Our dataset for training

was relatively small. The images with atypical occult lesions with

various morphology or position might be misclassified. A larger

dataset containing typical and atypical lesions will be desirable

in our further work.

In conclusion, according to the ATN classification system,

our study developed a DL algorithm using TL approach based

on macular OCT images and achieved the automatic intelligent

identification of the six categories of macular OCT images

(including macular retinoschisis, full-thickness macular hole,

macular hole with retinal detachment, mCNV, normal macula,

and other macular lesions). The performance of the algorithm

developed at this stage was satisfactory for the mission of

relevant lesions classification. The present study demonstrates

the potential application of the intelligent algorithms in the

ophthalmic clinical tasks, especially for the highly myopic

fundus lesions identification. Combined with our previous work

(15, 16), this work is also a part of our ongoing effort to develop

the multiple-modal algorithms for automatic diagnosis of MM

based on the multiple fundus examination methods including

color fundus picture, OCT, OCTA, and FFA/ICGA, etc.
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