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Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people

and the ecological environment. With this problem becoming more and more

serious, more countries made research on the ARB, and the research number

has been sharply increased particularly over the past decade. Therefore, it is

quite necessary to globally retrace relevant researches on the ARB published

from 2010 to 2020. This will help researchers to understand the current

research situation, research trends and research hotspots in this field. This

paper uses bibliometrics to examine publications in the field of ARB from

2010 to 2020 that were retrieved from the Web of Science (WOS). Our study

performed a statistical analysis of the countries, institutions, journals, authors,

research areas, author keywords, Essential Science Indicators (ESI) highly cited

papers, and ESI hotspots papers to provide an overview of the ARB field as well

as research trends, research hotspots, and future research directions in the

field. The results showed that the number of related studies is increasing year

by year; the USA ismost published in the field of ARB; China is themost active in

this field in the recent years; the Chinese Acad Sci published the most articles;

Sci. Total Environ. published the greatest number of articles; CM Manaia has

the most contributions; Environmental Sciences and Ecology is the most

popular research area; and “antibiotic resistance,” “antibiotics,” and “antibiotic

resistance genes” were the most frequently occurring author keywords. A

citation analysis showed that aquatic environment-related antibiotic resistance

is a key research area in this field, while antimicrobial nanomaterial-related

research is a recent popular topic.

KEYWORDS

antibiotic resistant bacteria, antibiotic resistance, antibiotics, bibliometrics, keyword

analysis

Introduction

Antibiotic-resistant bacteria are resistant to both natural and synthetic

antibiotics (1) and thus have become a health concern worldwide. Multi-drug

resistant bacteria (MDRB) with stronger resistance can be resistant to 3 or

more antibiotics in clinic (2–5). Bacteria can develop intrinsic resistance to
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certain antibiotics, but can also acquire resistance to antibiotics

(6). Among them, the path for bacteria to acquire or

development antibiotic resistance which roots in the irrational

usage of antibiotics is to prevent antibiotics from entering target,

change the antibiotic targets and inactivate antibiotics (6–9). The

irrational usage of antibiotics can lead to the prolonged exposure

of bacteria to sublethal concentrations of antibiotics which is

a key to the resistance selection (10, 11). Because antibiotics

with sublethal concentrations cannot kill bacteria, but can affect

the frequency of mutations, horizontal gene transfer (HGT) and

gene recombination of bacteria, and have a chance to enrich

existing low-level resistant mutations or improve the level of

drug resistance mutation. The spread of antibiotic resistance

among different bacterial populations is achieved through HGT

(12). HGT refers to the transfer of antibiotic resistance genes

(ARGs) between bacteria by transformation, transduction, and

conjugation with the help of plasmids, integrons, transposons

and so on (13). A large number of bacterial species are

resistant to macrolides, sulfonamides, tetracyclines, and other

antibiotics in the biological systems (14). Antibiotic has become

synonymous with “antibacterial drug” in some degree, therefore,

in this review antibiotic has been used.

Antibiotics are not completely metabolized in the human

body, and some are excreted into the sewage with urine and

feces in prototype (10). As the sewage treatment process has

created a potential environment suitable for the development

and spread of antibiotic resistance, such as high bacterial

density, pressure caused by pollutants such as heavy metals and

antibiotics, etc. Therefore, the discharge of treated sewage gives

rise to a large number of ARB and ARGs in the surrounding

ecological environment (e.g., aquatic system and soil) (12,

15–21). Moreover, the proportion of antibiotic resistance in

chickens, pigs, and wild animals has also increased greatly

(22), thus causing a serious burden of infection to human

beings (23–25), and greatly affecting the ecological environment

(26). Humans can be infected with ARB in different ways. For

example, ARB in communities and medical settings can be

transmitted through person-to-person contact (27). Healthcare

associated infections (HAIs) are infections caused to patients

by invasive devices or surgical procedures, such as catheter-

associated urinary tract infections, surgical site infections, and

ventilator-associated pneumonia (28), which are also common

infections with ARB. Antibiotic-resistant bacteria can also be

transmitted to people through the environment. For example,

driven by hydrological processes such as runoff and infiltration,

the treated sewage enters the sources of drinking water, such as

surface water and groundwater, after being discharged into the

environment, resulting in ARB and ARGs in the drinking water

sources (29). However, conventional drinking water treatment is

mainly designed to remove contaminants such as heavy metals,

solid particles and pathogenic microorganisms, rather than to

remove ARB, which may even promote the transmission of ARB

from the environment to humans (29, 30). Soil may lead to

the transfer of resistance determinants from the environment

or zoonotic bacteria to humans (31). When the ARB infect

the human body, it can transfer to the human pathogenic

bacteria. Once the pathogenic bacteria develop resistance, it

is harder to control and treat bacterial infections (29). For

example, antibiotic resistance may lead to increased virulence

and pathogenicity, increased morbidity and mortality, longer

hospital stays, and reduced availability of antibiotics (32, 33).

According to the WHO, 10 million people may die from ARB

infections every year by 2050. In 2010, the Infectious Diseases

Society of America started the “10 × ‘20 Initiative”, with the

goal of developing 10 effective antibacterial medications by

2020 (34). The WHO published a priority list in 2018 to

guide the creation of new antibiotics (35). However, the rate

of new antibiotic research and development is surprisingly

slow (36). Very few new structural classes of antibiotics have

been introduced since 2000 (37, 38), e.g., cyclic lipopeptide

(daptomycin) (39, 40), oxazolidinone (linezolid) (41), etc. Yet

more and more bacteria are resistant to many antibiotics

used clinically (42, 43). We are no longer confident in the

face of more and more bacterial infections (6). Therefore,

new antimicrobial strategies are particularly important (44).

In the early stage, it was mainly treated in combination with

other antibiotics, such as streptomycin and penicillin. The

combination of antibiotics has a synergistic effect, which not

only has better efficacy than a single drug, but also can inhibit

the drug resistance selection of a single drug (45, 46). With

the development of multi-drug resistant bacteria, antibiotic

substitutes (47) such as phage therapy (48–50), nanomaterials

(51–54), bacteriocins (55), antibodies, and probiotics (56) have

been attracted more attention.

The earliest monographic study in the field of ARB was

published in 1990, and it provided an initial description

of the antibiotic resistance mechanism (57). Findings over

the subsequent decade included the identification of ARB

in aquaculture for the first time (58–60), which was based

on irrational antibiotic use in aquaculture (61). In addition,

preliminary studies on the spread of ARB (62, 63), doctors’

prescriptions (64) as well as phage therapy (65) were performed.

During the period from 2000 to 2009, the findings focused on

the fact that ARB and ARGs were discovered in wastewater

and drinking water (66, 67). Antibiotic resistance (68–70),

nanorods (71), phage therapy (72), and rational antibiotic use

interventions (73) were further studied. In the last decade, with

the development and application of polymerase chain reaction

(PCR) assays (74, 75) and metagenomic analysis (76–79), the

abundance of multiple ARGs could be identified. Consequently,

ARB and ARGs were detected in aquatic systems, such as

wastewater (80, 81), rivers (82–85), lakes (86), seawater (87),

drinking water (88), reclaimed wastewater (89), and aquaculture

(90), as well as animal husbandry (91, 92), compost (93), soil

(94, 95), and vegetables (96, 97). For the sake of preventing the

spread of ARB and ARGs in the environment and mitigating
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the damage to humans, animals and the ecological environment,

an increasing number of researchers have devoted themselves

to finding solutions to this difficult problem. Hence, a large

number of processes for removing antibiotics, ARB and ARGs

from wastewater have emerged, including chlorination (98,

99), ultraviolet (UV) (100, 101), advanced oxidation processes

(AOPs) (102, 103), ozonation (104), solar photo-Fenton (105–

107), photocatalytic oxidation (108, 109), constructed wetlands

(CWs) (110), and membrane bioreactors (MBRs) (111). Even

though studies on ARB and ARGs in wastewater and drinking

water were carried out from 2000 to 2009 and from 2010 to 2020,

the research content from 2010 to 2020 was more focused. Since

the comparison and analysis of ARB and ARGs were generally

conducted from 2000 to 2009, most of the samples collected

in this stage were from source water, effluent from sewage

treatment plants or rivers, while the research from 2010 to 2020

targeted more on the sewage treatment process. The samples

collected in this stage may come from different treatment steps

in the sewage process. For example, it may come from sand

filtration and peracetic acid treatment (112) or various sewage

treatment methods, e.g., chlorination (99), ozone (104), etc.

Moreover, the detection technologies employed during 2010–

2020 are more efficient, such as high-throughput sequencing

technology (14).

ARB is highly interrelated to human and ecological health,

and there has been more extensive previous studies in this

field, the priority list of ARB (35), ARB persistence (113), the

challenge of ARB in the food industry (114), the antibiotic

resistance profiles (19, 22) antimicrobial strategies (115–117)

and antibiotics discovery (36). ARB are a serious threat to the

health of people and the ecological environment. With this

problem becoming more and more serious, more countries

made research on the ARB, and the research number has been

sharply increased particularly over the past decade. Therefore, it

is quite necessary to globally retrace relevant researches on the

ARB in recent 10 years. This will help researchers to understand

the current research situation, research trends and research

hotspots in this field.

Bibliometric analysis is an effective method for

quantitatively assessing academic papers and can be used

to investigate the evolution of certain fields, and the results

can provide an overview of a certain field as well as research

trends, hot topics, distribution of research power and future

research directions (118–122). The advantage of bibliometric is

that it is not limited by geography, allowing data to be collected

by country in a particular area to analyze research globally

(123). In addition, specific data analysis software can process

the results of bibliometric analyses and present them in a more

three-dimensional form (124–127). Therefore, bibliometric

analyses have been applied to many fields, such as medicine

(128–130), chemistry (131), psychology (132), computer science

(133, 134), and robotics (120). In addition, bibliometrics is also

widely applied to the aspect of research method, for example,

the publications related to such research methods as TOPSIS

(135), Analytic Hierarchy Process (136), and ordered weighted

averaging operator (137) can also make knowledge recreation

by bibliometrics.

To our knowledge bibliometric analysis of publications in

the field of ARB has been conducted, but related studies only

focused on antibiotics in soil (138) and ARGs (139). Since the

study of ARB is multifaceted, such as generation (6), impact

(23), control (140), and treatment (55) of ARB, and so on, a

comprehensive analysis of ARB research from a bibliometric

perspective remains necessary. The goal of this paper is to

apply a bibliometric approach to review the leading countries,

institutions, authors, and journals, research areas, national and

institutional collaborations, author keywords, and ESI highly

cited and hot papers to provide research situation, research

trends and research hotspots in the field of ARB between 2010

and 2020 globally and then propose future research directions.

Materials and methods

A bibliometric analysis of publications in the field of

ARB published between 2010 and 2020 is presented in this

paper. Data were obtained from the Science Citation Index

Expanded database (SCI-E) and Social Sciences Citation Index

database (SSCI). Scopus, Pubmed and Google Academic indeed

cover more publications than Web of Science. However, the

publications included into the core complications of WOS

generally receive higher recognition and it is the most widely

accepted database for analysis of science publications (141).

Therefore, WOS was chosen as the data source for this study.

First, the subject field was set to “antibiotic resistant bacteria”,

the date range was set to 2010-01-01 to 2020-12-31, and the

document type was set to “article” and “review” for the search.

The corresponding country, institution, journal, author, author

FIGURE 1

Trends in the number of published articles related to ARB by

year. TP, total papers; TC, total citations.
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TABLE 1 The top 20 most productive countries/regions in the ARB field.

Rank Country TP TC h-index ACPP nCC SP (%)

1 USA 723 27,927 78 38.63 67 40.11

2 China 513 16,157 64 31.5 43 32.75

3 UK 176 10,977 43 62.37 64 69.32

4 Germany 168 10,219 43 60.83 57 61.90

5 Italy 140 8,384 36 59.89 48 52.14

6 Spain 139 6,584 38 47.37 52 64.75

7 India 134 2,941 30 21.95 43 34.33

8 South Korea 121 3,168 32 26.18 35 37.19

9 Sweden 104 7,246 33 69.67 48 59.62

10 Canada 101 6,148 34 60.87 46 64.36

11 France 99 7,044 32 71.15 55 64.65

12 Japan 99 2,317 24 23.4 32 39.39

13 Australia 98 6,120 36 62.45 47 75.51

14 Portugal 96 6,808 34 70.92 47 44.79

15 Netherlands 79 5,778 32 73.14 45 62.03

16 Poland 79 3,298 27 41.75 39 34.18

17 Brazil 77 1,509 22 19.6 19 41.56

18 Switzerland 67 4,386 28 65.46 39 59.70

19 Iran 55 969 18 17.62 11 18.18

20 Turkey 49 876 15 17.88 17 28.57

TP, total papers; TC, total citations; ACPP, average citations per publication; nCC, number of cooperative countries; SP, Share of publications.

FIGURE 2

Number of ARB-related publications per year from 2010 to 2020

in the USA, China and the UK.

keywords, and research area of publications meeting the search

criteria are listed. The same data were extracted from ESI

highly cited and hot papers. Then, the Derwent Data Analyzer

(DDA10.0 build 27,330, Search Technology Inc., Norcross, GA,

USA), which is a tool for data cleaning, mining and visual

processing, was used to clean the derived data.

Although ARB is an acronym for antibiotic resistant

bacteria, it was not included in the search formula because

the acronym is used in other fields. Antimicrobial include

antibiotics, however it was not included in the search formula,

because antimicrobial is not only effective against ARB, it

is also effective against mycoplasma, chlamydia, viruses, etc.

Articles from Scotland, Wales, England, and Northern Ireland

are included as papers from the UK. Each journal’s impact

factor is derived from the 2020 JCR. Not all relevant articles

were included in this analysis, and those that did not match

the search rules were excluded. In this review DDA has been

used to make matrix map, cluster map, bubble chart and cross-

correlation plot. Since publications are time-sensitive, this paper

only analyzed the literature published from 2010 to 2020.

Results

From 2010 to 2020, 2,823 papers in the ARB field were

published by authors in 116 countries, including 99 ESI highly

cited papers and 3 ESI hot papers. These publications can be

divided into 11 languages, including 2,793 in English (98.94%),

10 in German (0.35%), 6 in Spanish (0.213%), 3 in French and

Polish (0.106%), 2 in Hungarian and Portuguese (0.071%), and

1 in Chinese, Dutch, Italian and Turkish (0.035%). The growth

trend of articles related to the ARB field from 2010 to 2020

was described (Figure 1). During this period, the number of

articles published in this field increased by more than seven-

fold, with the number of articles published from 2018 to 2020
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FIGURE 3

Collaboration matrix map among the top 10 productive countries/regions.

increasing significantly. This finding indicates that ARB has

attracted increasing concern year by year, and it also shows that

the impact of ARB on human beings is increasing.

Contribution of leading countries/regions

The top 20 countries in terms of total quantity of

publications in the ARB field between 2010 and 2020 were

identified (Table 1). The USA is the country with the most

publications in this field, followed by China and the UK, whose

publications account for 25.61, 18.17, and 6.23% of the total

publications, respectively. The same result can be seen in the

ranking of total citations; that is, the USA is first, followed

by China and the UK. Figure 2 shows the number of ARB-

related publications per year from 2010 to 2020 in the USA,

China and the UK. It can be seen that China issued very

few publications from 2010 to 2013, less than the UK and

the USA, while in 2019 the number of publications in China

rose significantly. In 2020 China has already surpassed the

USA in the number of relevant publications. This indicates

that China is considerably more active in this research field

during recent years. It is likely related to the large population

in China, the high prevalence of antibiotic abuse (142), the

relevant policies (143, 144) and higher scientific research fund

support (145). Among the top 20 countries, 11 countries

were in Europe, 5 countries were in Asia, and 4 countries

were in the Americas, which shows that ARB have attracted

global attention.

Cooperation of leading countries/regions

The most impactful science comes from international

collaboration (146), which is based on the flow and

integration of knowledge. Different countries/regions may

have different emphases when studying ARB, although resource

complementarity and continuous innovation impulses can

be achieved by collaboration. International collaborative

publications are joint papers written by scholars from multiple

countries. The number of cooperative countries (nCC) refers

to how many countries a country has cooperated with in a

certain field. It can be concluded from Table 1 that among all

countries, the USA, the UK, Germany, Spain and France have

more cooperation with other countries. To better understand

the current state of international collaboration in the ARB
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TABLE 2 The top 20 most productive institutions in the ARB field during 2010–2020.

Rank Institutions TP TC ACPP h-index TPR (%) Country/Region

1 Chinese Acad Sci 77 3,443 44.71 31 2.728 China

2 Univ Porto 37 2,046 55.30 21 1.311 Portuguese

3 USDA ARS 36 986 27.39 17 1.276 USA

4 Univ Catolica Portuguesa 34 4,239 124.68 24 1.204 Portuguese

5 Univ Chinese Acad Sci 32 1,455 45.47 18 1.134 China

6 Univ Salerno 28 2,732 97.57 19 0.991 Italy

7 Tsinghua Univ 27 1,355 50.19 18 0.956 China

8 Zhejiang Univ 26 450 17.31 11 0.921 China

9 Karolinska Inst 25 704 28.16 13 0.886 Sweden

10 Univ Gothenburg 24 2,070 86.25 17 0.850 Sweden

11 Univ Queensland 24 1,091 45.46 15 0.850 Australia

12 Univ Copenhagen 23 1,299 56.48 13 0.815 Denmark

13 Uppsala Univ 23 1,590 69.13 15 0.815 Sweden

14 Natl Univ Singapore 22 1,047 47.59 16 0.779 Singapore

15 Tongji Univ 22 905 41.14 15 0.779 China

16 Univ Cyprus 22 3,609 167.73 17 0.779 Cyprus

17 Univ Maryland 22 796 35.91 14 0.779 USA

18 Sun Yat Sen Univ 21 576 27.43 11 0.743 China

19 Univ Minnesota 21 1,275 60.71 12 0.743 USA

20 Nankai Univ 20 1,154 57.70 13 0.708 China

TP, total papers; TC, total citations; ACPP, average citations per publication; TPR, the percentage of articles of institutions in total publications.

field, a network graph between the top 10 countries/regions

was created using the DDA software (Figure 3). The circle size

symbolizes the countries’ contributions, the lines connecting

the circles indicate cooperation between countries, and the

thickness of the lines indicates the number of collaborative

publications. It can be seen from Figure 3 that almost all of

the top 10 countries in publications have ever cooperated with

each other. The line between the USA and China is the thickest,

which indicates that the number of cooperative publications

between the USA and China is the largest in this field, followed

by the number of cooperative publications between the USA

and Canada.

Contribution of leading institutions

Statistics on the contributions of leading institutions can

help us identify the most authoritative professional institutions

in the ARB field. There are 3,430 institutions involved in ARB

research, and the top 20 are summarized (Table 2). Among these

20 institutions, there are 40% institutions in Europe and Asia,

respectively, while the majority of those in Asia are from China.

Although the Chinese Acad Sci has published a large amount of

articles, the total citations and average citations per paper are not

the highest. Although several European institutes do not have a

large number of publications, such as Univ Catolica Portuguesa

and Univ Cyprus, the quality of articles is relatively high, which

can be seen from their high total citations and average citations

per paper.

The output and quality of scientific research were positively

correlated with the degree of international collaboration

(147). A cluster map of the collaboration among the top

15 institutions was created with DDA software (Figure 4).

Obviously, Gothenburg University, the Chinese Acad Sci and

Tsinghua University showed the most extensive collaborations

with other institutions in the ARB field. In addition, the

USDA ARS, Karolinska Inst and Univ Queensland have a

greater number of collaborations with institutions in different

countries; thus, their degree of internationalization was

high. The collaborations between the Chinese Acad Sci and

Univ Chinese Acad Sci and between Univ Porto and Univ

Catolica Portuguesa were the most frequent. Institutions in

European countries were more closely connected with those in

neighboring countries/regions, which was similar to that in Asia,

possibly because of factors such as institutional relationships and

geographical proximity.

Contribution of leading journals

The collation of published journals revealed that a total

of 983 journals published ARB-related research from 2010
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FIGURE 4

DDA cluster map on cooperation of the top 15 institutions.

to 2020. The top 30 journals by the number of articles

are displayed (Table 3). These 30 journals have published

a total of 911 articles on ARB, accounting for 45.86% of

the total literature. Forty-three percent of these journals

were related to the environment, 20% were related to

microbiology, 13% were related to medicine, 10% were

related to engineering technology, and 3% was related to

materials and chemistry each. The breadth of disciplines

involved reflects that ARB represent an interdisciplinary

research field.

Contribution of leading authors

Statistics on leading authors can help us understand the

top experts in the ARB field. A total of 13,966 authors were

counted among 2,823 articles, of which 12,086 authors only

published one article, 337 authors published three articles, and

15 authors published 10 or more articles. The top 20 authors

in the number of articles and their institutions are summarized

(Table 4). These authors published 245 articles, accounting for

8.67% of all articles. CM Manaia has published the most

articles in this field and made important contributions to the

presence and removal process of antibiotics, ARB and ARG

in wastewater and antibiotic resistance in the environment.

L Rizzo mainly studied sewage treatment processes, such as

photocatalysis and UV. In addition to the study of sewage

treatment processes, D Fatta-Kassinos also contributed to the

reuse of wastewater.

Contribution of leading research areas

Statistics on the research areas can help us grasp the

shift of research emphasis in a specific field. There are 90

study areas associated with ARB, and the top 20 based on

the number of articles are concluded (Table 5). The research

areas of ARB are not only related to microorganisms, diseases,

drugs, and chemistry but also related to the environment,

engineering, agriculture, materials and oceanography, with

the greatest number of publications related to the ecological

environment. The top 5 areas accounted for 76.83% of all articles

published, indicating that the environment, microbiology,

engineering, drug and chemistry are the top research areas in

the ARB field.

The bubble chart can show the research trends and emphasis

in a specific field more stereoscopically (205). A bubble

chart is depicted to showing the top 20 ARB research areas
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TABLE 3 Top 30 journals publishing papers in ARB research.

Rank Journal title TP TC ACPP IF TPR (%)

1 Sci. Total Environ. 110 5,546 50.42 7.963 3.897

2 Front. Microbiol. 79 2,656 33.62 5.64 2.798

3 PLoS One 69 1,780 25.8 3.24 2.444

4 Water Res. 65 4,684 72.06 11.236 2.303

5 Chemosphere 40 1,799 44.98 7.086 1.417

6 Sci Rep 40 591 14.78 4.38 1.417

7 Antibiotics-Basel 36 391 10.86 4.639 1.275

8 Environ. Sci. Pollut. Res. 35 936 26.74 4.223 1.24

9 J. Hazard. Mater. 30 992 33.07 10.588 1.063

10 Antimicrob. Agents Chemother. 29 984 33.93 5.191 1.027

11 Environ. Sci. Technol. 28 2,215 79.11 9.028 0.992

12 Int. J. Environ. Res. Public Health 28 772 27.57 3.39 0.992

13 Environ. Pollut. 27 956 35.41 8.071 0.956

14 mBio 26 1,154 44.38 7.867 0.921

15 Environ. Int. 25 1,177 47.08 9.621 0.886

16 Appl. Environ. Microbiol. 22 997 45.32 4.813 0.779

17 ACS Appl. Mater. Interfaces 19 636 33.47 9.229 0.673

18 Appl. Microbiol. Biotechnol. 19 545 28.68 4.813 0.673

19 Microb. Drug Resist. 18 228 12.67 3.431 0.638

20 Clin. Infect. Dis. 17 1,844 108.47 9.079 0.602

21 Environ. Monit. Assess. 17 409 24.06 2.513 0.602

22 J. Antimicrob. Chemother. 17 476 28 5.79 0.602

23 Microorganisms 16 118 7.38 4.128 0.567

24 Water Sci. Technol. 16 168 10.5 1.915 0.567

25 Chem. Eng. J. 15 500 33.33 13.273 0.531

26 J. Environ. Qual. 14 395 28.21 2.751 0.496

27 J. Food Prot. 14 196 14 2.077 0.496

28 Molecules 14 408 29.14 4.412 0.496

29 Ecotox. Environ. Safe. 13 670 51.54 6.291 0.461

30 Int. J. Nanomed. 13 370 28.46 6.4 0.461

TP, total papers; TC, total citations; ACPP, average citations per publication; IF, Impact Factor 2020; TPR, the percentage of articles of journals in total publications.

(Figure 5). The numbers on the bubbles reflect the number

of publications. “Environmental Sciences and Ecology” is the

dominant research direction in the ARB field. From 2010

to 2020, the number of publications in this field increased

and was the greatest overall, and it showed significant annual

growth since 2017. “Microbiology” is also a research direction

of increasing concern. The number of publications related to

“Microbiology” every year is also on the rise, although a certain

gap is observed. Compared with “Environmental Sciences

and Ecology,” “Microbiology” received greater attention in

the initial stage. Previously, the number of publications in

the “Engineering” direction increased slowly but substantially

between 2018 and 2020. The number of publications related

to “Materials Science” was low in the initial phase but

increased significantly after 2015, reaching a peak in the last

2 years.

Analysis of author keywords

A keyword collection based on abundant academic findings

in a research field over a long period of time can reveal

the overall characteristics, developmental trends, and internal

connections of such research. The top 30 author keywords

from 2,823 publications were sorted and displayed in a bubble

chart (206–209) in this study (Figure 6). The number on the

bubble represents the times that the author keywords appeared

in the corresponding year. In this paper, we combined author

keywords with the same meaning through the DDA. Eventually,

a total of 5,506 author keywords were obtained. Among them,

4,276 author keywords appeared only once, which accounted for

77.67%; 573 author keywords appeared twice, which accounted

for 10.41%; and 6 author keywords appeared more than 100

times, which accounted for ∼0.11%. Among them, “Antibiotic
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TABLE 4 Contribution of the top 20 authors in ARB research.

Rank Author TP TAR TC ACPP h-index Institution (current), country/region

1 Manaia, CM (148–150) 33 20 3,296 99.88 24 Univ Catolica Portuguesa, Portugal

2 Rizzo, L (151–153) 26 22 2,704 104 19 Univ Salerno, Italy

3 Fatta-Kassinos, D (154–156) 21 9 3,754 178.76 16 Univ Cyprus, Cyprus

4 Larsson, DGJ (157–159) 17 9 2,036 119.76 15 Univ Gothenburg, Sweden

5 Nunes, OC (160–162) 16 8 1,358 84.44 13 Univ Porto, Portugal

6 Pruden, A (140, 163, 164) 14 6 1,335 95.36 11 Virginia Tech, USA

7 Topp, E (165–167) 14 6 1,866 133.29 13 Agr and Agri Food Canada, Canada

8 Webster, TJ (168–170) 13 12 673 51.77 11 Northeastern Univ, USA

9 Schwartz, T (67, 171, 172) 12 2 2,687 223.92 11 Karlsruhe Inst Technol, Germany

10 Boopathy, R (173–175) 11 11 320 29.09 9 Nicholls State Univ, USA

11 Harnisz, M (176–178) 10 2 569 56.9 9 Univ Warmia and Mazury, Poland

12 Hong, PY (179–181) 10 9 347 34.7 9 King Abdullah Univ Sci and Technol, Arabia

13 Korzeniewska, E (182, 183) 10 6 569 56.9 9 Univ Warmia and Mazury, Poland

14 Pamer, EG (184–186) 10 6 1,481 148.1 8 Mem Sloan Kettering Canc Ctr,USA

15 Suzuki, S (187–189) 10 7 983 98.3 10 Ehime Univ, Japan

16 Ahn, J (190–192) 9 9 58 6.44 4 Kangwon Natl Univ, South Korea

17 Call, DR (193–195) 9 3 153 17 5 Washington State Univ, USA

18 Guo, MT (196–198) 9 9 312 34.67 9 Tongii Univ, China

19 Lundborg, CS (199–201) 9 1 402 44.67 8 Karolinska Inst, Sweden

20 Zhang, T (202–204) 9 3 1,223 135.89 8 Univ Hong Kong, China

TP, total papers; TAR, total number of articles for which they are responsible; TC, total citations; ACPP, average citations per publication.

resistance,” “Antibiotic-resistant bacteria,” “Antibiotics,” and

“Antibiotic resistance genes” had the highest appearance

frequency. Much of the research on “Antibiotic resistance” has

focused on the existence of “Antibiotics,” “Antibiotic-resistant

bacteria,” and “Antibiotic resistance genes” in “Wastewater” and

the environment and associated removal techniques. There are

also many related studies on “Antibiotics,” “Antimicrobials,”

“Antimicrobial peptides,” “MRSA,” “Nanoparticles,” and “Muti-

drug resistant bacteria”.

The cross-correlation plot shows that two keywords

occurred in one paper at the same time. Through the co-

occurrence analysis of author keywords, the cross-connection

between each author keywords can be better revealed. We

designed a cross-correlation plot of the leading 30 author

keywords by DDA (Figure 7). The size of the circle reflects

how frequently the author keywords appear in total articles; the

line connecting the two circles indicates that the two author

keywords appear in the same article. The dashed line indicates

a correlation between the two author keywords ranging from

0.25 to 0.5, and the solid line means 0.5–0.75. Undoubtedly,

the author keywords with the highest frequency also correspond

to the largest circles. We can also clearly discover that the

author keywords appearing at the same time as “Antibiotic

resistance” are the most, indicating that their research scope

is wider. Among them, “Antibiotic-resistant bacteria” and

“Antibiotic resistance genes,” “Resistance” and “Antibiotics,”

“Phage therapy” and “Bacteriophage,” “Enterobacteriaceae” and

“ESBL”, and “Antibiotic resistance genes” and “Tetracycline” are

five pairs of closely related keywords, indicating that those two

keywords had a high frequency of appearing simultaneously in

an article.

Analysis of ESI highly cited papers

The frequency of citations is a valuable metric for evaluating

the impact of scientific papers (210, 211). The ESI highly cited

papers refer to papers published in the last decade that presented

a citation frequency ranked within the top 1% worldwide within

the previous 2 months. Therefore, this paper adopts ESI highly

cited papers to explore the hot topics of recent studies. The top

20 most cited papers in the ARB field from 2010 to 2020 are

revealed (Table 6). Among these papers, the USA contributed

4 papers and the UK, Sweden and China each contributed 3

papers. Investigations to determine how antibiotic resistance

develops in bacteria is the most frequently subject. Studies

have focused on the main mechanisms of antibiotic resistance.

The impact of ARB infection on humans is also of particular

concern. In 2015, ARB infections were estimated to cause

numerous deaths in Europe, with a high burden in infants

and elderly individuals. Antibiotic resistance in wastewater

has been a hot research topic in the last decade, with many
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TABLE 5 Contribution of the top 20 research areas in ARB field.

Rank WOS research area TP TPR (%) TC ACPP h-index

1 Environmental sciences and ecology 697 24.69 28,631 41.08 83

2 Microbiology 545 19.306 23,188 42.55 71

3 Engineering 317 11.229 13,193 41.62 62

4 Pharmacology and pharmacy 314 11.123 8,238 26.24 46

5 Chemistry 296 10.45 9,583 32.38 51

6 Science and technology—other topics 279 9.883 8,932 32.01 55

7 Infectious diseases 261 9.246 11,324 43.39 42

8 Biotechnology and applied microbiology 210 7.439 5,330 25.38 41

9 Biochemistry and molecular biology 195 6.908 5,829 29.89 41

10 Water resources 159 5.632 6,370 40.06 39

11 Materials science 155 5.491 4,824 31.12 40

12 Public, environmental and occupational health 151 5.349 4,160 27.55 31

13 Immunology 109 3.861 4,722 43.32 33

14 Food science and technology 98 3.472 2,023 20.64 24

15 Veterinary sciences 82 2.905 995 12.13 18

16 Agriculture 76 2.692 1,978 26.03 24

17 General and internal medicine 71 2.515 3,320 46.76 25

18 Physics 51 1.807 1,490 29.22 21

19 Marine and freshwater biology 49 1.736 725 14.8 17

20 Biophysics 43 1.523 1,213 28.21 21

TP, total papers; TRP, percent of total articles in the field; TC, total citations; ACPP, average citations per publication.

studies related to Enterococcus and Escherichia coli. In addition,

Acinetobacter baumannii, Pseudomonas aeruginosa (218),

vancomycin-resistant Enterococcus (VRE) and methicillin-

resistant Staphylococcus aureus (MRSA) (219) have a relatively

large impact on humans and have recently received more

attention. Guidelines for biological risk assessments of ARB

production and transmission in the environment have also been

controversial subjects in recent years because of their important

roles in controlling antibiotic resistance in the environment.

Analysis of ESI hot papers

ESI hot papers are papers published in the last 2 years

that have a citation frequency ranked within the top 0.1%

worldwide in the previous 2 months. Three ESI hot papers

published in 2020 were identified (Table 7). The hottest papers

in the last 2 years describe the generation and fate of

antibiotics, ARB and ARGs in sewage treatment plants around

the world. The second paper reviews the research progress of

antimicrobial nanofiber wound dressings since 2015, especially

recent advances in biohybrid dressings made from cross species.

The last hot paper summarizes the physicochemical properties

of 5 photothermal agents and their application in antimicrobial

photothermal therapy.

Latest developments

From January 2021 to 2022, 19 highly cited papers in total

met the search conditions, among which 2 were hot papers.

The research contents of these highly cited papers mainly

focus on the three aspects as follows. Initially, there are many

researches on substances and preparations that can play an

antibacterial role. For example, the antibacterial mechanism

of nanomaterials (222), and molecularly imprinted polymers

(223), the research review of antibacterial peptides in the

source, structure, clinical trials (224), etc., the mechanism of

prebiotics to remove intestinal pathogens (225), as well as the

activity and antibacterial mechanism of antimicrobial agents

from plants (226). Secondly, there are also many studies on

the existence of micro pollutants, including the distribution and

concentration of antibiotic resistance genes in the environment

(227), the pollution status, sources and potential risks of

antibiotics in surface water (228), and the production and

removal of resistant microorganisms in hospital wastewater

(229). What’s more, these studies also touched upon aspects

of water treatment technology, such as the mechanism of

action of photocatalytic removal of antibiotics and inactivated

bacteria (230), the effect of ozone removal of ARB and ARGs

(231), and the overview of microalgae for environmental

remediation (232).
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FIGURE 5

Bubble chart of top 20 ARB research areas.

Discussion

Emerging research elements

According to the statistical analysis of author keywords

from 2010 to 2020, new author keywords have emerged in this

field. Since the new author keywords appear less frequently,

which has not shown in the chart. Here only introduce the new

author keywords that appear comparatively more frequently.

The 2019 COVID-19 pandemic, triggered by SARS-CoV-2

(233–236), has placed a tremendous burden on both the

health care system and human society (237–239). It was found

that the incidence of carbapenem-resistant Enterobacteriaceae

infections have rapidly increased in critically ill patients with

COVID-19 (240). Surprisingly, maintaining social distance has

been shown to help reduce the transmission of SARS-CoV-2

and ARB (241). In addition, polypeptides are not only potential

substitutes for the treatment of ARB infection but are also

effective in the treatment of COVID-19 (242). Nanoparticles are

not only effective antibacterial agents but also antibacterial drug

delivery carriers. Electrospinning represents a new technology

for preparing nanofibers in the last 2 years, and it is very

suitable for generating antibacterial nanomaterials because

nanomaterials produced using this technology have a large
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FIGURE 6

Bubble chart of the top 30 author keywords by year.

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1002015
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2022.1002015

FIGURE 7

Cross-correlation graph of the top 30 author keywords.

specific surface area and controllable structure (221, 243). In the

past 2 years, studies have linked machine learning with ARB

identification. Compared with traditional DNA sequencing,

spectral diagnostic data are analyzed by machine learning

algorithms to accurately identify ARB and ARGs (244, 245).

In addition, studies have applied machine learning models for

the early prediction of subclinical mastitis to reduce the risk of

ARB (246).

Future research directions

It is well known that the goal of studying antibiotic resistant

bacteria is to resist ARB by understanding the mechanisms of

the generation, evolution as well as transmission of the antibiotic

resistance, such as the implement of sewage treatment processes;

to find effective methods to reduce the harm caused by antibiotic

resistant bacteria to global humankind and ecosystem, such

as the research and development of new antibiotics, antibiotic

substitutes, adjuvants.

According to the author keywords bubble chart (Figure 6),

cross-correlation graph (Figure 7) and ESI highly cited papers

(Table 6), it can be found that the research on antibiotic

resistance has been the first place and plays a leading role in

this field for the last decade. The scope of research mainly

includes the existence of antibiotic resistance in the aquatic

systems (247), sewage treatment processes, and negative effects

(248, 249). This may be related to the early abuse of antibiotics

(250) in many countries, such as China (142, 251–254), USA

(255, 256), India (257), Italy (258), and so on. It is undeniable

that those studies play a significant role in the understanding

of antibiotic resistance. However, some studies have pointed out

that MRSA existed long before the antibiotics was used (259).

Mutations in microbial metabolism can also lead to antibiotic

resistance (260). This just goes to show that our understanding

of antibiotic resistance is not thorough enough. Further research

on the induction factors and relevant mechanisms that lead to

antibiotic resistance is required in the future.

According to the ESI hot papers (Table 7), nanomaterials

have been the hottest topic in this field in the last 2 years,

which is closely related to their superior antibacterial properties.

However, according to the author keywords bubble chart

(Figure 6) and cross-correlation graph (Figure 7), it can be found

that the research on antimicrobial peptides and bacteriophages

has gradually increased in the last decade but has not received

enough attention. Peptide-based antibiotics have been found to

be effective against MDRB because bacterial resistance responds

slowly to the action mode of peptide natural products (261).

Encrypted peptide kills bacteria by targeting the cell membranes

of pathogenic bacteria and is not susceptible to selective

resistance (262). At present, research has found candidate

peptide antibiotics in human intestinal flora using machine

learning (263), which breaks through the path dependence on

the traditional antibiotic discovery. Bacteriophages have been
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TABLE 6 The top 20 most cited publications of ESI in ARB research field during 2010–2020.

Rank Corresponding

authors

Title TC TCY Publication

year

Journal Country/Region

1 Piddock, LJV Molecular mechanisms of antibiotic resistance (6) 1,578 263 2015 Nat. Rev. Microbiol. UK

2 Tacconelli, E Discovery, research, and development of new antibiotics: the

WHO priority list of antibiotic-resistant bacteria and

tuberculosis (35)

1,350 450 2018 Lancet Infect. Dis. Germany

3 Rizzo, L Urban wastewater treatment plants as hotspots for antibiotic

resistant bacteria and genes spread into the environment: a

review (18)

1,184 148 2013 Sci. Total Environ. Italy

4 Manaia, CM Tackling antibiotic resistance: the environmental framework

(212)

896 149.33 2015 Nat. Rev. Microbiol. Portugal

5 Cassini, A Attributable deaths and disability-adjusted life-years caused

by infections with antibiotic-resistant bacteria in the EU and

the European Economic Area in 2015: a population-level

modeling analysis (23)

814 407 2019 Lancet Infect. Dis. Sweden

6 Cotter, PD Bacteriocins—a viable alternative to antibiotics? (55) 804 100.5 2013 Nat. Rev. Microbiol. Ireland

7 Fleming-Dutra, KE Prevalence of inappropriate antibiotic prescriptions among

US ambulatory care visits, 2010–2011 (9)

736 147.2 2016 JAMA-J. Am. Med.

Assoc.

USA

8 Andersson, DI Microbiological effects of sublethal levels of antibiotics (10) 744 106.29 2014 Nat. Rev. Microbiol. Sweden

9 Gilmore, BF Clinical relevance of the ESKAPE pathogens (31) 634 79.25 2013 Expert Rev.

Anti-Infect. Ther.

UK

10 Guidos, RJ 10× ’20 Progress-development of new drugs active against

gram-negative bacilli: an update from the Infectious Diseases

Society of America (34)

539 67.38 2013 Clin. Infect. Dis. USA

11 Xagoraraki, I Release of antibiotic resistant bacteria and genes in the

effluent and biosolids of five wastewater utilities in Michigan

(213)

551 55.1 2011 Water Res. USA

12 Zhu, YG Antibiotic Resistome and its association with bacterial

communities during sewage sludge composting (214)

484 80.67 2015 Environ. Sci.

Technol.

China

13 Larsson, DGJ Management options for reducing the release of antibiotics

and antibiotic resistance genes to the environment (140)

434 54.25 2013 Environ. Health

Perspect.

Sweden

14 Czaplewski, L Alternatives to antibiotics-a pipeline portfolio review (47) 413 82.6 2016 Lancet Infect. Dis. UK

15 Xagoraraki, I Correlation of tetracycline and sulfonamide antibiotics with

corresponding resistance genes and resistant bacteria in a

conventional municipal wastewater treatment plant (215)

437 48.56 2012 Sci. Total Environ. USA

(Continued)
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found in human intestines either, which are in a harmonious

symbiotic relationship with intestinal flora, rather than an

antagonistic mode (264). Bacteriophage related therapies are in

the concern once more (265). In addition, there has been also

some progress in the relationship between intestinal flora and

antibiotic resistance (266), the effect of antibiotics on intestinal

flora (267), the effect of vaccines on antibiotic resistance (268),

and antibiotic-resistant bacterial inhibitors (269). However,

these studies are not thorough enough (270, 271). Therefore, it

is necessary to pay attention to the diversification of research

and strengthen the research on antibiotic substitutes, human

intestinal flora and adjuvants in the future.

Antibiotic resistance imposes a heavy burden on human

beings. A study on the worldwide burden of antibiotic resistance

(272) found that the mortality in the whole age interval caused

by antibiotic resistance is the highest in the Africa. Pseudomonas

aeruginosa, MRSA and otherMDRB have caused a large number

of deaths. This suggests that low-resource settings bear the

heaviest burden, which is consistent with the statistical analysis

of this study in the leading countries or regions (Table 1), leading

institutions (Table 2) and leading authors (Table 4). Although

countries in Africa have made some contributions in this field

(273–278), the relevant research is not sufficient and is not in

the leading position, the understanding of antibiotic resistant

bacteria is not enough. According to the author keywords bubble

chart (Figure 6), it can be found that MRSA, Pseudomonas

aeruginosa and other MDRB have received more attention

in recent 2 years (279). The extremely strong resistance not

only causes great losses to humans, but also threatens the

existing antibiotics. Studies have shown that the COVID-19

pandemic has led to overuse of antibiotics in many areas, which

will aggravate the antibiotic resistance (280, 281). Therefore,

every country needs to establish strict antibiotic prescription

guidelines to regulate antibiotic use. However, one study has

shown that reducing antibiotic prescriptions cannot stop the

spread of antibiotic resistant (282). There is a gap between

antibiotic stewardship in the paper and in practice (283). Even

treatments that match susceptibility of pathogens may result in

resistance, because the development of antibiotic resistance is

essentially driven by rapid re-infection of different strains of

the patient with prescription resistance (284), and they suggest

that the personalized antibiotic treatment suggestions can be

given by predicting the patient’s past infection or history using

the machine learning, thus reducing the emergence of ARB.

However, ARB can circulate and transfer between humans and

animals. Therefore, it is not enough to reduce the propagation

of antibiotic resistance by simply managing the use of antibiotic

in human beings. There is no boundary among environment,

animal and human beings. The control of antibiotic resistance

requires simultaneous communication and cooperation of these

three fields, rather than the separation of them (285).

In conclusion, this research proposed the possible future

research direction in the field of ARB by starting from the
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TABLE 7 The hot papers of ESI in ARB research field.

Rank Corresponding authors Title TC Publication year Journal Country/Region

1 Wang, JL Occurrence and fate of antibiotics,

antibiotic resistant genes (ARGs) and

antibiotic resistant bacteria (ARB) in

municipal wastewater treatment plant:

an overview (220)

155 2020 Sci. Total Environ. China

2 Boccaccini, AR Antibacterial biohybrid nanofibers for

wound dressings (221)

146 2020 Acta Biomater. Germany

3 Peng, Q Nanomaterials-based photothermal

therapy and its potentials in

antibacterial treatment (44)

67 2020 J. Control. Release China

TC, total citations.

aspects of controlling the transmission of ARB and developing

new antibiotics. Aspect of relevant research on new antibacterial

agents: As peptide-based antibiotics have potential to defend

against the ARB, many scholars are paying attention to its

design and development (286–288). However, studies show that

some problems occur after this kind of antibiotics are used, for

example, it causes short half lives in vivo, protease degradation

and others (289). Therefore, the research on the interaction

between peptide-based antibiotics and human bodies (290, 291)

and the decoration of its chemical structure (261) shall be

further conducted in the future. In addition, it is inevitable

for peptide-based antibiotics to become drug-resistant, despite

its relatively low possibility of becoming antibiotic resistant.

So, it is required to concern how to limit the drug resistance

rate of new peptide-based antibiotics in the future. In the

future, it is possible to research how to use bacteriophages to

recover the complexity of damaged microbiota and how to use

bacteriophages to operate HGT microbial genomes in microbial

flora from the mutual beneficial aspect between intestinal

bacteria and bacteriophages (264). Aspect of controlling the

transmission of ARB: In conclusion, corresponding measures

shall be taken on three aspects including humans, animals

and environment to control the transmission of ARB in the

future. On the aspect of humans, concerning the gap between

antibiotics management and research and the actual situation

(283), it is required to research the actual using condition

antibiotics in humans across the world. In addition, it is equally

important to reduce the use of antibiotics so as to control the

generation and transmission of antibiotic resistance, especially

in countries short of resources (292). Therefore, it is demanded

to research the measures on how to reduce the use of antibiotics

in the future, for instance, to develop relevant vaccines or

hygiene system (293, 294), etc. On the aspect of environment,

wastewater can transmit ARB and ARGs not only to humans,

but also to the ecological environment (19). Despite the growing

number of studies on sewage treatment, there is still a lack of a

unified standard and program for sewage treatment. In terms of

animal husbandry and aquaculture, a global policy is required

to control the use of antibiotics on animals and prevent the ARB

and ARGs from spreading to humans through food chains (295).

What’s more, we should also research how to use and manage

antibiotics jointly from the three aspects of humans, animals and

environment. It is possible to develop toward the direction of

constructing the biological risk assessment platform (296) and

electronic monitoring system (293, 297).

Conclusions

In this study, we provided a research overview of the field

of ARB. Over time, ARB have become a global threat, and

an increasing amount of related research has been carried

out. Both developed countries, represented by the USA,

and developing countries, represented by China, have made

significant contributions to this field. There are relatively few

relevant studies from Africa, but antibiotic-resistant bacterial

infections in Africa are of great concern (298). ARB represent

an interdisciplinary research field, with most studies focused

on environmental and microbial aspects. Particularly, antibiotic

resistance is not only a research focus in this field but also

a research hotspot. Although some progress has been made

with novel antibiotics, further research is still needed (299–

301). In the future, we can strengthen the financial support

(302) and technical and knowledge cooperation (303) for the

research and development of new antibacterial drugs (304–306),

etc. In this case, bacteriocins, phage therapy, nanomaterials,

human intestinal flora and machine learning have inspired hope

for the treatment of ARB infection. However, further relevant

studies are still needed in the future. Since 2021–2022 related

publications are not included, this study provides an overview of

the latest research progress in this field based on the 2021–2022

ESI highly cited papers in the field of ARB.
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Certain limitations were observed in this study. For

example, articles without authors keywords were not included

in the analysis. In summary, this study will hopefully inspire

researchers in the field of ARB and assist them in further

understanding the research trends, research hotspots, and

future research directions in this field. Although WOS has

covered many publications, however, some publications from

database such as Scopus, PubMed, may not be included in

this study.
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