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Nairobi, Kenya, 2Nu�eld Department of Medicine, Centre for Tropical Medicine and Global Health,

University of Oxford, Oxford, United Kingdom, 3Centre for Health Informatics, Computing, and
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Objectives: To achieve universal health coverage, adequate geographic access

to quality healthcare services is vital and should be characterized periodically

to support planning. However, in Kenya, previous assessments of geographic

accessibility have relied on public health facility lists only, assembled several

years ago. Here, for the first time we assemble a geocoded list of public and

private health facilities in 2021 and make use of this updated list to interrogate

geographical accessibility to all health providers.

Methods: Existing health provider lists in Kenya were accessed, merged,

cleaned, harmonized, and assigned a unique geospatial location. The resultant

master list was combined with road network, land use, topography, travel

barriers and healthcare-seeking behavior within a geospatial framework to

estimate travel time to the nearest (i) private, (ii) public, and (iii) both (public

and private-PP) health facilities through a travel scenario involving walking,

bicycling and motorized transport. The proportion of the population within 1h

and outside 2-h was computed at 300× 300 spatial resolution and aggregated

at subnational units used for decision-making. Areas with a high disease

prevalence for common infections that were outside 1-h catchment (dual

burden) were also identified to guide prioritization.

Results: The combined database contained 13,579 health facilities, both in

the public (55.5%) and private-for-profit sector (44.5%) in 2021. The private

health facilities’ distribution was skewed toward the urban counties. Nationally,

average travel time to the nearest health facility was 130, 254, and 128min

while the populationwithin 1-hwas 89.4, 80.5, and 89.6% for the public, private

and PP health facility, respectively. The population outside 2-h were 6% for

public and PP and 11% for the private sector. Mean travel time across counties

was heterogeneous, while the population within 1-h ranged between 38 and

100% in both the public sector and PP. Counties in northwest and southeast

Kenya had a dual burden.

Conclusion: Continuous updating and geocoding of health facilities will

facilitate an improved understanding of healthcare gaps for planning.
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Heterogeneities in geographical access continue to persist, with some areas

having a dual burden and should be prioritized toward reducing health

inequities and attaining universal health coverage.

KEYWORDS

spatial access, health facility, private sector, public sector, travel time, disease

prevalence, inequalities, universal health access

Background

Key to achievement of Universal Health Coverage (UHC)

within the Sustainable Development Goal (SDG) agenda is

access to quality healthcare services (1). In sub-Saharan

Africa (SSA), adequate access to healthcare is hampered by

barriers such as financial limitations, poorly maintained and

inaccessible roads, negative cultural beliefs, climate change

and health disasters, inadequate health service providers

and poor quality service provision (2, 3). While healthcare

access is multi-dimensional, covering availability, acceptability,

accommodation and affordability, geographic accessibility

remains a major obstacle to UHC given the dynamic nature of

the population in need of healthcare services relative to fixed

service providers (4–6).

Geographic accessibility, the difficulty or ease in physically

moving from the location where a need for health services

is triggered to the service provider location, has been

shown to influence health outcomes. For example, childhood

immunization (7), institutional deliveries, childhood mortality

(8–10), surgical care (11, 12), and maternal and newborn health

(13–16) in SSA. Through spatial accessibility analyses, health

coverage gaps have been identified and used as the basis for

planning population health care and targeted resource allocation

(17). Thus, the availability of quality health services within

convenient physical proximity of the population remains an

important health development goal in SSA.

Spatial accessibility has been estimated through modeling

techniques or self-reported approaches (4) with the choice of

a particular method driven by the objective, availability of

data and health-seeking behavior. Regardless of the approach

Abbreviations: DHIS2, district health information systems version 2; DEM,

digital elevation model; EPI, expanded programme of immunization;

ESA, European space agency; FBO, faith-based organization; GPS, global

positioning system; HOT, humanitarian openstreetmap team; KWTRP,

KEMRI-wellcome trust research programme; MHFL, master health facility

list; MOH, ministry of health; NASA, national aeronautics and space

administration; NGO, non-governmental organization; RCMRD, regional

centre for mapping of resources for development; SDG, sustainable

development goals; SSA, sub-saharan Africa; UHC, universal health

coverage; WHO, world health organization.

used to model geographic access, a fundamental requirement

is an up-to-date, geocoded Master Health Facility List (MHFL),

an inventory of health service providers and attributes of the

services they offer. A key component of the MHFL is the

spatial location of health service providers because it enables

linked services, diseases and population catchments (18, 19).

Accordingly, recent attempts have been made to ensure that

geo-coded MHFLs are available in the public domain in SSA

(12, 20–22). These existing spatial databases have been used

with geospatial frameworks to characterize spatial accessibility to

health service providers at different spatial scales (11, 12, 22–25).

The earliest formal metrics assessing physical access to

healthcare providers at country level in Kenya was in 2003 (26)

and later updated in 2008 (27). This is in addition to continental

level analyses (11, 12, 22, 23) where Kenya was included and

other analyses at a much smaller geographical scale (24, 25, 28).

These spatial accessibility analyses have relied on data that was

assembled several years ago (12, 20, 21, 29) and has not been

updated to reflect recent changes in newly opened facilities,

closed health facilities, changes in the designation of healthcare

providers (such as upgrading level 2–3), improvement in

geocoding techniques and data sources. More importantly all the

previous attempts in Kenya suffer a significant drawback. They

have only focused on services provided by governments and

public sector partners and ignored the private sector. The private

sector constitutes over 45% of all health facilities in Kenya

(30), therefore, any health metric that ignores their contributed

is likely to be flawed. Therefore, they should also be curated

with consequent updating, geo-referencing and linking service

provision to the population (12, 20–22).

To address these information gaps, we have undertaken a

re-examination of the completeness, fidelity and geo-coding of

the Kenyan health facilities providing preventive, diagnostic and

curative services to the general population including both public

and private facilities for the first time. We use this updated list

to compute travel time to the nearest health facility, population

covered with relevant time thresholds and highlight areas that

have high disease infection prevalence and are located far

from service providers to guide prioritization of resources. For

policy relevance, estimates are summarized at the county and

sub county levels which are the subnational units of decision-

making (31).
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Methods

Kenya context

The Republic of Kenya, a lower middle-income country,

is located in East Africa and had a population of 47.6

million people in 2019 (32). Its human settlement pattern

is heterogenous, with the highest densities in areas around

Lake Victoria, the western and central region, and the

coastal areas. In contrast, southern and northern areas are

sparsely populated (Supplementary Figure 1). About a third

(31%) of Kenya’s population (14.8 million) in 2019 resided

in urban areas with the counties of Mombasa, Nairobi,

Kisumu, Machakos, Kiambu, Uasin Gishu, Nakuru, and Kajiado

accounting for 70% of the urban population (32). These

patterns impact health service delivery (infrastructure, demand,

and planning) and the local burden of disease. Health

provision comprises governmental, non-governmental, faith-

based organizations, and private-for-profit managed health

facilities. The health providers are structured hierarchically

into tiers: community (community units), primary care

(dispensaries, clinics, and health centers), county referral (first

and second referral hospitals) and national referral (tertiary

care hospitals).

With the promulgation of Kenya’s new constitution in

2010 and after the 2013 general elections, two tiers of

government were introduced: a national government and 47

semi-autonomous county governments that are now used for

policy planning. With decentralization, county governments

are mandated with ownership and management of county

healthcare facilities (county hospitals, health centers and

dispensaries) and healthcare service delivery. In contrast,

the central government, through the Ministry of Health

(MoH) manages national referral hospitals, health policy and

regulatory functions. The Kenyan constitution enshrines the

right to the highest achievable standard of health, including

geographical access for all (31). Key priorities in health policy

include improving access to essential primary health care and

ensuring that high-quality health services are available to the

population (33).

Health facility mapping in Kenya

Mapping of health service providers in Kenya began before

independence in the 1950 s, providing hand-drawn maps of

government run health centers and hospitals (34). Forty years

later, the significance of spatially defined health service provision

was restituted (35). During the early 2000 s, Kenya maintained

multiple health service provision lists (26) with the KEMRI-

Wellcome Trust Research Programme (KWTRP) providing a

collaborative service to the MoH, assisting in the geo-location

of health services nationwide (12, 20, 26, 27, 36). In early 2000,

KWTRP combined these multiple listings and manually geo-

coded facilities using online place name gazetteers, hand-drawn

maps in district development reports, topographical maps and

occasionally from Global Positioning Systems (GPS) (26). With

the recognition of the value of spatially configured data and the

growing availability of place name gazetteers and GPS data, this

process was repeated in 2008 (27), 2016 (20) and 2017 (36).

However, all these geo-coded listings excluded the private-for-

profit sector.

The generated facility spatial coordinates from some geo-

coding efforts (26, 27) have been integrated into various

versions of the Kenyan MHFL (37), although these coordinates

are not publicly available. In addition, these coordinates are

incomplete and have not all been verified since the initial

geocoding mechanisms were rudimentary. Presently, under the

devolved local governance in Kenya, county health authorities

are responsible for maintaining and geocoding all county-level

health facilities. Updated county-level facility coordinates are

forwarded to the Health Information Unit of the MoH which

updates the national MHFL. The online portal of the MHFL

allows for a pinned visualization of facility locations on a web

map for which coordinates have been assembled. Not all facilities

on the county-level MHFL are available on the visualization tool,

and there are no verification processes for facility coordinates.

In contrast, the sources of information used to geocode

health facility locations have changed over time, from on-screen

digitizing of hand-drawn and topographical district maps, and

online digital place name gazetteers to increasing GPS-enabled

devices such as smartphones to position facilities by national

NGOs, research, and survey agencies. This has also been

facilitated by improving the sources used to assign geographic

coordinates to health service providers over the last decade.

OpenStreetMap (OSM), the Wikipedia of maps, has grown

because of voluntary mapping communities, governmental,

non-governmental and humanitarian organizations that

contribute to open geographic databases (38). This has

been achieved through initiatives such as Humanitarian

OpenStreetMap Team (HOT) Tasking Manager0F1, Missing

Maps1F2 and YouthMappers2F3. Gazetteers collect and make

available place names and their coordinates (39) increasing

the quantity and quality of geocoded place-names (40). The

detail and resolution of imagery available on Google Earth have

improved significantly. After their update in 2017, 24 million

satellite photos from the past 37 years have been embedded into

a new layer of Google Earth, facilitated by the European Space

Agency (ESA), the European Union’s Copernicus programme,

1 https://tasks.hotosm.org/ (accessed September 24, 2021).

2 https://www.missingmaps.org/ (accessed September 24, 2021).

3 https://www.youthmappers.org/ (accessed September 24, 2021).
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and its sentinel satellites, The National Aeronautics and Space

Administration (NASA) and the US Geological Survey3F (41).

As changes were happening in Kenya’s MHFL and increased

geocoding platforms, in 2011, District Health Information

System 2 (DHIS2) (42)—an open-source, web-based platform

used as a health management information system was

launched in Kenya (43). By 2016, DHIS2 replaced previously

fragmented reporting systems and now serves as the single,

harmonized health reporting platform for all surveillance

systems. Information is available through MoH authorized

access (42). However, geographic coordinates are not available

within the DHIS2 platform for external users. MHFL andDHIS2

lack complete interoperability, however, there are continued

efforts by MoH to harmonize the two.

Data assembly

Health facilities

Health facilities are dynamic; new facilities are built to

meet growing population demand; services close and existing

services are repurposed to meet growing service demand. This

dynamism and changes in geocoding platforms and fragmented

non-harmonized coordinates prompted a re-examination of the

Kenyan MHFL and linkage to the DHIS2 platform for health

facilities providing preventive, diagnostic, and curative services

to the general population both public and private.

Completeness and fidelity

The Kenyan MHFL and DHIS2 health facility data were

accessed between April and August 2021. Data were first

cleaned to standardize the naming and spelling of each facility.

Facilities indicated as closed or non-operational in the MHFL

were excluded. Data were linked between the MHFL and

DHIS2 using the 5-digit MHFL code available in both data

series resulting in a single harmonized database. Duplicates

within the merged database were deleted, including annexes

to main facilities sometimes included separately in the MHFL.

Facilities not providing curative and diagnostic services to a

wider general population were excluded and are summarized in

Supplementary Table 1.

Geo-coding

For each facility on the merged DHIS2/MHFL database,

coordinates were first checked against geo-coded databases

maintained by KWTRP to attribute coordinates derived from

GPS recordings uniquely. The locations of the remaining

facilities were then sought using Google Earth based on structure

names and ArcMap version 10.5 (ESRI Inc., Redlands, CA,

USA) spatial overlays of first and second-level administrative

boundaries (county, sub-county). Additional spatial overlays

were used out to determine whether facilities were located

in urban and non-urban areas based on a publicly available

database that digitized extents of urban areas using satellite

imagery based on the 2019 Kenya census listings (32, 44). For

those that could not be identified by name on Google Earth, the

visualization tool on the MHFL web portal was used to locate a

physical structure in Google Earth and confirming the location

extracted. Those where GPS coordinates, named locations or

approximate locations on Google Earth were not available were

left un-geo-coded.

Factors associated with travel

Spatial layers of factors that affect travel between residential

areas and health facilities, including road network, land use,

elevation, and travel barriers, were compiled. These spatial

layers serve as inputs into geospatial framework of modeling

travel time.

Road network

To account for the travel routes to health facilities, road

network data was sourced from the Ministry of Transport

of Kenya. This spatial layer employed gold standard GPS

techniques to map coverage of roads in 2016 and was improved

with data obtained from OpenStreetMaps and Google Map

Maker (7, 25). The data was cleaned by removal of duplicates

and correction of digitisation errors such as segments that fell

short of connection points and sections that extended to water

bodies. Roads were reclassified as primary, secondary, county,

and rural roads (7, 25) (Supplementary Figure 2).

Land use

We considered different land covers that people have to

navigate through where there are no roads due to variable

levels of infrastructure development. Land cover at 10 ×

10m spatial resolution for 2020 produced by a deep learning

model by European Space Agency Sentinel-2 imagery was used

(45). It had eight land cover classes that covered Kenyan

boundaries including water, trees, grass, flooded vegetation,

crops, shrub, built-up area, and bare ground (43), as shown in

Supplementary Figure 3.

Elevation and transport barriers

Slope of the land impedes walking and bicycling speeds

when traveling. The slope was based on a digital elevation model

sourced from the Shuttle Radar Topographic Mission at the 30

× 30m spatial resolution available at the Regional Center for

Mapping of Resources for Development (RCMRD) open data

site (46). Finally, transport barriers that included lakes, major

rivers, national parks, and reserves were considered impassable

except where a road intersected a waterbody (7, 47) through a

bridge, thus enabling access (Supplementary Figures 4, 5).
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Population density

To estimate the population living within travel time

thresholds relevant for policy, high spatial resolution population

density maps are required. However, census data are usually

available at coarse administrative units. To deal with the low

spatial resolution data, dasymetric spatial modelling techniques

have been developed (48) that redistribute census-based counts

to high spatial resolution density maps informed by remotely

sensed data such as land cover and night-time lights by shifting

people from unlikely areas such as water bodies and assigning

them to built-up areas. Such a population density map for

2019 (corresponding to Kenya’s census year) was obtained

from Worldpop’s data portal (49).The population counts from

Worldpop at 1 km spatial resolution were then extracted at

county level using Zonal statistics in ArcMap version 10.5. The

ratio between Kenya’s 2019 census counts and the extracted

counts from WorldPop were used to compute a scaling factor

per county that was applied to the raster map to ensure that the

totals match to 2019 Kenya’s official census.The adjusted raster

was then projected to 2021 using the 2009–2019 intercensal

growth rate (32) at county level to obtain an estimate of

population in 2021 (Supplementary Figure 1).

Modelling travel time

We used a cost path distance algorithm (4) to compute

travel time to the nearest health facility while accounting for

the mode of transport, travel speeds, elevation, road classes

and land cover for the entire country ignoring subnational

boundaries. First, the land cover, protected areas, water bodies,

rivers, and roads were spatially overlayed and merged through

the “merge land cover module” of AccesMod (version 5.6.0)

to create a friction raster surface. The friction surface was

used with the location of health facilities and travel speeds

to compute cumulative travel time from every populated

location in Kenya based on WorldPop’s population distribution

maps toward (anisotropic) the closest health facilities via the

shortest path.

Due to a lack of observational data on healthcare-seeking

behaviour (19) to guide the parameterisation of our models,

we relied on previous studies in similar contexts. Further, due

to the complexity of modelling several modes of transport

on a single road class, we only considered one mode of

transportation per road class. However, we considered several

modes of transport within a single journey between the

household and the nearest health facility. These included

walking, bicycling and motorised (motorbike and vehicles, both

public and private) transport. We assumed that one walks

to the nearest health facility without access to motorable

roads or through motorised transport if a motorable road

is adjacent to a residence and connects to a health facility.

Otherwise, a person walks to the nearest bus stop to take a

TABLE 1 Travel modes and speeds adapted from previous studies

(7, 47) that were used to compute travel time to the nearest health

facility for each road type and land cover category.

Land cover category Speed km/h) Transport mode

Trees cover areas 2.5 Walking

Shrubs cover areas/sparse

vegetation

4.5 Walking

Grassland 3.5 Walking

Cropland 4 Walking

Vegetation aquatic or

regularly flooded

0 Walking

Bare areas and built-up areas 5 Walking

Open water 0 Walking

Primary roads 50 Motorized

Secondary roads 30 Motorized

County roads 10 Cycling

Rural roads 5 Walking

vehicle to the health care facility. The same concept applies

to the bicycling mode of transport offered in the public

sector (7).

Motorised transport was assigned to higher class roads

(primary and secondary), cycling to county roads. In contrast,

walking was assigned to rural roads and all other areas without

roads were represented by different land cover classes (Table 1).

The speeds used in each road class and land cover are defined

in Table 1 and were based on previous studies (7, 25). The

bicycling and walking speeds (Table 1) were further adjusted in

AccesMod (version 5.6.0) to account for variation in velocity

due to changing slope derived from the DEM. The walking

speeds were corrected according to Tobler’s formulation, an

exponential function that describes how human walking speed

varies with slope (50). On the other hand, bicycling power

correction, which assumes increased speed due to negative slope

does not exceed twice the speed on flat surfaces (51) was applied

for bicycling speeds4F4.

To explore the contribution of each sector toward healthcare

accessibility in Kenya, three spatial access models were invoked,

travel time to (i) private health facilities only, (ii) public

health facilities only (iii) all health facilities (both public and

private). The analyses were carried out at 300 × 300m spatial

resolution in AccesMod (version 5.6.0) which implements the

cost path distance algorithm in its “accessibility module” (50)

(Supplementary Figure 6).

4 http://bikecalculator.com/ (accessed November 14, 2021).
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Sub-national policy-relevant metrics

We resolved the mean travel time and the proportion of

the population within 1- and 2-h travel time of the nearest

health facility by county and sub-county boundary. These are

actionable units used for planning, resource allocation and

benchmarking since the devolution of healthcare functions to

county governments in Kenya. The administrative boundaries

were updated from existing boundaries (52) based on the

2018–2022 County integrated development plans resulting

in 298 sub-counties.

Disease tracers were chosen based on data availability,

temporal concordance, spatial resolution, and among the

leading causes of mortality among children under 5 years in

Kenya (53). We then identified areas with a high prevalence of

disease that were outside 1-h travel time to support prioritisation

and targeting (54). These included (i) malaria prevalence among

children aged 2–10 years in 2020 (55), (ii) lower respiratory

infection(LRI) among under-fives in 2017 (56), and (iii) HIV

prevalence among adults aged 15–49 years in 2017 (57). As an

indicator of the overall population health, we also overlaid the

travel time with the under-five mortality rate (U5MR) in 2015

(58). The disease prevalence tracers (55–57) andU5MR (58)were

downloaded as gridded surfaces at 5 × 5 km spatial resolution.

They had been interpolated through model-based geostatistical

approaches applied to geolocated household survey data and

relevant covariates.

Results

Nationwide, a total of 13,912 facilities were identified

from the DHIS2 and 13,238 facilities from the MHFL in

2021. Duplicate facilities (261), those indicated as closed

in the MHFL (91) or facilities not offering routine clinical

diagnosis and curative services (1,305) were identified

and removed (Supplementary Table 1). The final database

contained 13,579 facilities, 11,286 (83.1%) were reported on

both the MHFL and DHIS2, 922 (6.8%) on the MHFL only

and 1,371 (10.1%) on the DHIS2 platform only. Following

detailed geocoding, only 611 (4.5%) facilities available

on the combined DHIS2/MHFL database could not be

geocoded, the majority (501, 82.0%) represented by the private

sector (Table 2).

The 12,968 facilities that were geo-coded (Figure 1) are

managed by MOH (5,988), NGO and FBO (1,430) and private-

for-profit providers (5,550) and were linked to their county

and sub-county locations and designated as either located in

an urban or non-urban setting. Kitui (379), Nakuru (275),

Makueni (265), Nairobi (267) and Meru (260) counties had the

highest number of public health facilities. Among for-profit-

private facilities, a majority (71%) were in 16 out of the 47

Kenyan counties. Nairobi (738), Kiambu (500), Nakuru (315)

andMombasa (297) had the highest numbers of private facilities,

with Nyeri, Meru, Machakos and Kajiado having at least 200

health facilities each. Fifteen counties each had <50 private

facilities, and among these, Lamu, Isiolo,West Pokot, Tana River

and Elgeyo-Marakwet counties each had <20 private health

facilities (Figure 1).

At the national level, on average, public health facilities could

be accessed within 130min, within populated areas (Figure 2;

Table 3). Private health facilities were comparably less accessible,

with a national average of 254min, due to their skewed presence

in urban centers, especially in the 16 counties that account

for 71% of the private facilities (Figure 2; Table 2). When the

public and private sectors were combined, access improved

marginally from an average of 130–128min. Approximately

89.4 and 80.5% of the Kenya’s 2021 population were within 1 h

of the nearest public and private health facilities, respectively.

When combined (private and public), the proportion within

the same threshold was 89.6%. Only 6% were outside 2 h

(marginalised) in each model except the private sector where

11% were marginalised (Table 2).

At county level, travel time to the nearest public health

facility was highly variable. In 62% of the counties, the average

travel time to the nearest public service provider was <1 h while

three counties (Turkana, Marsabit, Garissa) in Northern Kenya

had an average of over 3 h. On average, public health facilities

could be accessed in less than quarter of an hour in five counties

of central (Nairobi, Kirinyaga) and western Kenya (Vihiga, Kisii,

Nyamira) (Figure 2).

In the public sector, accounting for population distribution,

27 counties (57%) have over 90% of their population within 1-h

travel time of a public health facility. Bomet,Murang’a, Nyamira,

Kiambu, Kisii and Nairobi counties had 99% of their population

within the 1-h threshold (Figure 3). Most of the counties (43

counties) had at least 50% of their population within a 1-h

threshold (Figure 3). The four counties with <50% of within

1-h included Turkana (37.8%), Marsabit (41.2%), Mandera

(40.3%) and Wajir (38.2 %) (Figure 3). The most marginalised

counties with at most 1 in 5 people (20%) outside 2 h travel

catchment of a public health facility were Garissa, Isiolo,

Lamu, Mandera, Marsabit, Samburu, Tana River, Turkana, and

Wajir counties all located in northern or southeast regions

(Supplementary Figure 7).

When considering access to private facilities, on average at

the county level, only Nairobi and Vihiga counties had access

within 15min (Figure 2). Twenty-four additional counties (51%)

had an average travel time to a facility of less than an

hour. Kirinyaga, Nyamira, Mombasa, Kakamega, Kisii, Kiambu

and Murang’a at <30min on average while 10 counties had

average access of over 3 h. After overlaying with population,

18 counties had over 90% of the population within an hour

of a facility; Nyamira and Nairobi top the list at over 99.5%.

Expanding the selection to counties with at least 50% of its

population within an hour brings the count to 35 (74%) counties
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TABLE 2 Geo-coding of health facilities o�ering curative and preventative services to the general population.

Total facilities Unable to geo-code GPS Google earth

Ministry of health 6,071 83 (1.5%) 2,371 (39.1%) 3,617 (59.6%)

FBO 1184 15 (1.3%) 438 (37.0%) 731 (61.7%)

NGO 273 12 (4.4%) 36 (13.2%) 225 (82.4%)

Private sector 6051 501 (8.3%) 229 (3.8%) 5,321 (87.9%)

Total 13,579 611 (4.5%) 3,074 (22.6%) 9,894 (72.9%)

FIGURE 1

Health facilities’ spatial distribution in 2021 by sector: Public (n = 7,418), Private (n = 5,550) and total (both public and private) health facilities (n

= 12,968).

FIGURE 2

Travel time to the nearest public, private and combined (public and private) health facilities binned based on travel time and population density in

Kenya in 2021.
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TABLE 3 The average travel time and proportion of population accessing care within 1h of the nearest facility and those marginalized (outside 2h)

of public, private and all health facilities in Kenya at national level.

Model Average travel time

(min-max) in minutes

Population 2021

Total Within 1 h (%) Outside 2 h (%)

All heath facilities 128 (0–1,563) 48,948,358 43,833,250 (89.6) 2,731,882 (5.5)

Public health facilities 130 (0–1,563) 43,734,965 (89.4) 2,774,541 (5.6)

Private health facilities 254 (0–1,717) 39,402,625 (80.5) 5,280,839 (10.7)

FIGURE 3

Proportion of population within a 1-h travel time of a public, private, and combined (public and private) in 2021 disaggregated by county.

TABLE 4 Distribution of all health facilities and summary of populations within 1h of the nearest facility by urban and non-urban spatial extents.

Area Health facilities (%) Population within 1 h

(%) by area

%Population within

1 h nationally

Urban 3,329 (26) 5,910,612 (99) 13

Non-Urban 9,639 (74) 37,922,638 (88) 86

out of 47. Marginalised counties included Isiolo, Mandera,

Marsabit, Samburu, Turkana, Wajir and West Pokot with

more than half of its population living beyond 2 h travel time

(Supplementary Figure 7).

When public and private facilities were combined,

subnationally, improvement in access was not pronounced

relative to public facilities only. Inclusion of private facilities

improved access by reducing the average travel time to the

nearest facility by at least a minute in 39 of the 47 counties.

Tana River, Garissa, Lamu, Taita Taveta, Kwale, Laikipia and

Kilifi had at least 4min reductions. The number of counties

whose average travel time was ≤15min travel time increased

from 5 to 8 counties with the addition of Murang’a, Kakamega

and Mombasa. However, the counties with an average of 3 h

remained unchanged despite a slight reduction in the mean

travel time in each of these counties. Similarly, the number of

counties with over 90% (27 counties), 50% (43 counties) or

below 50% (4 counties) of their population within 1-h travel

time remained unchanged (Figure 3), with the same going

for the most marginalised counties (Supplementary Figure 7;

Supplementary Tables 2, 3). Approximately 100% of the

population residing in urban areas had access to a facility within

1 h which accounts for 13% of the total national population

within 1 h of any health facility (Table 4). Additionally, when

restricting comparison of average travel time to the 16 counties

in which private facilities are primarily distributed, public
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facilities could be accessed within an average time of 53min

while private facilities had an average of 87 min.

Several counties bore a dual burden (Figure 4). These

counties had proportionately large swaths outside 1-h and at the

same time with a high infection prevalence of HIV (Turkana,

Samburu, Narok and partly Kwale), malaria (Turkana), LRIs

(Kwale, Kilifi, Lamu, Garissa, Mandera, Kajiado, partly in Narok

and Kitui) and under-fiver mortality rates (Turkana, Kwale,

Kilifi, Lamu, Garissa, partly Tana River andWest Pokot).What is

clear is that some counties such as Turkana have higher disease

prevalence for several diseases, yet the majority live more than

1-h of the nearest public health facility.

Discussion

An understanding of spatial distribution of health facilities

by sector has implications on the service provision, quality of

care and economic considerations at the household level in

accessing care. Continuous updating and geocoding of health

facilities allows for an improved understanding of service

demand and quantifying subnational disparities in access to

health care to identify gaps at a micro level. Here for the first

time, we improved the completeness of Kenya’s MHFL and

fidelity of the geographic location of both public and private

health facilities offering curative or preventative health services

to the general population while characterising disparities in

geographic access.

The importance of an updated facility database cannot

be over emphasised. Emerging infectious disease outbreaks,

including the SARS-CoV-2 pandemic and Ebola, served as a

stark reminder of the significance, and inadequacies, of real-

time spatially linked data needs to track infectious diseases

in SSA (60, 61). The COVID pandemic demonstrated the

benefit of a robust geocoded health facility data with real-time

information on health services and capacity in health facilities.

For example, critical services such as the availability of oxygen

and the number of high dependency and intensive care bed

capacities, is a major concern during the ongoing COVID-19

pandemic. This further highlights the need to independently

assess, maintain and update information on services offered

by health facilities for a real time and complete picture of

the health system’s capacity. Further, sample surveys of health

facilities (62–65) require a complete, updated census of both

public and private service providers as part of sub-nationally

weighted sampling frames. The analysis of routine data at

sub-national administrative levels, or finer resolution facility

levels, necessitates understanding the universe of public and

private health service providers and accuracy in the location

information attributed to each facility.

The intra-operability between MHFL and routine health

data (DHIS2) is fundamental to the reliability of sub-national

service and disease reporting. Since 2006, the roll-out of DHIS2

across SSA has substantively changed the capacity to link routine

disease reporting and commodity supply data in space and time

(66, 67). There is increasing use of sub-national, fine resolution

disease and service delivery reporting in Kenya, ranging from

coverage estimation of maternal and child health indicators

(36), EPI access (7), malaria test-positivity (68), the impact of

COVID 19 on service delivery (69, 70) all which require an

accurate MHFL. The inconsistencies and mismatches between

the number of health facilities in MHFL and DHIS2 should give

an impetus to hasten the harmonisation of these two platforms,

given their role in national public health.

Increasing use of spatial data at sub-national levels of the

health system responsible for updating service provider listings

will inevitably lead to improved spatial data quality, as with

usability of DHIS2 data more broadly. Through a labour-

intensive exercise, we could geo-code 95.5% of the combined

MHFL/DHIS2 health facilities, providing an updated spatial

distribution of facilities in Kenya. County-level training would

improve the use of GPS, smart-phone technology to confirm the

locations of service providers and build the capacity and use of

GIS at sub-national levels.

We have demonstrated the value of the assembled database

to provide, for the first time, spatial accessibility metrics to both

public and private facilities in Kenya while highlighting areas

with a dual burden of poor access and high disease burden.

Improved healthcare utilisation for routine and emergency

services is a function of good geographical access between

households and service provision sites and requires regular

interrogations to identify and target areas that have been

left behind. This is essential and in line with The Kenya

Health Sector Strategic Investment Plan, which prioritises

identifying health infrastructure gaps while ensuring health

services are located physically near the population residences

at a recommended distance of 5 km (1 h) comparable to

recommended international thresholds set by the WHO (7, 49,

54, 71).

Nationally, in 2021, geographic access is substantially high,

with nine out of ten people living within 1-h travel time of any

nearest health facility or a public health facility. Thus, private

health facilities did not seem to change overall geographic

accessibility at the national level. This could be due to several

reasons. Of note, many private facilities are located near public

service providers (Figure 1). For example, at least a fifth of the

private facilities are within 500 meters of a public facility. This

is further compounded by the fact that most private facilities

are located within urban areas with a wider and improved road

network, better access to motorised transport, higher speeds

relative to rural areas, contributing to the seemingly low impact

of the private sector in improving geographic access. Notably,

despite a county having many private health facilities, the

facilities are concentrated within the main urban area (central

business district), thus resulting in overlaps in the population

served by the public. This distribution might be due to a lack of
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FIGURE 4

The spatial variation of infection prevalence of HIV, Malaria, LRI and under five mortality in areas outside 1-h catchment of the nearest health

facility (public and private) in 2021. Red represents areas of dual burden with high disease prevalence or mortality and over 1-h distance from

health facility while green shades represent regions of lower disease prevalence or mortality outside 1-h.

incentive for the private sector to serve the rural populations or

perhaps limited capacity to expand across the country except for

a few large entities that also leverage on established reputation.

The national level statistics are important for national

level policy, advocacy, and regional comparison. Despite their

importance, national statistics mask subnational heterogeneity,

popularly known as masking the unfinished health agenda

(72). For example, the proportion within 1 h was 90% at the

national level, however, the spatial variation across the counties

ranged between 38 and 100% when considering both public

and private facilities (Figure 3). The subnational distribution

is similar to the historical patterns of healthcare utilisation,

malnutrition indicators, poverty, access to water and sanitation

that were observed during the millennium development period

(73). Counties located in central and western Kenya have the

highest proportion of the population that can access any health

facility within 1-h and is likely associated with greater historic

investment, high levels of urbanisation and high population

density (74).

Approximately 2.7 million people (6%) are marginalised

(living outside 2 h) from routine care offered by both the

public and private sector. The counties with majority of the
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marginalised population are in northern parts of Kenya and

include Garissa, Isiolo, Lamu, Mandera, Marsabit, Turkana

and Wajir. These counties can be characterised as arid and

semi-arid areas (ASALs) with low population density and

predominantly occupied by communities that practice nomadic

pastoralism. Periodic upsurges of security concerns have further

hindered economic growth and development in the region.

The marginalisation from basic health services in these areas

is historic (7, 27, 74) and remains evident in the present day

despite some investments in this region. Continued investment

in infrastructure development, other forms of health provision

such as mobile clinics (or makeshift clinics such as schools,

churches, mosques) by the government and regular medical

camps by non-governmental organisations will be needed to

bridge the gap in accessibility. Furthermore, investigations on

the unique nature of healthcare provision in ASAL settings will

improve our understanding of the unique dynamics at play to

inform better healthcare provision for this region.

The private sector continues to grow in Kenya, with

increasing franchised, private consortia offering services across

the country including the Aga Khan health care5F6, African

Air Rescue6F7, Bliss Health Care Group7F8, Equity Afya8F9,

the Tudor Health Care group9F10 and a proliferation of private

practitioners. However, despite its inclusion for the first time in

accessibility models in Kenya, its overall influence on physical

access was little. Nevertheless, its contribution goes beyond the

geographical accessibility agenda. The private-for-profit sector

plays an important role in service provision (30, 75). They

offer greater flexibility in location especially in urban areas an

important contribution given the high rates of urbanisation

being seen in SSA and particularly in Kenya. The private sector

provides a wider selection of service provision and greater

efficiency in providing care, albeit at a higher cost compared

to public facilities. In Kenya, it has been shown that 47% of

households in the poorest quantile of Kenyans were reported

to use a private facility when a child is sick in 2005 (76)

and increasing utilisation of private facilities among the poor

(30, 59). The sector’s increasing market share underscores

its possible contribution in increasing access to healthcare,

supplementing care and services offered by the public health

sector and in ensuring the achievement of UHC and SDGs

(77, 78). Acknowledging the challenges in public facilities, the

private sector offers an alternative route and choice to seek care.

Private facilities can be used as means to decongest the most

overcrowded public facilities when the government provides

6 https://www.akdn.org (accessed September 24, 2021).

7 https://aar-healthcare.com/ (accessed September 24, 2021).

8 https://www.blissmedicalcentre.com/ (accessed September 24,

2021).

9 https://www.equityafia.co.ke/ (accessed September 24, 2021).

10 https://www.tudorhealthcare.com/ (accessed September 24, 2021).

specific commodities free of charge to all private facilities and

by contracting them to provide certain types of care (78–80).

With such structures in place, further incentives to extend their

services to rural and under-served regions would improve the

access and quality of services available to communities that have

been left behind.

Strengths and limitations

This study has several strengths, the first of which is in

the assembly, harmonisation and geocoding of a comprehensive

health facility list of all operational public and private health

facilities in 2021. Secondly, it is the first study to assess

geographic access to both public and private health facilities

in Kenya. Further, this study takes into account the barriers of

travel (land use, rivers, protected areas), modes of transport and

travel speeds that influence access to a facility and offers more

realistic access estimates compared to straight-line distances.

Lastly, this study highlights populations that experience a dual

burden of disease andmarginalization (outside 1 h) for targeting.

On the other had, this study did not cover other dimensions

of access to health care such as affordability, acceptability, type,

and quality of services. We did not consider specific healthcare

provision sites, including community outreach programmes

and mobile clinics, which may have provided greater access

to health services in remote areas. We excluded 4.5% of

facilities that could not be geocoded, which may have affected

the proximity metrics in some counties. Given the dynamic

nature of health facility operations (closures and openings)

especially the private health facilities, sourcing health facility

data exclusively from DHIS2 and MHFL may have led to the

omission of some facilities that were not part of these two

listings. We extracted speeds from similar studies and did not

account for care-seeking behaviour. Due to the lack oflocation

of origin (households/villages) of patients we assumed that

the nearest facility was used despite the well-known bypassing

mechanisms influenced by factors such as cost or perceived

quality of care which may result in our model overestimating

access. The dataset to classify facilities and populations in

urban areas does not capture the urban-rural continuum thus

classification was limited to either urban or non-urban. Finally,

we did not account for disruptions linked to the COVID-19

pandemic. However, the pandemic increased pressure on the

already constrained health system.

The use of a cost distance algorithm is a pragmatic choice

in national-level studies, given the limited care-seeking data at

a large scale. However, further studies collating data on where

the need to seek was triggered and where it was sought, the

mode(s) of transport that were used, travel speeds, time of the

day, weather conditions, traffic conditions, reasons for seeking

care, waiting time at the facility,competition between facilities

and related information such as security are necessary (19, 81).
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These data would strengthen further investigations to improve

access in the hotspots highlighted the national study and other

access studies tied to particular health outcomes and services.

This will allow improved and localised policies for targeting gaps

during care seeking (81). Additional investments are needed

to assemble and geolocate all private health facilities to build

on the current existing database of public health facilities in

SSA (20). Further, attribute information attached to each facility

(both public and private) will increase their utility in assessing

access to care for specific services with growing demand, such

as cancer treatment facilities and better defining health facility

service catchments.

Conclusions

For the first time, a comprehensive inventory of both public

and private health facilities was assembled and geocoded. Using

this database, we show subnational heterogeneities in geographic

access and colocation of areas outside 1-h of a health facility

and regions with high disease prevalence. The database will

be helpful for generating subnational metrics based on routine

data. At the same time, the geographically marginalised areas

should be prioritised in resource allocation by the subnational

governments toward reducing health inequities and pathways to

attaining UHC.
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