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Aging is accompanied by changes in physiology over time, which remains

the largest risk of chronic diseases. The aim of this study was to explore the

gender-specific bidirectional relations between the risk of chronic diseases

and serum traits in a 3-year longitudinal study. A hierarchical non-linear

model with random e�ects was used to assess the temporal patterns of

anthropometric and serum traits from 2017 to 2019 among 2,338 participants.

To assess the directional e�ect between the risk of chronic diseases and serum

traits, a bivariate cross-lagged panel model (CLPM) was used to estimate the

structural relations of repeatedly measured variables at three di�erent time

points. Candidate SNPs were analyzed and genotyped in MassARRAY Analyzer

4 platforms. In this study, metabolic syndrome (MS) score increased with aging

in females, whereas the fatty liver disease (FLD) index decreased with aging

in males; the MS score was negatively correlated with TB in females, and

FLD index was positively related to urea in males; CLPM showed that the MS

score predicted total bilirubin (TB) in females, and urea predicted the FLD

index in males. Additionally, rs2292354 in G protein-coupled receptor kinase

interactor 2 (GIT2) was associated with the MS score and TB in aged females.

Our study suggests the potential gender-specific causal associations between

development in MS and increase in TB level in females, and rise in urea level

and improved FLD index in males. The SNP rs2292354 we investigated might

be a biomarker for predicting MS in the elderly Chinese Han population.
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Introduction

By the year 2050, the population aged over 60 years old is

estimated to increase by nearly 0.4 billion in China (1). Aging is

accompanied by changes in physiology over time, which remains

the largest risk of chronic diseases, such as neurodegenerative

diseases, cardiovascular diseases, metabolic syndrome (MS) and

non-alcoholic fatty liver (NAFLD) (2). As major public health

problems, these chronic diseases have led to a cumulative burden

on society. Thus, it is urgently required to explore the key

mechanisms of aging and age-related chronic diseases.

Age-related impairment of endocrine function results from

phenotypic alterations of different cell types, such as endothelial

cells, cytokine, adipocytes and hepatocytes (3). The mechanism

of MS during aging is likely driven by those phenotypic

changes. Evidence has shown that bilirubin can function as an

antioxidant by reducing reactive oxygen species and suppressing

the oxidative activity of nicotinamide adenine dinucleotide

phosphate, resulting in oxidative stress alleviation (4), which

is involved in the pathogenesis and development of MS (5).

In recent cross-sectional studies, Hwang and Kim observed

an inverse relationship between total bilirubin (TB) and MS

in Korean women (6); Li et al. (7) confirmed the negative

association between bilirubin and MS incidence among Chinese

men; Zhong et al. (8) found that TB was negatively associated

with MS among the aged Chinese women. Although the

association of TB with MS appears to be reported a lot, it

still lacks the support from longitudinal studies, which might

be helpful to clarify the inconsistency between females and

males, and further provide the causality clues. Notably, the

urea cycle plays an essential role in NAFLD progression (9).

The conversion process from nitrogen into urea has been

disrupted, especially in the elderly population with chronic

diseases; the bidirectional relation between fatty liver and urea

is seldom mentioned.

As we all know, genetic factors play essential roles in the

occurrence and progression of chronic diseases. While the

genetic susceptibility in the aging population with chronic

diseases was seldom mentioned.

Our objective was to evaluate whether TB and urea levels

change with aging and predict the later development of the MS

and NAFLD in the aged females and males by using longitudinal

studies. In addition, candidate genes related to chronic diseases

in aging population was also investigated.

Methods and materials

Subjects

Participants were recruited from the outpatient registration

pool of those who participated in annual health checks from

2014 to 2019 at the Zhangjiang area of Pudong District

Health Care Service Centers, Shanghai, China. The study

followed the Helsinki Declaration. A standard protocol has been

developed by the Shanghai Innovation Center of Traditional

Chinese Medicine Health Service and approved by the Shanghai

University of Traditional Chinese Medicine Ethics Committee.

Consent was obtained from all subjects. Participants with

age over 60 years, who live in Shanghai, can complete

measurements and informed consent were included in the

inclusion criteria. This study excluded participants with mental

disorders, malignant tumors, or incomplete medical records.

During the investigation, six male subjects with age <60 years

were excluded, resulting in a total of 2,338 (female, n = 1,303;

male, n = 1,035) Chinese elderly subjects with complete data

overlapped in 2017, 2018, and 2019 (Figure 1). To elucidate the

association between genetic variants and NAFLD in the elderly

Chinese Han population, we did a sub-analysis of SNPs in 2017.

The questionnaire, anthropometry, and
physical examinations

Collection of information such as age, gender, alcohol

consumption, smoking and medical history were collected by

questionnaire (Supplementary Table 1). Body mass index (BMI)

was calculated as weight (kg) divided by height squared (m2).

Electronic sphygmomanometers were used to measure blood

pressure (Bio-space, Cheonan, South Korea). Blood pressure

was measured by electronic sphyg-momanometers (Biospace,

Cheonan, South Korea). Waist and hip circumference were

reliably measured using a non-stretch tape by the trained

professional. Blood samples from the antecubital vein after

fasting overnight were collected in the morning. Fasting glucose,

alanine transaminase (ALT), aspartate transaminase (AST), total

cholesterol (TC), low-density lipoprotein (LDL), high-density

lipoprotein (HDL), triglyceride (TG), hemoglobin, hemameba,

erythrocyte, urea, uric acid, total bilirubin, creatinine and

alpha-fetoprotein (AFP) were measured using the biochemistry

analyzer (Hitachi, Tokyo, Japan). The tumor marker carcinoma

embryonic antigen (CEA) was quantitatively determined by an

electro-chemiluminescence immunoassay (ECLIA).

Genotyping

Genomic DNA was extracted from venous blood leukocytes

using the EZ1 DNA Blood 350 µL kit (Qiagen) according to

the manufacturer’s instructions for genotyping. Seven SNPs

related to NAFLD relevant traits, including rs2071518 in

cellular communication network factor 3 (CCN3), rs12409877

in leptin receptor (LEPR), rs10770141 in tyrosine hydroxylase

(TH), rs4430796 in hepatocyte nuclear factor 1-beta (HNF1B),

rs2292354 in G protein-coupled receptor kinase interactor 2

(GIT2), rs5186 in angiotensin II receptor type 1 (AGTR1) and
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FIGURE 1

Study flowchart.

rs2206277 in transcription factor AP-2 beta (TFAP2B) from

NCBI database of SNP database (www.ncbi.nlm.nih.gov/SNP)

were analyzed, and genotyped by matrix-assisted laser

desorption/ionization time-off light mass spectrometer in

MassARRAY Analyzer 4 platforms (Sequenom, San Diego, CA).

Probes and primers were determined with online Assay Design

Suite version 2.0 software. Polymerase chain reaction was

performed according to the instructions of the manufacturers.

More detailed information about primers and polymerase chain

reaction conditions is available upon request.

Statistical analysis

Shapiro-Wilk test was used to check the normality of

the data using IBM SPSS Statistics (version 26.0). If data

were not normally distributed, their natural logarithms were

used. Clinical data were presented as mean and standard

deviation. Categorical data were calculated as percentages. FLD

index was calculated by the following formula: FLD index =

BMI + TG + 3 × (ALT/AST ratio) + 2 × Hyperglycemia

(presence of Hyperglycemia, 1; absence of Hyperglycemia, 0)

(10). Hyperglycemia was defined as fasting glucose≥6.1mmol/L

and/or 2-h glucose ≥7.8 mmol/L and/or a previous clinical

diagnosis of type 2 diabetes (11). MS score was calculated by

the following formula: MS score = 2∗waist/height + fasting

glucose/5.6 + TG/1.7 + SBP/130 - HDL/1.02 (male) or 1.28

(female) (12).

A hierarchical non-linear model with random effects was

used to assess the temporal patterns of anthropometric and

serum traits from 2017 to 2019 (MLwin 2.26 software, Multiple

Project, Institute of Education, University of London, UK).

Age was entered as the explanatory variable in the form of

polynomial spline functions to explain the change of target

variables over time. Additionally, to determine the longitudinal

associations of the FLD index or MS score with serum traits,

this hierarchical model analysis was also used with urea and

TB as independent variables and FLD index or MS score as an

outcome variable.

To assess the directional effect between MS score and TB

in females or FLD index and urea in males from 2017 to

2019, a bivariate cross-lagged panel model (CLPM) was used

to estimate the structural relations of repeatedly measured

variables at three different time points. The auto-regressive part

of the model indicates the temporal stability of the variables

from one-time point to the next. Meanwhile, CLPM was

used to assess reciprocal relationships between the variables at

consecutive time points, that is, MS score and TB in females

and FLD index and urea in males during the follow-up.

Structural equation modeling was conducted by Lavaan in R

software (13).

For the sub-analysis, allelic and genotypic distributions

and Hardy-Weinberg equilibrium (HWE) were analyzed

with the online software SHEsis (http://analysis.bio-x.

cn/myAnalysis.php) (14). The association between each

SNP with NAFLD in five genetic models (codominant,

dominant, recessive, over-dominant and log-additive

models, respectively) was analyzed by using “SNPassoc”

R package (15). P < 0.05 was considered statistically

significant.
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TABLE 1 Participants information of this longitudinal study.

Female (N = 1,303) Male (N = 1,035)

2017 2018 2019 2017 2018 2019

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 71 5.67 72 5.62 73 5.62 71 5.67 72 5.62 73 5.62

BMI (kg/m2) 24.20 3.49 24.66 3.46 24.91 3.49 24.32 3.19 24.87 3.29 25.03 3.21

SBP (mmHg) 143.70 21.74 142.27 21.26 143.57 19.85 142.29 21.24 140.48 19.96 140.42 18.69

DBP (mmHg) 81.87 11.22 75.86 9.45 77.33 7.41 80.72 11.54 76.37 9.27 77.84 7.85

Waistline (cm) 81.68 8.84 82.55 8.79 81.52 8.64 84.99 9.18 85.56 8.91 84.30 8.66

Albumin (g/L) 44.29 2.54 42.02 2.01 44.17 2.44 44.21 2.63 41.93 2.02 44.11 2.45

ALT (U/L) 22.97 13.79 19.89 12.18 21.26 26.67 24.58 13.48 21.74 14.68 22.28 13.12

AST (U/L) 23.73 8.74 22.39 9.96 22.49 16.92 23.32 7.85 22.24 11.55 21.64 7.17

Urea (mmol/L) 5.52 1.51 5.64 1.44 5.57 1.48 5.58 1.53 5.76 1.59 5.65 1.65

Fasting glucose (mmol/L) 6.09 1.52 6.05 1.68 6.07 1.71 6.20 1.64 6.15 1.71 6.11 1.69

Hemoglobin (g/L) 132.82 10.28 132.81 10.85 133.84 11.81 147.83 12.32 146.90 12.85 146.84 13.63

TC (mmol/L) 5.27 0.93 5.02 0.89 4.95 0.94 4.79 0.91 4.52 0.97 4.47 0.87

HDL (mmol/L) 1.30 0.28 1.30 0.28 1.32 0.30 1.18 0.25 1.17 0.24 1.19 0.27

LDL (mmol/L) 3.25 0.83 3.12 0.78 1.32 0.30 3.03 0.85 2.88 0.79 1.19 0.27

TG (mmol/L) 1.53 1.03 1.68 1.24 1.63 1.18 1.36 1.03 1.52 1.46 1.43 1.07

UA (µmol/L) 319.76 76.96 320.26 75.56 300.90 82.08 374.33 85.62 371.95 84.80 351.01 90.14

TB (µmol/L) 14.99 4.75 13.31 4.37 13.63 4.72 17.10 6.03 14.73 4.93 15.22 5.31

Creatinine (U/L) 62.79 14.42 61.97 14.69 66.53 17.47 79.01 17.64 78.78 18.69 83.43 22.86

FLD index 29.22 4.41 29.54 4.48 29.92 4.51 29.51 4.22 29.92 4.61 30.11 4.35

MS score 3.14 0.89 3.21 1.02 3.18 1.01 2.87 0.90 2.95 1.14 2.87 0.96

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; DBP, diastolic blood pressure; FLD index, fatty liver disease index; HDL, high density lipoprotein;

LDL, low density lipoprotein; MS score, metabolic syndrome score; SBP, systolic blood pressure; TB, total bilirubin; TC, total cholesterol; TG, triglyceride; UA, uric acid.

Results

Changes in patterns of anthropometric
and serum traits over the 3 years from
2017 to 2019

Characteristics of the study participants are

shown in Table 1. The average ages of females

and males were 71 (in 2017) and 73 years old

(in 2019).

For anthropometric traits, waistline and SBP increased

significantly over time, while DBP showed the opposite

trend (p < 0.001 for all) and BMI showed no significant

trend both in females (Figure 2) and males (Figure 3); For

serum traits, albumin, erythrocyte, hemoglobin, ALT, TC,

LDL and urea decreased steadily with aging, AST and HDL

showed no significant trend in both females and males,

while TB and glucose increased with aging only in females

(p < 0.05 for all) (Supplementary Figures 1, 2). Notably,

MS score increased with aging in females (p < 0.001),

whereas the FLD index decreased with aging in males

(p < 0.001).

Longitudinal associations between MS
score/FLD index and serum traits

To further explore the mechanism differing in females

and males, we assessed the longitudinal association between

MS score or FLD index and serum traits in females and

males. We found that MS score was negatively correlated

with TB in females (p < 0.001), and FLD index was

positively related to urea in males (p < 0.05) (Figure 4).

Notably, no significant associations were found between

MS score and urea in females or FLD index and TB

in males.

Bidirectional relationship between MS
score/ FLD index and TB/urea in
females/males

In females, the CLPM showed that MS score predicted

subsequent MS score at each time point (p < 0.001), and similar

patterns were observed between the repeated measurements of

TB (p < 0.001). The CLPM also showed that the MS score in
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FIGURE 2

Longitudinal change pattern in females. BMI, body mass index; DBP, diastolic blood pressure; FLD index, fatty liver disease index; MS score,

metabolic syndrome score; SBP, systolic blood pressure; TB, total bilirubin.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1003505
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2022.1003505

FIGURE 3

Longitudinal change pattern in males. BMI, body mass index; DBP, diastolic blood pressure; FLD index, fatty liver disease index; MS score,

metabolic syndrome score; SBP, systolic blood pressure; TB, total bilirubin.
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2017 predicted TB in 2018 (β = 0.048, p = 0.016), while TB

in 2017 did not predict the MS score in 2018 (β = −0.002,

p= 0.906) (Figure 5).

In males, the CLPM presented that the FLD index predicted

subsequent FLD index at each time point (p < 0.001), the

same as repeated measurements of urea (p < 0.001). Moreover,

the CLPM also showed that urea in 2017 predicted the FLD

index in 2018 (β = −0.039, p = 0.015), whereas the FLD

index in 2017 did not predict urea in 2018 (β = 0.010,

p= 0.718).

Sub-analysis of the genetic variants in
NAFLD

As genetic factors play essential roles in the occurrence

and progression of NAFLD, we also conducted the SNPs test

among 732 participants (NAFLD, n = 479; control, n =

253) in 2017 (Supplementary Table 2). There was no significant

difference in age between NAFLD and control groups. The BMI

of NAFLD patients was much higher than the controls (p <

0.001). The detailed information on seven SNPs is presented in

Table 2.

All the SNPs met HWE (p > 0.05). The allele frequencies

of rs2071518, rs12409877, rs10770141, and rs4430796, and

the genotype frequencies of rs2071518, rs10770141, rs2292354,

rs5186, and rs2206277 were significantly different between

NAFLD and controls (p < 0.05) (Table 3).

As the longitudinal association between MS score and

TB in females, FLD index and urea in males were different;

here, we also checked the association of seven SNPs with

NAFLD in females and males, respectively. In females, for

rs12409877, A/G-G/G genotype under the dominant model (OR

= 1.87, 95%CI = 1.07–3.26, p = 0.029) and A/G genotype

under the overdominant model (OR = 1.90, 95%CI = 1.07–

3.37, p = 0.031) were statistically related to increased risk

of NAFLD, as well as the log-additive model (OR = 1.68,

95%CI = 1.03–2.76, p = 0.041), even after adjusting for

age and BMI (FDR1 < 0.05); for rs10770141, A/G genotype

under the codominant model (OR = 1.67, 95%CI = 0.94–

2.96, p = 0.022) and A/G-A/A genotype under the dominant

model (OR = 1.81, 95%CI = 1.03–3.17, p = 0.040) were

significantly associated with increased risk of NAFLD, as

well as the log-additive model (OR=1.89, 95%CI=1.11-3.22,

p=0.022); for rs2292354, there was a significant association

between G/A genotype under the overdominant model and

the increased risk of NAFLD (OR = 1.54, 95%CI = 1.11–

3.22, p = 0.022) (Table 4). Notably, we also analyzed the

association between these SNPs, the MS score, and TB. We

found that rs2292354 was significantly related to MS score in

the dominant and overdominant genetic model (p = 0.025

and p = 0.023, respectively), as well as TB in the codominant

FIGURE 4

Longitudinal association in females and males. (A) Longitudinal

association between MS score and TB in female. (B)

Longitudinal association between FLD index and urea in male.

FLD index, fatty liver disease index; MS score, metabolic

syndrome score; TB, total bilirubin.

and overdominant genetic model (p = 0.034 and p = 0.019,

respectively) (Supplementary Table 3).

In males, for rs2071518, T/C and T/T genotype under the

codominant model (OR= 1.99, 95%CI= 1.17–3.39; OR= 1.17,

95%CI= 0.27–5.02, FDR= 0.049), T/C-T/T genotype under the

dominant model (OR= 1.90, 95%CI= 1.14–3.17, FDR= 0.036)

and T/C genotype under the overdominant model (OR = 1.98,

95%CI = 1.17–3.36, FDR = 0.036) were significantly related

to increased risk of NAFLD, as well as the log-additive model

(OR = 1.62, 95%CI = 1.03–2.53, FDR = 0.049), even after

adjusting age and BMI (FDR1 < 0.05); for rs2206277, C/T and

T/T genotype under the codominant model (OR = 0.85, 95%CI

= 0.52-1.39; OR = 0.09, 95%CI = 0.01–0.71, FDR = 0.017) and

T/T genotype under the recessive model (OR = 0.10, 95%CI

= 0.01–0.75, FDR = 0.010) were significantly associated with

the decreased risk of NAFLD, as well as the log-additive model

(OR = 0.63, 95%CI = 0.42–0.95, FDR = 0.043), even after

adjusting age and BMI (p1 < 0.05) (Table 5). No significant

associations between above SNPs and FLD index or urea were

found (Supplementary Table 3).

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1003505
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2022.1003505

TABLE 2 The SNPs analyzed in this sub-analysis.

Gene SNP ID Chromosome Function Allele

CCN3 rs2071518 8:119423572 3_prime_UTR_variant T/C

LEPR rs12409877 1:65478189 intron_variant genic_upstream_transcript_variant A/G

TH rs10770141 11:2172610 upstream_transcript_variant 5_prime_UTR_variant 2kb_upstream_variant A/G

HNF1B rs4430796 17:37738049 intron_variant A/G

GIT2 rs2292354 12:109930396 3_prime_UTR_variant, genic_downstream_transcript_variant G/A

AGTR1 rs5186 3:148742201 3_prime_UTR_variant A/C

TFAP2B rs2206277 6:50830813 intron_variant C/T

AGTR1, angiotensin II receptor type 1; CCN3, cellular communication network factor 3; GIT2, G protein-coupled receptor kinase-interactor; HNF1B, hepatocyte nuclear factor 1-beta;

kb, kilobase; LEPR, leptin receptor; SNPs, single nucleotide polymorphisms; TFAP2B, transcription factor AP-2 beta; TH, tyrosine hydroxylase; UTR, untranslated regions.

Discussion

In the present study, we observed that the MS score

increased with aging in females, and FLD index decreased with

aging in males; further, the longitudinal negative association

between MS score and TB in females, and positive association

between FLD index and urea in males were found; additionally,

it suggests potential causal associations between development

in MS and increase of TB level in females, and rise in urea

level and improved FLD index in males by CLPM. Additionally,

this gender-specific distinction might be explained by the

genetic variants.

Aging is accompanied with changes in body composition

and blood traits. Waistline seems a better indicator to determine

the health risk associated with obesity in the elderly (16).

Lee et al. (17) reported that waistline was superior to BMI

as a predictor of hypertension, dyslipidemia and type II

diabetes in females and males. Our study also showed that

waistline decreased with aging rather than BMI. Further, as

cardiomyocyte has a limited capacity for regeneration and repair,

evidence has shown that cardiac output decreases with aging

(18). Instead, SBP increased with aging in our study, which

was highly associated with arterial stiffness (19). In addition,

decreased serum albumin, erythrocyte, hemoglobin, ALT, AST,

and TC were strongly associated with aging and could reflect

the inflammation, metabolic demand and several pathological

conditions, including NAFLD, non-alcoholic steatohepatitis,

fibrosis and hepatocyte carcinoma (20–27). Our results were

consistent with the previous studies. Notably, TC and LDL levels

declined with aging in both men and women, but HDL levels

did not change much or even slightly increase with aging. This

was supported by the finding from a cross-sectional study (28),

and this phenomenon might suggest that people with longer life

expectancy need maintain a high HDL concentration. All these

physiological changes directly or indirectly led to the occurrence

of MS and NAFLD with aging.

Aging seems to underlie many of the most prevalent chronic

diseases, such as MS and NAFLD. In the present longitudinal

study, we used MS score to quantify MS (12) as this continuous

quantitative trait could reflect the changing pattern with aging

and easily compare across studies and populations. TB was

suggested as a biomarker to monitor the resistance against

chronic diseases and successful aging (29). Kang et al. (30)

found that individuals in the highest bilirubin quartile had a

41% reduced risk of coronary atherosclerosis compared with

individuals in the lowest bilirubin quartile. Temme et al. (31)

observed that the risk of cancer mortality decreased as bilirubin

increased, and the effects were retained in the females but with

no significance. Of note, Ong et al. (32) showed that the older

females had higher TB levels, and the prevalence of self-reported

cardiovascular diseases also tended to decrease with higher TB.

These were in line with our results. Although TB increased

with aging, MS score was negatively associated with TB in

females. Besides, the MS score predicted TB level in females

through CLPM. This finding might help answer the cause-and-

effect relationship between MS and TB. Combined with the

Kao’ finding, which showing that estrogen receptor signaling

could facilitate bilirubin metabolism (33), it may imply the

importance of estrogen between TB and MS, especially for the

elderly female population. This finding may also help us explain

the link between TB and MS only occurring in the females.

FLD index was also applied to reflect the extent of NAFLD

(10) in our study. And FLD index declined with aging and

urea changed in vice versa; urea predicted FLD index in males.

Aging is the most common cause of NAFLD progression and is

associated with changes in urea metabolism (9, 34). Our study

provided more evidence on the causal link between NAFLD

and urea.

For the above gender-specific pattern, it might be explained

through genetic susceptibility. As genetic variants play essential

roles in the occurrence and progression of chronic diseases,

such as MS and NAFLD, here we found different associations

between SNPs and the risk of NAFLD in females and males.

And rs12409877 in LEPR, rs10770141 in TH and rs2292354

in GIT2 were significantly associated with the increased risk

of NAFLD in females; rs2071518 in CNN3 and rs2206277 in
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TABLE 3 Allele and genotype distribution in the subjects of the sub-analysis.

SNPs Allele frequency X2 P FDR 95% CI Genotype frequency X2 P FDR HWE

rs2071518 T C 6.876 0.008** 0.109 0.510–0.908 T/C C/C T/T 9.973 0.006** 0.085 0.700

NAFLD 132 (0.138) 824 (0.861) 98 (0.205) 363 (0.759) 17 (0.035)

Non-NAFLD 96 (0.19) 408 (0.809) 78 (0.309) 165 (0.654) 9 (0.035)

rs12409877 A G 5.402 0.020* 0.241 0.419–0.931 A/A G/G A/G 5.263 0.071 0.419 0.539

NAFLD 866 (0.937) 58 (0.062) 407 (0.88) 3 (0.006) 52 (0.112)

Non-NAFLD 448 (0.903) 48 (0.096) 203 (0.818) 3 (0.012) 42 (0.169)

rs10770141 A G 4.479 0.034* 0.343 0.428–0.97 A/G G/G A/A 8.82 0.012* 0.145 0.972

NAFLD 56 (0.06) 870 (0.939) 56 (0.120) 407 (0.879) 0 (0)

Non-NAFLD 45 (0.09) 451 (0.909) 37 (0.149) 207 (0.834) 4 (0.016)

rs4430796 4.107 0.042* 0.110 0.617–0.992 A/G G/G A/A 4.735 0.093 0.203 0.303

NAFLD 697 (0.733) 253 (0.266) 193 (0.406) 30 (0.063) 252 (0.53)

Non-NAFLD 343 (0.683) 159 (0.316) 119 (0.474) 20 (0.079) 112 (0.446)

rs2292354 G A 2.225 0.135 0.637 0.627–1.065 G/A G/G A/A 7.84 0.019* 0.136 0.934

NAFLD 775 (0.810) 181 (0.189) 135 (0.282) 320 (0.669) 23 (0.048)

Non-NAFLD 392 (0.777) 112 (0.222) 96 (0.380) 148 (0.587) 8 (0.031)

rs5186 A C 0.060 0.805 0.840 0.673–1.663 A/A C/A C/C 7.071 0.029* 0.437 0.991

NAFLD 888 (0.936) 60 (0.063) 414 (0.873) 60 (0.126) 0 (0)

Non-NAFLD 470 (0.94) 30 (0.06) 223 (0.892) 24 (0.096) 3 (0.012)

rs2206277 C T 2.254 0.133 0.571 0.942–1.567 C/C C/T T/T 6.384 0.041* 0.41 0.229

NAFLD 707 (0.741) 247 (0.258) 273 (0.572) 161 (0.337) 43 (0.09)

Non-NAFLD 393 (0.776) 113 (0.223) 150 (0.592) 93 (0.367) 10 (0.039)

CI, confidence interval; FDR, false discovery rate; HWE, Hardy-Weinberg equilibrium; NAFLD, non-alcoholic fatty liver disease; SNPs, single nucleotide polymorphisms. * and ** indicate p < 0.05 and p < 0.01, respectively.
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TABLE 4 Genotype distribution in five genetic models in females.

Genotype Genetic model NAFLD (N) Non-NAFLD (N) OR 95% CI p FDR p1 FDR1

rs12409877 Codominant 0.089 0.111 0.034* 0.043*

A/A 254 111 1.00

A/G 30 25 1.91 1.07 3.39

G/G 3 2 1.53 0.25 9.26

Dominant 0.029* 0.069 0.011* 0.028*

A/A 254 111 1.00

A/G-G/G 33 27 1.87 1.07 3.26

Overdominant 0.031* 0.069 0.010* 0.028*

A/A-G/G 257 113 1.00

A/G 30 25 1.90 1.07 3.37

log-Additive 0.041* 0.069 0.021* 0.036*

0,1,2 287 138 1.68 1.03 2.76

rs10770141 Codominant 0.022* 0.056 0.217 0.281

G/G 255 111 1.00

A/G 33 24 1.67 0.94 2.96

A/A 0 2 0

Dominant 0.040* 0.067 0.225 0.281

G/G 255 111 1.00

A/G-A/A 33 26 1.81 1.03 3.17

log-Additive 0.022* 0.056 0.167 0.281

0,1,2 288 137 1.89 1.11 3.22

rs2292354 Overdominant 0.049* 0.229 0.047* 0.202

G/G-A/A 218 89 1.00

G/A 81 51 1.54 1.00 2.37

CI, confidence interval; FDR, false discovery rate; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio; SNPs, single nucleotide polymorphisms. p1 and FDR1 indicate p value and adjusted p value by FDR method after adjusting age and BMI. * and

** indicate p < 0.05 and p < 0.01, respectively.
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TABLE 5 Genotype distribution in five genetic models in males.

Genotype Genetic model NAFLD (N) Non-NAFLD (N) OR 95% CI p FDR p1 FDR1

rs2071518 Codominant 0.039* 0.049* 0.027* 0.034*

C/C 136 70 1.00

T/C 38 39 1.99 1.17 3.39

T/T 5 3 1.17 0.27 5.02

Dominant 0.015* 0.036* 0.008** 0.021*

C/C 136 70 1.00

T/C-T/T 43 42 1.90 1.14 3.17

Overdominant 0.011* 0.036* 0.008** 0.022*

C/C-T/T 141 73 1.00

T/C 38 39 1.98 1.17 3.36

log-Additive 0.035* 0.049* 0.019* 0.032*

0,1,2 179 112 1.62 1.03 2.53

rs2206277 Codominant 0.007** 0.017* 0.014* 0.036*

C/C 97 71 1.00

C/T 66 41 0.85 0.52 1.39

T/T 15 1 0.09 0.01 0.71

Recessive 0.002** 0.010* 0.004** 0.020*

C/C-C/T 163 112 1.00

T/T 15 1 0.10 0.01 0.75

log-Additive 0.026* 0.043* 0.048* 0.080

0,1,2 178 113 0.63 0.42 0.95

CI, confidence interval; FDR, false discovery rate; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio; SNPs, single nucleotide polymorphisms. p1 and FDR1 indicate p value and adjusted p value by FDR method after adjusting age and BMI. * and

** indicate p < 0.05 and p < 0.01, respectively.
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FIGURE 5

Cross-lagged panel model for (A) TB and MS score in females and (B) urea and FLD index in males. FLD index, fatty liver disease index; MS score,

metabolic syndrome score; TB, total bilirubin.

TFAP2B were statistically related to the risk of NAFLD in males.

Regarding the distinctive finding after gender stratification,

we investigated SNPs’ role in regulating NAFLD-related traits,

such as TB and urea. It showed that rs2292354 in GIT2

gene potentially regulated TB levels and MS in aging females.

And this was supported by the following studies, GIT2 was

identified as a hub gene to connect with the aging process

and aging-related diseases (35); as metabolic status influences

aging, Martin et al. (36) deleted GIT2 and found it altered

transcriptomic signatures of the hypothalamus, which affects

type II diabetes and metabolic pathways; GIT2 is also highly

responsive to oxidative stress (37); TB, as the end product

of heme degradation, can improve the endothelial function

of MS through inhibiting oxidative stress. All these clues

suggested genetic variants in GIT2 might play critical roles

in the susceptibility of MS. Considering the possible sexual

dimorphism, our results also highlighted the importance of

consideration of gender in exploring risk factors for the

progression in chronic diseases.

The main strength of this study is that longitudinal analysis

was conducted in a homogenous, regionally representative

cohort of aging females and males, and chronological patterns of

anthropometric and blood traits were displayed. CLPM analysis

was used to investigate the direction of associations between MS

score and TB in females, and FLD index and urea in males,

which allows for examining temporal associations better than

logistic regression analysis and provides some clues to prevent

the chronic diseases. Additionally, the associations of rs2292354

in GIT2 with MS score and TB supported the gender-specific

pattern in females in genetics. The limitation of this study is

that the associations between MS score and TB in females, and

FLD index and urea in males were required regardless of the
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effects of the hormone, while hormones might profoundly affect

the chronic diseases in aging. In addition, since multiple factors

would affect the gene variation, more research in different ethnic

groups and regions with larger sample size are needed to verify

the current result.

Conclusions

Our study suggests the potential causal associations between

development in MS and increase in TB level in females, and

rise in urea level and improved FLD index in males. Moreover,

the associations of rs2292354 in GIT2 with MS score and TB

in females were found. The SNP rs2292354 we investigated

might be a biomarker for predicting MS in the elderly Chinese

Han population.
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