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The role of models as a
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managing the COVID-19
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Reference scenarios based on mathematical models are used by public health

experts to study infectious diseases. To gain insight intomodeling assumptions,

we analyzed the three major models that served as the basis for policy making

in Israel during the COVID-19 pandemic and compared them to independently

collected data. The number of confirmed patients, the number of patients in

critical condition and the number of COVID-19 deaths predicted by themodels

were compared to actual data collected and published in the Israeli Ministry

of Health’s dashboard. Our analysis showed that the models succeeded in

predicting the number of COVID-19 cases but failed to deliver an appropriate

prediction of the number of critically ill and deceased persons. Inherent

uncertainty and a multiplicity of assumptions that were not based on reliable

information have led to significant variability among models, and between the

models and real-world data. Althoughmodels improve policy leaders’ ability to

act rationally despite great uncertainty, there is an inherent di�culty in relying

on mathematical models as reliable tools for predicting and formulating a

strategy for dealing with the spread of an unknown disease.
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Introduction

By its very nature, health is a statistical science replete with uncertainty, which is

particularly high in certain situations such as pandemics. Hence over the years, and

in various situations, decision makers in different countries have sought the help of

reference scenarios and models to predict disease spread as a tool for effective ways to

prevent it and for formulating tailored health policies (1–3). This was also the case when

the magnitude of local infection with COVID-19 in the Chinese province of Wuhan

came to light and morbidity spread to other countries until the WHO declared it a

pandemic (4).
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With the increasing reports about the spread of the

disease, and like many countries worldwide, Israel adopted the

recommendations of the WHO and began to take behavioral-

social preventive measures in order to slow down and reduce

the rate of COVID-19 spread. The measures described below

were incorporated into Israel’s health policy, some of them were

unique to Israel.

Preventive measures taken before the
first COVID-19 wave

In January 2020, health institutions were instructed to

be vigilant regarding individuals who returned from China

and showed symptoms of illness (fever, cough, etc.), and to

increase awareness among medical teams, and the importance

of protecting the treating staff.

From the end of January 2020, an order established the

mandatory isolation in a dedicated hospital setting of any person

who returned from China showing symptoms of illness. The

order also stated that forced isolation can be carried out for a

person who shows resistance to voluntary isolation. At the same

time, flights arriving from China were prohibited from landing

in Israel, and later the entry of tourists to Israel from East-

Asian countries (Japan, Hong Kong, South Korea, Thailand,

etc.) were prohibited. In February 2020, airline routes from East

Asian countries to Israel were closed, followed by routes from

countries with excess morbidity – Italy and Spain. Finally, in

the second week of March, air traffic to Israel was significantly

reduced to the point of almost complete closure of Israel’s air,

land and sea borders (with the exception of rescue flights to

repatriate Israeli residents abroad). At the same time (February

2020) amandatory 14-day home isolation period was established

– first for those returning from China and other East Asian

countries, then for those returning from Italy, Spain, France,

Germany, Switzerland and Austria. Finally, in the second week

of March, the obligation of home isolation was extended to all

those entering the State of Israel.

The first COVID-19 patient was diagnosed in Israel on

February 23, 2020. The turning point of disease spread occurred

in the second week of March 2020, when an exponential increase

in new cases was observed in the country. Between March

2020 and March 2022, Israel faced five COVID-19 waves which

resulted in over 4 million cases and over 10,000 deaths.

Measures taken during the first wave

In March gatherings and mass events were gradually

decreased from 2,000 to 100 participants and were then banned.

Places of recreation and leisure as well as workplaces were closed

(except for those defined as essential workers – 15% activity

in the economy). On March 17, 2020, lockdown was declared.

The education system and universities were shut down. Public

transportation was significantly reduced, and residents were

instructed not to leave their house, except for essential needs

(food, medication and essential work). Later, the citizens were

instructed not to go further than 100 meters of their place

of residence (except for essential needs) and the gathering of

more than two people who do not leave in the same household

was prohibited. These instructions were anchored by the

government as emergency regulations on March 25, 2020. In an

unprecedented manner, in March 2020 the Israeli government

decided to make use of advanced technological means of cellular

tracking in order to enforce the obligation of isolation. In

addition, and as a tool for epidemiological investigation, the

General Security Service was authorized (under emergency

regulations) to collect and process detailed information about

the location andmovement routes of people whowere diagnosed

with COVID-19 from 14 days before the diagnosis, with the aim

of identifying contacts and isolating possible infection circles.

Once the system was activated, individuals began to receive

proactive messages about being in the vicinity of a confirmed

COVID-19 patient without revealing the details of the patient

himself. This move to track individuals by cell phones has

received a lot of public criticism on the grounds of a severe and

disproportionate violation of basic rights, including the right

to privacy.

In the second week of April 2020, due to fear of gatherings

and contagion during the Jewish holiday Passover, it was decided

to tighten lockdown and move to a temporary state of curfew

for the entire days of the holiday. Police and judicial forces were

deployed across the country while blocking mobility between

cities and strictly enforcing those who violated the curfew

conditions (among other things by imposing fines between NIS

500 and NIS 5,000). Lockdown restrictions were gradually lifted

in May and June 2020.

Measures taken during the second wave

On September 18, 2020, a second lockdown for 21 days was

announced in Israel. A few days later, it was decided to take

further steps to tighten the lockdown. A differential program

called “The Traffic Light”, which comprised classification of

cities according to morbidity levels, was instated. On October

17, 2020, lockdown ended, except for cities defined as ’red cities’

under the Traffic Light program.

Measures taken during the third wave

On December 27, 2020, due to a renewed increase in

morbidity, a third lockdown was announced. Unlike the

previous two lockdowns, this time the Israeli government
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decided not to close educational institutions and the scope of

work in the private sector was only reduced to 50%.

Measures taken during the fourth and
fifth waves

From June 2021, after elections and the establishment of

a new government, Israel decided to move from a policy

of lockdowns in response to increased morbidity to softer

preventive measures. These included encouraging vaccinations,

reducing gatherings, providing green certificates to vaccinated

individuals which allowed them to enter shops and other public

places, and monitoring morbidity.

The use of models to predict morbidity
and mortality

Reference scenarios are based on mathematical models

used by public health experts to study infectious diseases.

Such scenarios have many advantages, but they also present

significant challenges, disadvantages and are sometimes even

misleading. Starting in March 2020 experts from various fields

began publishing in the public domain predictions on the

“behavior” of the Severe Acute Respiratory Syndrome Corona

Virus 2 (SARS-CoV-2) and the expected morbidity, mortality,

and duration of the pandemic. These scenarios ranged from

very optimistic to pessimistic ones. The models were designed

to assist decision makers in dealing with core questions

about the pandemic, such as the expected daily number

of infections, the expected burden on hospitals, and policy

implications. The predictions were based on mathematical

calculations, hypotheses and assumptions, but on very little

reliable information.

The Israeli Ministry of Health began to work with several

reference scenarios formulated based on various assumptions

at a relatively early stage. Most of the models were based on

the Susceptible-Infectious-Recovered (SIR) model for studying

epidemic spread as first published in 1927 by Kermack and

McKendrick (5). Although this mathematical model has evolved

and developed over the years, its basic principles have not

changed. Thus, most models used for predicting COVID-19

disease spread have used the basic reproduction number (R0)

as a tool to reflect the intensity of epidemic spread and have

applied the principles of population classification into 3 groups:

susceptible, infected and recovered. R0 is the mean number of

secondary cases an infected person can cause in a population

where there is no immunity. R0 was calculated by comparing

the number of infected individuals in a given week with the

number of infected individuals in the previous week. This index

is greatly affected by a range of factors that can be influenced

both by the characteristics of the population and by preventive

measures. Although R0 is an important tool for developing

theoretical models, its effectiveness in predicting the spread

diseases was not tested prior to the COVID-19 pandemic. The

most optimistic scenario (R0 = 1.2) estimated that there would

be 108,000 critically ill patients with COVID-19 in Israel and

that 8,600 would die of the disease, while the most pessimistic

one (R0 = 2) predicted that there would be 270,000 critically

ill patients and that 21,600 would die (The definition of critical

cases was based on the Israeli Ministry of Health’s definition,

which included oxygen saturation levels below 94% as the main

criteria). These scenarios were first presented to decision-makers

and later to the public without proper and balanced mediation

of the information, which led to the escalation in national

anxiety and panic. At first the panic was translated into a rare

public collaboration with government directives, but as time

went on and the actual number of cases, critically ill patients and

deaths turned out to be fundamentally different, the scenarios

and forecasts became a double-edged sword as public trust and

cooperation began to falter.

Although reference scenarios are based on a seemingly

objective mathematical models, they often embody a variety

of subjective assumptions due to the uncertainty inherent in

unfamiliar morbidity. Models can only be useful in the context

of imperfect information. In the absence of reliable information,

some of these assumptions are influenced by the modelist’s

personal and/or professional perceptions of the characteristics

of the disease, its future behavior, and the behavior of the public.

Assessment of gaps between models and real-world data,

can assist policy makers in adopting an informed, data-based

approach and can advance knowledge-based decision-making

processes when dealing with subsequent crises. We examined

the various reference scenarios that were presented to decision-

makers in Israel and tried to estimate their quality compared to

the actual data collected.

Study data and methods

Although many prediction models were developed during

the COVID-19 pandemic, we analyzed the 3 major models that

served as the basis for policy making. Model data used in this

analysis is public information that was made available by the

three model teams at different timepoints during the pandemic

on social media, television, press, official social networks, and as

presentations presented to health policy leaders.

The models were analyzed anonymously. Due to the

multiplicity of existing data in the field, we focused on

comparing the predicted number of confirmed COVID-19

patients, patients in critical condition and deaths to the

actual data collected and published in the Israeli Ministry of

Health’s dashboard.
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For convenience, we defined the five COVID-19 waves

in Israel:

First wave: March–May 2020

Second wave: June–November 2020

Third wave: December 2020–May 2021

Fourth wave: June–November 2021

Fifth Wave: December 2021–February 2022.

For the purpose of this study, a model forecast beyond±10%

of the ‘real world data’ is over/under estimating.

Study results

The progress of the number of new cases in Israel is

presented in Figure 1. Table 1 presents a comparison of the

models and real-world data published by the Israeli Ministry

of Health. It is important to note that the table is based on

publications of the models and thus reflect different outcomes,

which differ between the models. For example, while some of the

models presented the cumulated number of new cases, others

focused on the highest (peak) number of new cases and did

not provided forecast of the cumulated number of cases for the

entire wave.

Models description

There were inherent differences between the different

models as each model uses different techniques and relies

on specific characters and scientific approaches. Severe cases

were defined by the models based on the MOH definition

(saturation levels, intensive care units). The models evolved

over time to include additional variables such as vaccination

status of various populations, the effect of various stringency

of lockdowns, and other preventive actions. The purpose of

team number 1 was to model the risk for the collapse of the

health system. This was achieved by modeling the chance for

hospitalization and death for each new case. The team developed

a new model which was used with Monte Carlo simulation and

combined models based on the characteristics of the infected

individuals. The model included a survival analysis with Kaplan

Meier and a Cox proportional hazards model. Team number

2 used an Age-of-Infection model. It uses the number of cases

which has characteristics of Poisson distribution with dynamic

expectation. Team number 3 performed short-term modeling

(nowcasting) combined with other stochastic models (agent-

based models) that examined the individual and followed the

course of the exposure (infected, hospitalized, deceased, etc).

The model presented a forecast of the presence and the near

future and aimed to identify important parameters and provide

predictions based on these parameters.

The first wave: March–May 2020

The models’ overestimation of morbidity in comparison

to actual data is highly evident in the analysis of First-Wave

data. The predicted cumulative number of confirmed cases

for this wave was up to 100 times higher than the actual

number of confirmed cases. A similar trend was observed for the

comparison between the predicted and actual number of deaths

and critically ill patients. The largest gap between predicted and

actual data was observed in Team 3’s model. Team 3 predicted

that the number of confirmed cases would be 50–100 times

higher than actual data. Interestingly, Teams 2 and 3 predicted

the same range of deaths, probably because they used R0 as the

main explanatory variable in their sensitivity analyses. Team 1’s

number of predicted deaths was 161 times higher than the actual

data (46,772 vs. 289).

The second wave: June–November 2020

Ministry of Health data showed that at the Second Wave’s

peak, at the end of September 2020, there were 9,051 confirmed

cases and the cumulative number of confirmed cases for the

entire wave was 319,921. This number corresponds with the

models’ predictions. However, all three models provided a

significant overestimation of the number of critically ill patients

(495 at the wave’s peak). Teams 1 and 3 overestimated this

number by 2–3 times. Team 2’s estimation was even higher,

but this team combined the number of patients in moderate

and critical condition. Interestingly, Teams 2 and 3 predicted

a significantly lower number of deaths compared to the actual

data, while Team 1 overestimated the number of deaths by

more than 100%. It is important to note that Team 1 only

predicted the number of new patients in critical condition and

did not provide predictions for the number of confirmed cases.

Therefore, it is difficult to assess the effectiveness of the model

in predicting disease spread (in terms of new cases) during the

second wave.

The third wave: December 2020–May 2021

In the Third Wave Team 2 provided the closest

prediction to actual data – both in the number of confirmed

cases and in the number of deaths. This team tried to

evaluate the effectiveness of strict lockdown alongside

the vaccination campaign; therefore, it made a relatively

careful estimation (under estimation) of the number of

confirmed cases. Actual data showed an initial increase in

the number of confirmed cases which decreased slowly.

This trend was not predicted by the model. The models

that were relatively accurate in predicting the number

of confirmed cases in the second wave, made significant

overestimations in the third wave, probably due to the start of

the vaccination campaign.
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FIGURE 1

Number of confirmed COVID-19 infections per day in Israel (March 2020–February 2022).

The fourth wave: June–November 2021

The fourth wave was characterized by the spread of the

delta strain of the virus, along with a decline in immune

defense. Most teams were successful in predicting the number of

confirmed cases as well as the number of deaths, with only about

10% deviation between the model and actual data. In contrast,

the models, and particularly that of Team 3, overestimated

the number of critically ill patients (2000 predicted vs. 766

actual). Team 2 developed a model which considered the

vaccination booster as a crucial parameter in predicting the

number of critically ill (1000–2500). However, both predicted

values presents a large-scale overestimation. It is possible that

the gradual decline in immune protection may have benefited

the models by reducing the gap between the actual number

of critically ill patients and their predicted number. Although

the models did not account for decreased immune protection

but rather provided their prediction based on the number of

confirmed cases, the decrease in immune protection led to an

increase in the number of critically ill patients, bringing it closer

to the predicted number.

The fifth wave: December 2021–February 2022

The rapid spread of the omicron variant, which manifested

in a very high number of daily confirmed cases (up to a peak

of 85,000 confirmed cases per day and a total of about 2.3

million confirmed cases in this wave), resulted in high variance

among the models regarding the number of confirmed cases

and the rate of increase in cases. While Team 1 predicted an

average of 45,000 confirmed cases per day, Teams 2 and 3

predicted a cumulative number of confirmed cases that was

double compared to the actual data: Team 2 estimated that

there would be 4 million confirmed cases (vs. 2.3 million

cases that were actually confirmed) and Team 3 predicted that

there would be 73,000–146,000 confirmed cases per day. There

was considerable variation among the models in the predicted

number of critically ill patients: while Team 1 predicted a lower

number of critically ill patients than the actual number, Team 2

overestimated their number by over 100%, and Team 3, which

provided gloomy predictions for most of the waves, accurately

predicted the number of critically ill patients in the fifth wave.

It is also important to note that due to multiple contradictory

information on the severity of disease caused by the Omicron

strain, information on the predicted number of deaths was not

published by the modeling team. Instead, they chose to focus

on the number of newly confirmed cases and the number of

critically ill patients.

Discussion

Models’ evaluation

From the day it was identified, SARS-CoV-2 has proven its

ability to surprise healthcare systems worldwide. Tthroughout

the COVID-19 pandemic in Israel, the reference models
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TABLE 1 Comparison of models and real-world data, Israel March 2020–February 2022.

Ministry of health data Team 1 Team 2 Team 3

Model description Combined models based on the

infection characteristics:

Survival analysis Kaplan Meier) and

Cox proportional hazards model

Aalen johsnaen estimator self-developed

model with Monte Carlo simulation

Age-of-Infection model: number of cases has

Poisson distribution characteristics with

dynamic expectation

Short-term modeling (nowcasting)

combined with other stochastic models

(agent-based models)

First wave: March-May 2020

Confirmed COVID-19 cases Tests Peak: 17,047 (peak 724/day) No

data

– 18,000–193,000 576,000–1,440,000

Critically ill 192 224,366 108,000–270,000 108,000–270,000

Dead 289 46,772 8,600–21,600* 8,600–21,600*

Second wave: June—November 2020

Confirmed COVID–19 cases

Tests

319,921 (Peak 9,051/day) 3,362,484 298,000 7,500–9,200 peak

Critically ill 495 976–1,193

Weekly forecast

critically and moderately ill: 9,550 820

Dead 2,596 FromMarch 20: 8,361–10,534

(8,000–10,200 for the second wave

alone)

1300 , 1,600

Third wave: December 2020—May 2021

Confirmed COVID–19 cases

Tests

Peak: 10,123 502819

(peak 10,123/day) 10,375,126

16,700–22,300

Depending on sensitivity analysis for

vaccine efficiency and initial R

Differs between different scenarios (strict

lockdown yes/no) 6,120–10,000

4,000–8,000 peak

Critically ill 1,193 1,700–2,400 Differs between different scenarios (strict

lockdown yes/no) and on vaccination status

600–1,474 (lockdown y/n) 1,340–3,230

(vaccine y/n)

2,539–6,834 (vaccine y/n)

Dead 3,541 2,450–2,700 Differs between different scenarios (strict

lockdown yes/no) and on vaccination status

1,250–3,085 (lockdown y/n)

4,500–5,700

On average, depending on preventive

actions

Fourth wave: June—November 2021

Confirmed COVID–19 cases

Tests

50,4587 (Peak 11,346/day)

18,437,810

11,000 peak Mainly children and unvaccinated

adolescents

9,000 peak

Critically ill 766 850 Varied based on the vaccination status and

based on age. 1000 (with booster)–2,500

(no booster)

2,000

Dead 1,782 – 200–1,400 Depends on the rate of the

vaccination campaign (combined model

teams 2 and 3)

1,500 according to mortality model

Fifth wave: December 2021—February 2022

Confirmed COVID–19 cases

Tests **

2,293,405 (Peak 85,192/day)

18,369,900

45,000/day 4,000,000 73,000–46,000/day

Critically ill 1,255 800–1,000 1,250–2,750 700–1,566

Dead 2,042 100/week

*Teams 2 and 3 worked together at the beginning of the pandemic, joining forces in order to provide scientific assumptions to policy makers. As a result, the same prediction was provided by both teams. Later on, as these teams separated, differences in

forecasts were observed. **The number of tests during the fifth wave includes both PCR tests and Rapid (Antigen) tests.
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overestimated morbidity in comparison to actual data from the

Ministry of Health. High variance was observed both among the

models and for eachmodel over time. Eachmodeling team chose

to focus on a different outcome. For example, in later waves

Team 1 moved to focus on patients in critical condition while

Team 3 continued to provide predictions regarding the number

of confirmed COVID-19 cases.

An examination of the various models by time shows that

in most cases all teams overestimated the number of confirmed

COVID-19 cases and critically ill patients with better accuracy

in later stages of the pandemic. This is probably a consequence

of the lack of uniformity in the knowledge available to the

various modelers during the pandemic. The models usually

used the R0 number as the primary variable for predicting the

spread of disease. Considering the evolution and variability of

SARS-CoV-2 during the pandemic, this classification proved

to be challenging. The uncertainly derived from the lack of

reliable and available information on a wide range of essential

parameters that affect R0, including, the nature of infection,

its duration and severity, transmissibility, infectiousness, the

average number of days in which an individual remains infected,

population density and health, the average age of the population,

the appearance of new variants, and the behavior of the public.

In addition, the published Rt and the number of those infected

were affected by government measures, the extent of public

immunization, the effect of vaccines on the number of new

cases and on the number of critically ill patients and the

degree of protection against re-infection. Furthermore, the

various models examined disease spread on a national level

and did not make consider essential variables and unique

characteristics to Israel that may influence disease spread, such

as its young population, one central entry into the country,

emergency preparedness, the population strata, its density, and

the number of children per household. Moreover, due to the

great complexity of the spread characteristics of the virus,

it was not possible to construct a model that included all

known variables and the researchers were satisfied with relatively

simple models that included using R0 numbers from other

countries or calculating R0 numbers according to the number

of confirmed infections in Israel with age adjustments. All

of these variables created a complex reality that challenged

the various models (6). In practice methods that previously

helped in predicting disease spread have been found to be

less accurate, (7, 8) which has led, among other things, to

constant updating of models and methods (9, 10). Over time,

each modeling team chose to analyze different data. Although

they could better predict the wave trend (increase/decrease),

wide gaps remained between the data presented by each

model and the actual intensity of morbidity, the number

of critically ill patients and mortality. Models that provided

accurate predictions for one wave, were very inaccurate in the

next wave.

Public communication

The public’s behavior also affected the spread of disease:

during the first wave there was great uncertainty together with

conflicting reports from sources abroad about a very high R0

number, which contributed to very high public response to

the restrictions imposed by the government. As time passed

and the public understood that the pandemic may last for a

long time, compliance with governmental restrictions decreased,

which may have resulted in certain gaps between the models

and actual data. For example, while the models predicted a

steep rise in morbidity, no such increase was recorded in real

life. These gaps may have led to further public non-compliance

with governmental restrictions because the predictions did not

come true.

The differences between the models’ predictions and real-

world data shows that policy-making cannot stop the spread

of disease altogether, however, it has a limited ability to slow it

down, with the intention of trying to flatten its growth curve

as much as possible and to avoid very high morbidity in a very

short time (and thus to avoid insufficiency of the health system),

sometimes even at the cost of dispersing disease spread over a

longer period of time.

It is also important to consider the issue of disseminating

the models to the public. The extensive media coverage of the

COVID-19 pandemic included, among other things, the daily

publication of morbidity data alongside various assessments,

forecasts and models. Often, this information was partial or was

provided without framing the information within the correct

context, so that the public only received the "bottom line”

(R0 number scenario or prediction of morbidity) without the

different parameters that make up the model, the sensitivity tests

and parameters that affect the model’s accuracy in predicting

morbidity, or the difference in the meaning of the scenario

(advantages/disadvantages) and its predictions. Due to the

recognized importance of models as a tool to help dealing with

the pandemic, and the understanding that in the reality of a

new disease much more is unknown, it would have been more

appropriate to mediate the information in a way that reflected its

limitations and shortcomings and to show professional modesty.

Although transparency is a fundamental value in health

systems, the damage to public trust that results from publishing

information without appropriatemediation and context framing

outweighs its benefit. Such damage to trust can lead to decreased

public response to professional guidance and to the ability of

the government to deal with the spread of disease. In practice,

the public’s exposure to significant gaps among the scenarios

predicted by the models and actual morbidity, increased the

public’s distrust in decision-makers. Hence, it is very important

to mediate the information and the various models to the public

in an orderly and reliable manner, while presenting the models

correctly and accurately as a tool for decision-making.
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Advice/policy implications

Upon the emergence of a new disease, there is an inherent

difficulty in relying on mathematical models as a reliable tool

for predicting and formulating a strategy for dealing with its

spread. Such uncertainty and a multiplicity of assumptions that

are not based on reliable information may lead to significant

gaps among the various models, and between the models and

real-world data. Data researchers who have agreed to contribute

their time and experience toward presenting ways to deal

with the COVID-19 pandemic are a welcome phenomenon

that should be encouraged and preserved. At the same time,

decision-makers must integrate the information presented to

them in order to advance knowledge-based decision-making

processes on the one hand, but they must also recognize the

structural weaknesses of mathematical models when faced with

uncertainty. The decision-making process and health policy

design should regardmodels as auxiliary tools and consider their

limitations and weaknesses, while remembering that preventive

measures, public behavior, seasonality and additional factors

influence the models’ predictions. Behavioral elements such as

public compliance, avoiding crowding, participating in indoor

activities, etc. has a large impact on the different models

accuracy. Thus, real world data on these parameters can be

integrated into the models in order to enhance their precision.

It is essential to correctly mediate the reference scenarios

to decision makers and the public, while providing the

appropriate context of the mathematical models together with

their advantages and disadvantages. In view of the findings of

this study, we suggest creating an elaborate mechanism that will

serve as a tool for decision-makers. This mechanism should

comprise two separate but complementary components: (a) a

prediction range derived from combined key models; (b) an

independent and separate prediction for each of the models

while preserving their different methodologies. Furthermore,

we recommend developing a mechanism that would provide

modelers access to institutional data in a structured and orderly

manner, in addition to the information collected by them

independently. This may help to improve and refine the various

mathematical models.

Limitations

First, the current study presents data from different models

that were used by policymakers. These models were influenced

by several parameters such as policy recommendations,

preventative measures, and public awareness, social distancing,

etc. this may lead to a potential bias in providing interpretations

for the results. However, policy makers used the same models,

with the same potential biases, thus we believe the analysis

suggested is appropriate. Second, the models were published

only in secondary publications and were not peer-reviewed.

Nevertheless, these models were presented to the government

and health authorities and they served as the basis for

decision making.
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