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Coronavirus disease 2019 (COVID-19) spread worldwide and presented a

significant threat to people’s health. Inappropriate disease assessment and

treatment strategies bring a heavy burden on healthcare systems. Our study

aimed to construct predictive models to assess patients with COVID-19 who

may have poor prognoses early and accurately. This research performed a

retrospective analysis on two cohorts of patientswith COVID-19. Data from the

Barcelona cohort were used as the training set, and data from the Rotterdam

cohort were used as the validation set. Cox regression, logistic regression,

and di�erent machine learning methods including random forest (RF), support

vector machine (SVM), and decision tree (DT) were performed to construct

COVID-19 death prognostic models. Based on multiple clinical characteristics

and blood inflammatory cytokines during the first day of hospitalization for

the 138 patients with COVID-19, we constructed various models to predict

the in-hospital mortality of patients with COVID-19. All the models showed

outstanding performance in identifying high-risk patients with COVID-19. The

accuracy of the logistic regression, RF, and DT models is 86.96, 80.43, and

85.51%, respectively. Advanced age and the abnormal expression of some

inflammatory cytokines including IFN-α, IL-8, and IL-6 have been proven to

be closely associated with the prognosis of patients with COVID-19. The

models we developed can assist doctors in developing appropriate COVID-19

treatment strategies, including allocating limited medical resources more

rationally and early intervention in high-risk groups.
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Introduction

Syndrome coronavirus-2 (SARS-CoV-2) is the causative

agent of coronavirus disease 2019 (COVID-19), which infected

more than 180 million people. Compared with a similar

acute respiratory syndrome caused by the severe acute

respiratory syndrome coronavirus, COVID-19 seems milder

but more infectious (1). After being infected with COVID-19,

patients’ characteristics vary. Some patients became clinically

asymptomatic or had mild cases of fever, cough, fatigue,

and other symptoms. However, some people became patients

with severe COVID-19 and even lost their lives (2–4). Due

to inappropriate assessments and treatment, strategies were

detrimental to the patient’s health and promoted SARS-CoV-2

to become a global societal problem, which has caused over 4

million deaths to date (5). Therefore, identifying patients with

poor prognoses as early as possible for necessary interventions

is an essential direction for the treatment of COVID-19, which

will significantly improve the prognosis of patients and release a

tremendous burden on the medical care system.

The immune system and inflammatory syndrome have

been proven to play a crucial role in COVID-19 infection

(6). Inflammatory cytokines are critical mediators that oversee

and regulate immune and inflammatory responses via complex

networks and serve as biomarkers for many diseases (7).

According to previous studies (8–10), inflammatory cytokines

were closely related to the progression, complications, and

mortality of COVID-19. Universally, these studies paid attention

to the relationship between cytokines and disease severity.

However, few researchers specifically employed cytokines to

construct a model for predicting the prognosis of patients

with COVID-19.

Machine learning (ML) algorithms have been widely applied

in the medical field, including diagnosing and predicting

prognosis. ML models are also used in every aspect of the

diagnosis and treatment of COVID-19 due to their fantastic

data processing capabilities. Previous ML studies have used

multiple indicators, including clinical and blood text indicators,

to determine the prognosis of patients with COVID-19. Due

to cytokine tests’ simplicity, high efficiency, and accuracy, they

gradually became an alternative plan for the early prediction of

COVID-19 prognosis. Abers et al. (11) fit a Cox proportional

hazard to screen the mortality-related inflammatory cytokines.

Patterson et al. (12) applied ML methods for the early

identification of patients with severe COVID-19 based on

cytokines. Mueller et al. (13) classified patients with COVID-19

into different subgroups according to inflammatory cytokines

and applied the immunotypes to predict long-term post-

COVID-19 complications. However, there are no available

models for early prediction of the death of patients with COVID-

19 based on blood inflammatory cytokines for clinical work.

Constructing a predictive model that can be applied in the clinic

seemed urgent. Therefore, in this research, we made use of data

collected by Mueller et al. (13), containing 138 inpatients with

COVID-19, to construct multiple models based on different

algorithms, including logistic regression, random forest (RF),

and decision tree (DT) to predict patient deaths.

Methods

Data acquisition

In this research, we obtained COVID-19 data from a dataset

of Mueller et al. (13) after obtaining author approval. The data

were from a finished cohort study, which has been approved by

the Ethics Committee for Research with Medicines of Hospital

Universitari Vall d’Hebron and Erasmus University Medical

Center (13). Therefore, we do not require reapproval from

the ethics committee for this study. The dataset contained

138 patients with COVID-19 from two independent cohorts

(Rotterdam cohort n = 50 and Barcelona cohort n = 88).

Clinical parameters and laboratory data for each patient during

the first 24 h of hospitalization were included in the dataset.

Final clinical outcomes were classified into discharge from the

hospital and in-hospital death. All inpatients in the study cohort

were older than 18 and SARS-CoV-2 positive diagnosed by

reverse transcription-polymerase chain reaction (RT-PCR) test

and were sampled at hospital entry. Dataset included cytokines

measured through the ELLA Simple Plex system and ELISA kits.

The COVID-19 antibody concentration in serum was measured

through ELISA, and other clinical indicators were obtained by

routine tests. Data acquisition is presented in the study by

Mueller et al. (13).

Data preprocessing

First, we binarized the outcome variables into Booleans.

We used mean value interpolation to substitute missing values,

which was widely used and proved effective for missing values

in datasets. Thankfully, no missing values in the COVID-19

patients’ cytokines values ensured the model’s reliability. We

used the Barcelona cohort to construct the model and applied

the Rotterdam cohort as an independent external validation set.

Patients’ inflammatory cytokine values from the training and

validation datasets were loaded into R software (version 4.1.0).

R packages “vegan” and “stats” were applied to perform the

principal component analysis (PCA) and draw the PCA figure.

Besides, we used “ggplot2” for the figure drawing.

Our research selected the following five algorithms: Cox

regression, logistic regression, RF, support vector machine

(SVM), and decision tree (DT). COVID-19 cases located in

different areas were conducted to verify the accuracy of each

model to ensure the model’s reliability. In the logistic regression
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FIGURE 1

The flowchart of our research. LR, logistic regression; RF, random forest; DT, decision tree.

model, we input all the inflammatory cytokine values, age, and

sex into the logistic regression in the training set. Then, the

variables with p < 0.1 in the single logistic regression were

filtered for the following research. We applied multiple logistic

regression (backward: likelihood ratio method) multivariate

analysis for the hub variables, and the coefficients derived

were used to generate a prognostic model. A prognostic model

was constructed based on the logistic regression coefficients.

For verification, we generated ROC and calibration curves to

calculate the model results for the training set and validation set.

The area under the curve (AUC) and 95% confidence interval

(CI) were used to verify the model efficiency. Moreover, to

obtain amore comprehensive evaluation of the application value

of the signature, decision curve analysis (DCA) was performed,

demonstrating the net benefit to the patients with COVID-19

after applying the model for prognosis. These steps above were

finished using SPSS (version 26.0) and Stata software (version

16). The Cox regression was performed using STATA (version

16), too. The Cox prognostic model was based on the Cox

regression coefficients. The ROC and DCA were both drawn to

evaluate the model.

In supervised ML, we evaluated the residuals of both

methods for the model’s accuracy and compared the residuals

in our research. After confirming that the RF model is a better

method with fewer residuals, we created an RF model to obtain

the variables’ significance. Artificial neural network (ANN)
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TABLE 1 Characteristics of patients with COVID-19.

Variables Training cohort and testing cohort P value

All patients

(n = 138)

Barcelona cohort

(n = 88)

Rotterdam

cohort (n = 50)

Age 62 (54–70) 61 (50–70) 63 (57.25–69) 0.072

Male (n, %) 91 (65.9%) 58 (65.9%) 33 (66.0%) 0.991

WHO score (Entry) 0.000

3 38 (27.5%) 34 (38.6%) 4 (8.0%)

4 60 (43.5%) 31 (35.2%) 29 (58.0%)

5 20 (14.5%) 12 (13.6%) 8 (16.0%)

6 12 (8.7%) 10 (11.4%) 2 (4.0%)

7 8 (5.8%) 1 (1.1%) 7 (14.0%)

Laboratory test

CRP (mg/L) 113 (70, 117.4) 129.5 (76.7,186.8) 97.5 (57.8, 151.4) 0.126

Ferritin (µg/L) 757 (406.7,

1,031.5)

712 (375.8, 954) 882.5 (494.5, 1,131) 0.122

Leukocytes (x109/L) 7.6 (6.1, 9.9) 7.0 (5.1, 10.0) 7.5 (5.9,9,8) 0.338

Neutrophils (x109/L) 6.1 (4.6, 8.0) 5.5 (3.7, 7.7) 5.9 (4.2, 8.0) 0.223

Lymphocytes (x109/L) 1.1 (0.8, 1.4) 1.1 (0.8, 1.5) 1.1 (0.8, 1.4) 0.506

Monocytes (x109/L) 0.5 (0.3, 0.7) 0.4 (0.3, 0.6) 0.5 (0.3, 0.6) 0.164

Thrombocytes (x109/L) 211 (165.5,

288.8)

234 (150.8, 299) 223 (163.5, 292) 0.978

Outcomes

LOS 13.5 (4, 30.3) 7 (2, 33.25) 14.5 (7.75, 24.75) 0.108

ICU LOS 0 (0, 16.3) 0 (0, 17) 0 (0, 15) 0.759

Mortality 27 18 9 0.825

BRI, balanced response immunotype; EXI, excessive inflammation immunotype; LAI, low antibody immunotype; CRP, C-reactive protein; LDH, lactate dehydrogenase.

model training was performed, and the ROCs were used to

verify the model efficiency. What is more, we constructed a DT

based on all inflammatory cytokines, sex, and age through the

R package “rpart” and calculated the accuracy of the DT in the

training set and validation set. The RF model was constructed

using R packages “randomForest” and “neuralnet.” DT was

finished through R package “rpart.” Additionally, the R package

“pROC” was applied to perform ROC.

A flowchart is shown in the Figure 1 to help readers better

understand the complete analysis steps.

Results

Characteristics of the patients

There are 138 patients with COVID-19 participating

in our study cohort. There were 27 (19.6%) deceased

cases, containing 18 (13.0%) dead cases in the Barcelona

cohort and 9 (7.0%) dead cases in the Rotterdam cohort.

In Table 1, we listed the characteristics of each variable

in both cohorts. We found no significant differences

between the two cohorts, which ensures the feasibility

and rationality of applying both datasets to model

and validate.

Building a logistic regression model to
classify patients and evaluate the model

We compared the patients with COVID-19 with different

outcomes. There existed a significant difference between survival

and death cases in age, some antibodies, and cytokines,

indicating that these characteristics might play a key role in

promoting death (Table 2).

All the inflammatory cytokines, sex, and age of the training

set were used as input variables to perform single logistic

regression. Five variables, including IL8, IL6, IFN-α, and IL17-

α, and age with p < 0.1 might play a vital role in the COVID-19

patients’ classification (Table 3). Multivariate analysis revealed

that there were four variables with p < 0.05. The logistic

regression model was constructed based on these four hub

variables (Table 3).

The AUC of the model in the training set was 0.919

and in the validation set was 0.7236 (Figures 2A,B). Both
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TABLE 2 Characteristics of two cohorts.

Variables Barcelona cohort (n = 88) Rotterdam cohort (n = 50)

Survival (n = 70) Mortality (n = 18) P value Survival (n = 41) Mortality (n = 9) P value

Age 57.16± 13.8 70.4± 10.5 0.000 63.4± 10.1 71.8± 15.0 0.047

Male (n, %) 49 (70%) 9 (50%) 0.095 27 (65.9%) 6 (66.7%) 1.000

Laboratory data

CRP (mg/L) 125.8 (72.7, 183.7) 129.5 (102.0, 249.7) 0.2 101 (69.3, 148) 108 (43.8, 220.8) 0.97

Ferritin (µg/L) 649.5 (324,958.3) 954 (601.8, 954.0) 0.221 882.5 (539.3, 1,108) 856.5 (485.5, 1,177.5) 0.82

Leukocytes (109/L) 7.5 (6.2, 9.6) 8.5 (5.9, 12.4) 0.277 7.2 (5.2, 10.3) 6.4 (4.1, 10.4) 0.419

Neutrophils (109/L) 5.9 (4.7, 7.8) 6.6 (4.4, 9.8) 0.238 6.1 (3.8, 8.3) 4.7 (3.3, 5.6) 0.289

Lymphocytes (109/L) 1.1 (0.9, 1.4) 0.9 (0.8, 1.3) 0.333 1.1 (0.8, 1.5) 0.9 (0.7, 1.3) 0.254

Monocytes (109/L) 0.5 (0.4, 0.7) 0.4 (0.3, 0.8) 0.63 0.4 (0.3, 0.6) 0.3 (0.2, 1.1) 0.361

Thrombocytes (109/L) 211 (166.5, 282) 219 (154.5, 300.5) 0.926 244.8 (178.0, 332.8) 126.5 (85.3, 184.8) 0.005

Cytokines and anti-body

anti-N IgM 11 (11, 13.9) 11 (11, 15.4) 0.911 11 (11.0, 23.7) 11 (11.0, 11.0) 0.045

anti-N IgG 11.6 (11, 27.5) 11 (11, 39.8) 0.819 18.6 (11.0, 33.1) 11.0 (11.0, 11.9) 0.014

anti-N IgA 20.7 (11, 61.7) 11 (11,64.1) 0.415 21.0 (11.0, 49.1) 11.0 (11.0, 12.8) 0.011

TGFb1 32,599.5 (23,850, 40,977.8) 31,597.5 (20,318, 44,350) 0.664 35,709 (26,997.5, 48,028.5) 18,182.5 (10,165.3, 30,744.0) 0.003

IL5 0.3 (0.1, 0.5) 0.4 (0.1, 1.4) 0.259 0.7 (0.4, 1.7) 0.9 (0.1, 4.0) 0.544

IFNg 7.2 (2.6, 18.6) 2.3 (1.1, 7.6) 0.014 7.4 (2.8, 19.3) 14.8 (3.4, 35.1) 0.456

IFNa 7.8 (1.5, 27.0) 13.6 (1.5, 75.9) 0.47 5.1 (1.5, 15.5) 22.7 (2.0, 78.8) 0.038

CCL2 541.5 (381, 804.3) 766.5 (552, 1,024.3) 0.019 671.0 (520.5, 1,198.3) 1,285.0 (839.3, 1,971.3) 0.086

IL6 44.8 (25.2, 87.4) 106 (47.6, 148.5) 0.007 38.3 (20.8,62.8) 375.3 (51.3, 1,495.3) 0.003

TNFa 18.8 (14.8, 23.6) 24.0 (14.7, 28.3) 0.289 18.6 (14.4, 22.0) 23.6 (17.8, 28.7) 0.029

IL1b 0.6 (0.2, 1.1) 0.5 (0.3, 1.0) 0.692 0.4 (0.2, 0.6) 0.5 (0.4, 1.0) 0.087

IL8 71.1 (40.7, 136.3) 90.1 (62.2, 316.5) 0.053 44.6 (27.2,80.4) 76.9 (32.8, 160.3) 0.093

IL18 385 (314.5, 512) 495.5 (343.3, 851.5) 0.044 493.5 (411.3, 673.0) 590.5 (396.8, 711.0) 0.544

IL10 13.6 (6.7, 22.1) 21 (15.7, 27.9) 0.02 10.4 (7.0, 17.9) 24.1 (16.0, 32.9) 0.003

IL4 0.3 (0.3, 0.3) 0.3 (0.3, 0.3) 0.576 0.3 (0.3, 0.3) 0.3 (0.3, 0.3) 1

IL2 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.785 0.6 (0.6, 0.6) 1.2 (0.6, 1.9) 0.005

IL12p70 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.83 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 1

IL17A 1.1 (1.1, 1.1) 1.1 (1.1, 1.1) 0.246 1.1 (1.1, 1.1) 4.1 (2.7, 9.5) 0

were >0.7, which means that the model possessed good

diagnosability. Besides, we found that the different groups

were separated based on the hub variables (Figures 2C,D) in

the PCA, indicating that these four variables might represent

essential differences between different groups (Figure 2E). We

drew a nomogram to apply our model in clinical work

better. For evaluation, we performed calibration curve plots

that fit well with the diagonal reference line (Figure 2F),

indicating our model’s great performance. DCA is a powerful

method for assessing the degree of patient benefits. This

research applied the DCA for the model in training and

validation sets (Figures 2G,H). The DCA curves revealed that

patients with COVID-19 could obtain net benefits through the

logistic regression model. To establish a more comprehensive

prognosis evaluation system, we applied Cox regression

in Supplementary material 1.

Establishing an ML model to classify
patients and evaluate the model

To improve the diagnostic performance of the model,

we applied ML algorithms, including RF and SVM, to

construct a new model. To reduce the subsequent unnecessary

workload, first, we evaluated the residuals of the SVM and RF

(Figures 3A,B). The results indicated that RF performed better

with fewer residuals. Therefore, we decided to choose RF as the

main ML algorithm to construct a model.

In the next step, all the variables (including cytokines, sex,

and age) were entered into the RF classifier. We set the optimal

parameter mtry to 2 as a default setting. The optimal number

of trees in the classifier was set as 500, maintaining a low

error for the classifier (Figure 4A). We used the perspective of

reducing mean square error to measure the variable importance
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TABLE 3 Logistic regression analysis for mortality of patients in the training set.

Characteristics Univariate logistic regression Multivariate logistic regression

OR (95%CI) P value OR (95%CI) P value

Sex 0.739 (0.259, 2.108) 0.571 - -

Age 1.107 (1.046, 1.173) 0.000 1.140 (1.051, 1.236) 0.002

TGFb1 1.000(1.000, 1.000) 0.153 - -

Il5 1.194 (0.908, 1.569) 0.204 - -

IFNg 0.959 (0.892, 1.032) 0.261 - -

IFNa 1.016 (1.002, 1.030) 0.029 1.023 (1.033, 1.044) 0.026

CCL2 1.000 (1.000, 1.000) 0.854 - -

Il6 1.001 (1.000, 1.002) 0.057 1.002 (0.999, 1.004) 0.179

TNFa 1.037 (0.985, 1.092) 0.167 - -

IL1b 1.484 (0.741, 2.971) 0.265 - -

IL8 1.004 (1.001, 1.007) 0.022 1.004 (1.001, 1.008) 0.015

IL18 1.001 (0.999, 1.002) 0.458 - -

IL10 1.008 (0.992, 1.024) 0.337 - -

IL4 1.941 (0.694, 5.429) 0.206 - -

IL2 4.727 (0.587, 38.075) 0.145 - -

IL12p70 0.954 (0.57, 1.595) 0.857 - -

IL17A 1.689 (1.072, 2.662) 0.024 1.989 (1.140, 3.467) 0.015

The bold values mean that the P-value < 0.05.

of the results (Gini coefficient). To keep our model succinct,

we identified hub variables using a cutoff of importance >2

(Figure 4B). After obtaining the hub variables, we constructed

an ANNmodel through the R package “neuralnet”. Two parallel

training processes were used to construct a scoring model based

on the training set. The ANN topology of the training set

contained eight input layers, five hidden layers, and two output

layers (Figure 4C).

The PCA of hub cytokines from RF and age shows

that patients with COVID-19 with different outcomes

are separate in both training and validation sets,

revealing that the model possesses good discrimination

(Figures 4D,E). In the training set, the AUC of the model

was 0.99 (Figure 4F). Additionally, in the validation

set, the AUC came to 0.783 (Figure 4G). The results

indicated that the model we built possessed advantages in

some situations.

Constructing a DT to classify patients and
evaluate the model

To simplify the model and improve the feasibility of models

for clinical application, we performed DT for all the variables

previously mentioned. DT showed the interrelationship among

the selected variables screened by the DT algorithm. The DT

became the most straightforward tree when the complexity

parameter (CP) was 0.1944444 (Figure 5). The first filtration

age was (≥68 years), and the mortality was 48.27%. The

second combination was IFN-α≥47 pg/ml. The mortality for

patients with COVID-19 within the double combination was

100%. In the training set and validation set, the accuracy of

the DT model was 0.875 and 0.86, respectively. The results

revealed that the DT model considered both effectiveness and

concise usability.

Models’ performance evaluation

We listed the results of the three models’ performance

in overall patients with COVID-19 in our cohort (the data

from the training set and the validation set are merged, 138

patients). According to Figure 6, the models developed by

logistic regression happened to be the highest in accuracy with

86.96% when compared with other models developed by the

RF model and the DT model have 80.43 and 85.51%. While

for sensitivity that shows the mortality rate of patients with

COVID-19 correctly by the models, the logistic regression

model seems to be the beat one with 96.3%, followed by

the RF model with 70.37% and the DT model with 25.93%.

Additionally, for specificity showing the survival rate of patients

with COVID-19 correctly by the models, the DT model

emerged to be the best one with 100%, followed by the

RF model with 81.98% and the logistic regression model

with 63.06%.
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FIGURE 2

The characteristics of logistic regression (LR) signature. (A) The receiver operating characteristic curve (ROC) of signature in the training set. The

area under the curve (AUC) is 0.919, indicating that the signature works well in the training set. (B) The ROC of signature in the validation set.

AUC is 0.7236, indicating that the signature is valuable in the validation set. (C) The principal component analysis (PCA) of hub cytokines and age

shows that patients with COVID-19 with di�erent outcomes are separate in the training set. (D) The PCA of hub cytokines and age shows that

patients with COVID-19 with di�erent outcomes are separate in the validation set. (E) The nomogram of the signature. (F) Calibration curve

plots of the signature. The lowess fits the reference line well, showing that the signature is e�ective. (G) The decision curve analysis (DCA) of the

signature in the training set. (H) The DCA of the signature in the validation set. Both decision curve analyses revealed that patients with

COVID-19 can benefit from applying the LR signature.
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FIGURE 3

The comparison of random forest (RF) and support vector machine (SVM) methods in constructing models. (A) Boxplots of |residual|. The red

dot stands for the root mean square of residuals. (B) Reverse cumulative distribution of |residual|. These results indicate that RF might be more

suitable than SVM to construct a model in our research.

Discussion

This research found that old age and several inflammatory

cytokines played a crucial role in promoting severe COVID-19.

We constructed multiple predictive prognostic models based on

these factors to identify patients with COVID-19 at high risk of

death at hospital entry. Themodels were validated using external

datasets, and all models’ performance is satisfactory. What we

did may provide a novel insight into evaluating COVID-19

patients’ conditions.

SARS-CoV-2, caused by COVID-19, spread worldwide at

an unpredicted speed and brought profound and unfolding

impacts on every aspect of human life. Previous studies revealed

that patients with COVID-19 expressed huge heterogeneous

characteristics, ranging from asymptomatic to losing lives (14,

15). COVID-19 infection affects various systems in the human

body, including the immune system, leading to changes in the

patient’s internal environment and inflammation. Gao et al.

(16) reported that pro-inflammatory cytokines were highly

associated with severe disease. Previous studies had found

that several cytokines were closely related to the development

of COVID-19 but simply considered individual cytokines

as predictive indicators (17, 18). COVID-19 causes immune

dysregulation accompanied by multiple cytokine disturbances,

which is hard to evaluate scientifically with one variable.

Therefore, an effective inflammatory cytokines signature to

comprehensively evaluate the COVID-19 patient’s immune

status must contain multiple variables. Inflammatory cytokines

are texted in serum, which is easy to obtain from inpatients.

The 12 inflammatory cytokines, the most essential and common

series of cytokines, are sufficient to evaluate the patient’s

immune status.

In the research, we filtered out some prominent

inflammatory cytokines in predicting the prognosis of

COVID-19. IFN-α also has immunoregulatory effects,

which might activate inflammatory responses and cause

uncontrolled pathogenic damage (19). Krämer et al. (20)

indicated preferential IFN-α responses in severe COVID-19 and

declared that IFN-α was associated with a poorer COVID-19

infection outcome. Our research found that early high IFN-α

signatures were hazardous features of poor prognoses for

patients with COVID-19. Patients with COVID-19 with old

age and elevated IFN-α levels suffered a very extreme risk

of death. Systemic and autocrine IL-8 loops were essential

neutrophil activation factors for immunopathology, triggering

multiple cell dysfunctions (21). A previous study indicated

that in patients with severe COVID-19, IL-8 might be a

prognostic indicator for in-hospital death and a target for an

effective treatment strategy (22). IL-8 was included in both

the logistic regression and RF models in our research, which

declared a crucial clinical value for this inflammatory cytokine.

IL-6 is one of the most prominent inflammatory cytokines.

According to Mojtabavi et al. (23), the elevated IL-6 level was

an independent risk factor for adverse COVID-19 outcomes.

There had already been several treatment strategies based

on IL-6. Some results of them were reported as encouraging

(24, 25). In our study, IL-6 significantly differed between death

and survival cases in training and verification sets. This result
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FIGURE 4

The RF modeling processes. (A) The influence of the number of decision trees on the error rate. After multiple repetitive operations, the error

becomes stable gradually. (B) Results of the Gini coe�cient method in the random forest classifier. We set importance=2 as a cuto�. (C) Neural

network topology of the microarray with 8 input layers, 5 hidden layers, and 2 output layers. (D) The PCA of hub cytokines and age shows that

patients with COVID-19 with di�erent outcomes are separate in the training set. (E) The PCA of hub cytokines and age shows that patients with

COVID-19 with di�erent outcomes are separate in the validation set. (F) The ROC of signature in the training set. AUC is 0.99, indicating that the

signature is perfect in the training set. (G) The ROC of signature in the validation set. AUC is 0.783, indicating that the signature is good in the

validation set.
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FIGURE 5

The characteristics of decision tree (DT). (A) The relative errors of the DT model and tree size when the complexity parameter comes to an ideal

value. (B) The inter-relationship among selected clinical indicators.

FIGURE 6

LR, RF, and DT models’ performance evaluation results in the whole dataset.

revealed that IL-6 was a stable prognostic factor that could be

applied on a large scale. Maione et al. (26) indicated IL-17A as

a silent amplifier of cytokine storm in patients with COVID-19,

activating several inflammatory pathways. In the clinical work,

researchers identified IL-17A as a target to develop therapeutic

strategies and made some progress (27). In this study, we

screened out a possible link between elevated IL-17A levels and

COVID-19 mortality.

Due to our work, we found that age was a key factor for

all models and scored the highest in the RF model. There

exist significant differences in age between survival and death

cases. O’Driscoll et al. (28) declared that patients with COVID-

19 aged older than 65 years suffered from higher mortality.

Chen et al. (29) stated that age was related to declining

and dysregulation of immune function, which heightened

vulnerability to COVID-19 in elders. Previous researchers set
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the age>65 years as a high risk for severe COVID-19 outcomes

(28, 30). Our DT sets age>68 years as a cutoff of the first

combination, similar to those in previous reports. These results

indicated that age played a major role in contributing to

COVID-19 mortality.

Considering all models involved in this study

comprehensively, the models developed with RF and

logistic regression happened to be two well-rounded

models, with considerable AUC in the training set and

AUC = 0.783 in the validation set and high accuracy.

However, the complexity of these models might bring

some inconvenience in clinical applications. The model

constructed by DT had good accuracy, specificity, and

convenience. As for areas with underdeveloped medical

conditions, it is an excellent choice to apply the DT

model we constructed which was a simple model with

good accuracy.

Building COVID-19 prognostic models through

blood inflammatory cytokines levels is a novel thought.

Thus, our research suggests that more extensive

cohort studies should be conducted to reveal the role

of inflammatory cytokines in predicting long-term

post-COVID-19 complications.

Conclusion

In this research, we identified that advanced age, IFN-α,

IL-8, and IL-6 have been identified as potential prognostic

predictors of COVID-19 outcomes by multiple models in our

research, which indicated that these cytokines might play a vital

role in the progression of SARS-CoV-2. Therefore, we advised

that accurate and quantitative detection of the inflammatory

cytokines could be performed when necessary. The RF, logistic

regression, and DT models based on blood inflammatory

cytokines performed well in identifying patients with COVID-

19 at risk of death. We strongly suggest that the models

developed with RF and logistic regression should be applied

in the regions with more abundant medical resources, and the

model developed by DT could be used in the regions with less

abundant medical. The models we developed can assist doctors

in applying individual strategies to different risk cohorts to

perform early intervention and treatment to benefit patients

with COVID-19.
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