
TYPE Original Research

PUBLISHED 25 November 2022

DOI 10.3389/fpubh.2022.1000103

OPEN ACCESS

EDITED BY

Tongjian Cai,

Army Medical University, China

REVIEWED BY

Zhijing Lin,

Anhui Medical University, China

Dirga Kumar Lamichhane,

Inha University, South Korea

*CORRESPONDENCE

Yue Wang

yuewang@cmu.edu.cn

SPECIALTY SECTION

This article was submitted to

Environmental health and Exposome,

a section of the journal

Frontiers in Public Health

RECEIVED 06 September 2022

ACCEPTED 14 November 2022

PUBLISHED 25 November 2022

CITATION

Zhang Y, Liu S, Wang Y and Wang Y

(2022) Causal relationship between

particulate matter 2.5 and

hypothyroidism: A two-sample

Mendelian randomization study.

Front. Public Health 10:1000103.

doi: 10.3389/fpubh.2022.1000103

COPYRIGHT

© 2022 Zhang, Liu, Wang and Wang.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Causal relationship between
particulate matter 2.5 and
hypothyroidism: A two-sample
Mendelian randomization study

Yuning Zhang1, Shouzheng Liu2, Yunwen Wang3 and

Yue Wang4*

1College of Environment, Liaoning University, Shenyang, Liaoning, China, 2Liaoning Provincial

Ecological and Environmental A�airs Service Center, Shenyang, Liaoning, China, 3National Center

for Human Genetic Resources, Beijing, China, 4Department of Environmental Health, School of

Public Health, Key Laboratory of Environmental Health Damage Research and Assessment, China

Medical University, Shenyang, Liaoning, China

Background: Epidemiological surveys have found that particulate matter 2.5

(PM2.5) plays an important role in hypothyroidism. However, due to the

methodological limitations of traditional observational studies, it is di�cult

to make causal inferences. In the present study, we assessed the causal

association between PM2.5 concentrations and risk of hypothyroidism using

two-sample Mendelian randomization (TSMR).

Methods: We performed TSMR by using aggregated data from genome-

wide association studies (GWAS) on the IEU Open GWAS database. We

identified seven single nucleotide polymorphisms (SNPs) associated with

PM2.5 concentrations as instrumental variables (IVs). We used inverse-variance

weighting (IVW) as the main analytical method, and we selected MR-Egger,

weighted median, simple model, and weighted model methods for quality

control.

Results: MR analysis showed that PM2.5 has a positive e�ect on the

risk of hypothyroidism: An increase of 1 standard deviation (SD) in PM2.5

concentrations increases the risk of hypothyroidism by ∼10.0% (odds ratio

1.10, 95% confidence interval 1.06–1.13, P = 2.93E-08, by IVW analysis); there

was no heterogeneity or pleiotropy in the results.

Conclusion: In conclusion, increased PM2.5 concentrations are associated

with an increased risk of hypothyroidism. This study provides evidence of

a causal relationship between PM2.5 and the risk of hypothyroidism, so

air pollution control may have important implications for the prevention

of hypothyroidism.
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Introduction

Hypothyroidism refers to thyroid hormone deficiency. The diagnosis is mainly based

on serum thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels (1). As

a common condition, the prevalence of clinical hypothyroidism is ∼0.2–5.3% in the

general European population and 0.3–3.7% in the United States (2). Hypothyroidism can

lead to an increased risk of hyperlipidemia and the development of cardiovascular disease
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and even heart failure, somatic and neuromuscular symptoms,

reproductive disorders, and other adverse outcomes (3).

Due to the widespread use of thyroid function tests (4),

researchers have focused on exploring the factors that contribute

to hypothyroidism, and there is growing evidence of the

detrimental effects of exposure to environmental factors on

thyroid function (5–8).

Epidemiological studies have shown that exposure to

nitrogen dioxide (NO2) and carbon monoxide (CO) is

associated with increased TSH and decreased FT4 (9).

Particulate matter (PM) significantly affects the binding of

thyroxine to transthyretin and reduces thyroxine levels (10). In

2015, a survey of about 15.1 million neonates in China showed

that maternal exposure to air pollution during pregnancy may

affect fetal thyroid development (8). Moreover, the survey

revealed that PM2.5 exposure levels are positively associated

with the risk of congenital hypothyroidism in offspring (8). To

date, evidence onwhether air pollution exposure impairs thyroid

function remains limited, and current observational studies

cannot confirm a causal relationship between air pollution

and hypothyroidism.

When assessing the health risks of environmental pollutant

exposure, consideration of genetic polymorphisms may provide

better insights into individual environmental health risks.

Previous studies have shown that adverse health outcomes

due to environmental exposures are influenced by changes in

gene expression (11, 12). Women carrying the GPX4-rs376102

AC/CC genotype are more sensitive to air pollutants and

more likely to have preterm births (13). At high exposure

levels of PM10, ozone (O3) and mean pollution standard

index (PSI), children carrying the thrombomodulin-33G/A

polymorphism (GA + AA genotype) are at higher risk of

atherosclerosis (14). However, no studies have examined the

combined effect of genetic polymorphisms and PM2.5 on the

risk of hypothyroidism. With the advent of the post-genome-

wide association study (GWAS) era, many efforts have been

made to move beyond genetic associations to causality and

mechanistic examination. Mendelian randomization (MR) uses

single nucleotide polymorphism (SNP) as an instrumental

variable (IV) and integrating existing GWAS summary statistics

for causal inference. Supported by the fact that parental alleles

are randomly assigned at the time of conception, the MR

design is similar to a randomized controlled trial, that can

effectively avoid the influence of confounding factors and

reverse causality (15). A large number of GWAS provide an

abundant data resource for MR studies (16). Many scholars

have used MR studies to explore the causal relationship

between hypothyroidism and systemic lupus erythematosus,

hepatocellular carcinoma, and type 1 diabetes (17–19). However,

the causal relationship between PM2.5 and hypothyroidism

remains unclear.

Taken together, we have raised the hypotheses that these

PM2.5 exposure may causally contribute to the development

of hypothyroidism. In order to address the important gap

in literature regarding this research question, we performed

a two-sample Mendelian randomization (TSMR) study using

the GWAS dataset publicly available on the IEU Open GWAS

database to evaluate the causal relationship between PM2.5

concentrations and the risk of hypothyroidism.

Materials and methods

Study design and data sources

We conducted a TSMR analysis base on the summary-level

data from the IEU Open GWAS database (https://gwas.mrcieu.

ac.uk/datasets). The exposure data were PM2.5 GWAS summary

dataset. The outcome data were GWAS summary dataset. The

personal data of the subjects in this study was obtained from

the UK Biobank, a large prospective study with over 500,000

UK participants (20). The detailed procedures for phenotyping,

genetic detail, genome-wide genotyping, imputation and quality

control of UK Biobank participants have been described

elsewhere (21, 22). All participants had given informed consent

in the corresponding original studies.

The PM2.5 GWAS summary dataset (GWAS ID:ukb-b-

10817) included 423,796 participants of European ancestry.

PM2.5 concentrations at participants’ home addresses were

estimated using a Land Use Regression (LUR) model (23).

The hypothyroidism GWAS summary dataset (GWAS

ID:ukb-b-19732) contained 462,933 individuals of European

descent, including 22,687 cases and 440,246 controls.

Hypothyroidism cases were defined on the basis of clinical

diagnosis and self-reported. Supplementary Table 1 presented

the demographics of the patients included in GWAS

summary dataset.

Selection of instrumental variables

As shown in Figure 1, to construct valid IVs, genetic

variation must satisfy the three assumptions of MR. (1) Genetic

IVs of PM2.5 are significantly associated with PM2.5 exposure

levels. (2) The association between genetic IVs of PM2.5 and

hypothyroidism is independent of confounding factors. (3)

Genetic IVs of PM2.5 can only affect hypothyroidism risk

through PM2.5 exposure. The study followed the Strengthening

the Reporting of Observational Studies in Epidemiology

using Mendelian Randomization (STROBE-MR) guideline

(24), and the STORBE-MR checklist is provided in the

Supplementary Table 2.

To meet assumption 1, we selected the corresponding

single nucleotide polymorphisms (SNPs) for PM2.5 exposure

at the threshold of genome-wide significance (P < 5 ×

10−8). Linkage disequilibrium (LD) was estimated between
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FIGURE 1

The design flow chart for the MR study. MR assumptions: assumption 1, 2, and 3. The solid line represents direct putative causal e�ects that

PM2.5 genetic instrumental variants are reliably associated with I PM2.5 levels and influence the risk of hypothyroidism through the PM2.5 in

assumption 1. The dotted line represents that PM2.5 genetic instrumental variants are not associated with any measured and unmeasured

confounders and do not influence the risk of hypothyroidism through other pathways in assumptions 2 and 3, respectively. MR, Mendelian

randomization; PM2.5, particulate matter 2.5.

TABLE 1 Correlation of instrumental variables with PM2.5 and hyperthyroidism.

SNPs PM2.5 Hypothyroidism

Beta SE P Beta SE P

rs114708313 0.024558 0.00447797 4.20E-08 2.81E-03 0.00091972 2.20E-03

rs1372504 0.0122914 0.00221931 3.10E-08 4.32E-05 0.000217876 1.30E-02

rs1537371 0.0123705 0.00214859 8.50E-09 1.48E-05 0.000210865 3.80E-01

rs6749467 −0.0123919 0.00218282 1.40E-08 1.22E-04 0.000214055 9.20E-02

rs12203592 0.113396 0.01913500 3.10E-09 1.17E-03 0.00227423 8.40E-07

rs77205736 0.0135219 0.00241312 2.10E-08 −1.75E-04 0.000236412 2.10E-05

rs77255816 0.0313937 0.00572778 4.20E-08 2.40E-04 0.000563217 2.80E-01

PM2.5 , particulate matter 2.5; SNP, single-nucleotide polymorphism; Beta, the regression coefficient based on PM2.5 raising effect allele; SE, standard error.

SNPs to select independent genetic variants using clump

parameter in R version 4.1.3 software (distance window 5,000 kb,

linkage disequilibrium coefficient r2 < 0.01 using the R

packages “TwoSampleMR”) (25). We found eight SNPs that are

significantly associated (P < 5 × 10−8) with PM2.5 exposure

levels without LD, as shown in Supplementary Table 3.

In our MR analysis, pleiotropy testing was required to

ensure that IVs did not influence hypothyroidism risk through

other confounders or other biological pathways independent

of PM2.5 exposure. The MR-Egger regression effects model

can provide pleiotropy-corrected causal estimates in MR,

assessing instrument strength independently of the null causality

hypothesis under the direct effect assumption (26). Moreover,

the method can work even if all selected SNPs are not unbiased

estimates (26). By judging whether there is statistical significance

between the intercept and 0, it indicates whether there is

horizontal pleiotropy in IVs. MR-PRESSO enables a systematic

assessment of the role of pleiotropy in MR (27). It includes three

components: MR-PRESSO global testing, MR-PRESSO outlier

testing, and MR-PRESSO distortion testing. The statistical

threshold for IVs that may have horizontal pleiotropy is P

< 0.05.

We used Cochran’s Q test to evaluate heterogeneity in the

estimates of heterogeneity calculated by the inverse-variance

weighting (IVW) and MR-Egger models (28, 29). P > 0.05

indicated no significant heterogeneity in the screened IVs.

TSMR analysis

In this TSMR study, we used IVW, MR-Egger, weighted

median model, simple model, and weighted model methods to

evaluate the causal relationship between PM2.5 exposure and

hypothyroidism risk (30–32). The basic idea of IVW is to use

the Wald ratio to obtain estimates of causal effects based on a

single genetic IV, and then select a fixed-effects model to meta-

aggregate multiple estimates of causal effects based on a single

genetic IV. The IVW estimate is the combined causal effect
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TABLE 2 Pleiotropy and heterogeneity test of PM2.5 genetic instrumental variables in GWAS for hypothyroidism.

Pleiotropy test Heterogeneity test

MR-egger PRESSO MR-egger Inverse variance weighted

Intercept SE P P Q Q_df P Q Q_df P

−0.0003 0.0009 0.76 0.21 10.02 5 0.07 10.23 6 0.12

GWAS, genome-wide association study; PM2.5 , particulate matter 2.5; SE, standard error; P ≥ 0.05 represents no significant pleiotropy; P ≥ 0.05 represents no significant heterogeneity.

FIGURE 2

Individual estimates about the putative causal e�ect of PM2.5 on

hypothyroidism. The x-axis shows the SNP e�ect and SE on

each PM2.5. The y-axis shows the SNP e�ect and SE on

hypothyroidism. The regression line for MR Egger, weighted

median, inverse variance weighted, simple mode, and weighted

mode is shown. PM2.5, particulate matter 2.5; SNP, single

nucleotide polymorphism; SE, standard error.

estimate (33). IVW can provide reliable causal estimates without

directed pleiotropy and is widely used in MR studies (34).

We used MR-Egger, weighted median model, simple model,

and weighted model methods to verify the causal association

between exposure factors and outcomes. This endeavor has

improved the accuracy of the findings (30).

Sensitivity analysis

We used the leave-one-out method to analyze the influence

of a single SNP on the results of TSMR analysis (35). By

removing SNPs one by one and performing a meta-analysis on

the remaining SNPs, we estimated the MR result including all

remaining SNPs and compared it to the result with all SNPs.

If the MR result changes significantly after excluding one SNP,

then this SNP may be directly related to the results, violating

assumption 3 (36).

Statistical analysis

We conducted statistical analysis using R version 4.1.3

(R Foundation for Statistical Computing, Vienna, Austria)

using the packages “TwoSampleMR” (25) and “MR-PRESSO”

(27). The threshold of statistical significance for evidence of

pleiotropy is P < 0.05.

Results

Extraction of genetic IVs of PM2.5 from
the hypothyroidism GWAS dataset

We extracted corresponding information for seven

genetic variants associated with PM2.5 concentrations in the

hypothyroid GWAS dataset. The details of these seven IVs were

presented in Table 1.

Pleiotropy and heterogeneity analysis

Both MR-Egger intercept and the MR-PRESSO test showed

no significant pleiotropy (P > 0.05, Table 2). This indicated that

the seven SNPs do not affect hypothyroidism through biological

pathways independent of PM2.5 exposure. In addition, bothMR-

Egger and IVW showed P > 0.05 in Cochran’s Q-test (Table 2),

indicating that the seven genetic variants of PM2.5 did not have

significant heterogeneity in the hypothyroidism GWAS dataset.

Therefore, we could use the seven selected genetic variants of

PM2.5 exposure as effective IVs for TSMR analysis.

TSMR analysis of PM2.5 level and
hypothyroidism

Our TSMR analysis revealed the following odds ratios (ORs)

and 95% confidence intervals (CIs): (1) in the MR-egger model,

OR = 1.12, 95% CI = 1.00–1.25, P = 0.119; (2) in the weighted

median model, OR = 1.10, 95% CI = 1.06–1.14, P < 0.001;

(3) in the IVW model, OR = 1.10, 95% CI 1.06–1.13, P <

0.001; (4) in the simple model, OR = 1.11, 95% CI 1.04–1.19,

P < 0.05; and (5) in the weighted model, OR = 1.12, 95%
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TABLE 3 Two-sample Mendelian randomization analysis results between PM2.5 and hypothyroidism.

Exposure Outcome Method OR 95%CI P

PM2.5 Hypothyroidism MR egger 1.12 (1.00, 1.25) 1.19E-01

Weighted median 1.10 (1.06, 1.14) 1.95E-06

Inverse variance weighted 1.10 (1.06, 1.13) 2.93E-08

Simple mode 1.11 (1.04, 1.19) 2.23E-02

Weighted mode 1.12 (1.05, 1.19) 1.50E-02

PM2.5 , particulate matter 2.5; OR, odds ratio; CI, confidence interval; the significance was at P < 0.05.

FIGURE 3

Forest plot of PM2.5 associated with risk of hypothyroidism. The

x-axis shows the MR e�ect size for PM2.5 on hypothyroidism.

The y-axis shows the analysis for each of the SNPs. MR,

Mendelian randomization; PM2.5, particulate matter 2.5; SNP,

single nucleotide polymorphism.

CI= 1.05–1.19, P < 0.05. Although the MR-Egger model results

were not significant, the IVW and median weighted model

results were significant, and the ORs of the five models are all

positive. This finding indicated that each standard error increase

in the level of PM2.5 exposure was significantly associated with

increased risk of hypothyroidism (Figure 2, Table 3). As shown

in Figure 3, the regression lines obtained by these five methods

were in the same direction, and the promoting effect of a single

SNP on hypothyroidism increased as the effect of a single SNP

on the PM2.5 exposure level increases.

Sensitivity analysis

We performed sensitivity analysis of the TSMR results by

using the leave-one-out method to determine whether the MR

results were sensitive to an IV. Each black dot in the forest plot

represents a TSMR analysis (using the IVWmethod), excluding

that specific SNP; an overall analysis including all SNPs is

shown for comparison (Figure 4). The lines of all IVs are on

FIGURE 4

Leave-one-out sensitivity analysis for the e�ect of PM2.5 on

hypothyroidism. The x-axis shows MR leave-one-out sensitivity

analysis for PM2.5 on hypothyroidism. The y-axis shows the

analysis for the e�ect of leave-one-out of SNPs on

hypothyroidism. MR, Mendelian randomization; PM2.5,

particulate matter 2.5; SNP, single nucleotide polymorphism.

the right side of 0. Moreover, removing each SNP does not have

a fundamental impact on the results. The TSMR results in this

study are relatively robust, suggesting that PM2.5 is a risk factor

for hypothyroidism.

Discussion

To date, a number of epidemiological studies have

found that specific pollutants in the air are risk factors

for hypothyroidism (37–40), but due to the methodological

limitations of traditional observational studies, it is difficult

to determine the causal relationship between the two. MR

is based on the premise that human genetic variants are

randomly distributed in the population and that these genetic

variants are largely independent of confounders, and can

be used as IVs to assess the causal association between

exposure and outcome (41). In the present study, we assessed

the causal association between PM2.5 concentrations and the
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risk of hypothyroidism using TSMR analysis based on a

large-scale GWAS dataset. We found that in the European

population, increased PM2.5 concentrations are associated with

an increased risk of hypothyroidism. Our findings indicate

a strong causal relationship between PM2.5 concentrations

and hypothyroidism.

A large epidemiological survey of five cohorts from Europe

and the United States found that higher PM2.5 concentrations

are associated with higher odds of hypothyroidism in pregnant

women (OR 1.21 per 5 µg/m3 change; 95% CI 1.00–1.47)

(42). Other studies have reported that PM2.5 exposure affects

thyroid function and thyroid hormone secretion. Wang et al.

found that PM2.5 exposure during pregnancy is significantly

negatively correlated with maternal serum FT4 levels (43), and

there have been similar results in pregnant women in other

regions (44, 45). In traditional observational epidemiological

studies, confounding factors often interfere with the results,

making the interpretation of etiology unreliable. This study is

the first to investigate the causal relationship between PM2.5

concentrations and hypothyroidism using TSMR. Our findings

are similar to those of traditional observational studies, showing

that elevated PM2.5 concentrations are significantly associated

with an increased risk of hypothyroidism (OR 1.10, 95% CI

1.06–1.13, P = 2.93E-08). These findings show that the causal

association between genetic variation in PM2.5 and increased

hypothyroidism risk is robust. Therefore, improving air quality

and reducing PM2.5 concentrations can effectively reduce the

risk of hypothyroidism.

The mechanism by which PM2.5 increases the risk of

hypothyroidism remains unclear. Compared with PM10, PM2.5

has a smaller particle size and can reach the distal lung

segments including the alveoli, enter the blood, and penetrate

the blood barriers of multiple organs such as the brain, liver,

and kidney, posing a greater threat to health (46, 47). Studies

have found that PM2.5 can inhibit the gene expression and

activity of endogenous antioxidant enzymes (48), activate the

body’s oxidative stress response, and promote dysfunction in

multiple organs and systems (49, 50). Previous studies have

reported that increased traffic-related PM2.5 concentrations

are associated with altered responses to inflammatory markers

(51). Animal experiments have found that artificial PM2.5

exposure can induce increased levels of interleukin (IL)-1,

IL-6 and tumor necrosis factor α (TNFα) in rats, thereby

increasing the risk of nasal lesions (52). Hypothyroidism

is associated with disturbed cytokine concentrations, an

abundance of reactive oxygen species (ROS), and altered

signal transduction in most parts of the brain (53). In

addition, chronic inflammation plays an important role in

the pathogenesis of many diseases, including hypothyroidism

(54). A recent experimental study in female rats found that

PM2.5 exposure reduces circulating thyroid hormone levels by

interrupting thyroid hormone biosynthesis, biotransformation,

and transport; by inducing oxidative stress and inflammatory

responses; and ultimately by activating the hypothalamic–

pituitary–thyroid axis and inducing the production of hepatic

transthyretin (55). Epidemiological studies found that a 10

µg/m3 increase in PM2.5 is associated with a 0.12 µmol/L

decrease in FT4 and a 0.07 µmol/L increase in FT3, and

the FT4/FT3 ratio is negatively correlated with PM2.5 (56).

Based on the above findings, we hypothesize that high

PM2.5 concentrations induce oxidative stress and inflammatory

responses in the body, which in turn deregulate thyroid

hormone secretion, decrease serum FT4 levels, and increase the

incidence of hypothyroidism.

Our MR study has several advantages. First, we used TSMR

to analyze the causal relationship between PM2.5 concentrations

and hypothyroidism, making up for the insufficiency of

traditional observational studies and adding new evidence

for assessing the health risks of environmental pollutants.

Second, this study benefits from large-scale PM2.5 GWAS

(n = 423,796 individuals from Europe) and hypothyroidism

GWAS (n = 462,933 individuals from Europe) datasets.

Moreover, because the individuals are all of European descent,

the impact of potential associations caused by population

stratification have likely been reduced. Third, we used

multiple independent genetic variants as a tool to reduce the

impact of linkage disequilibrium on potential associations.

Fourth, we selected multiple approaches for MR analysis

and performed a comprehensive pleiotropy analysis to assess

these. The potential association between genetic variation in

PM2.5 levels with known risk of hypothyroidism warrants

robust results.

This study also has some limitations. First, the TSMR

analysis is based on European ancestry, and this relationship

may change in individuals of other ancestries. Hence, TSMR

analysis should also be performed in individuals of at least

one other ancestry. Second, we only used summary statistics

for MR analysis, and can only make a preliminary judgment

on the causal relationship between PM2.5 and hypothyroidism.

The specific mechanism of how PM2.5 increases the risk of

hypothyroidism still needs further research.

Conclusion

We have provided genetic evidence that high PM2.5

concentrations can increase the risk of hypothyroidism. Our

findings may have public health implications to raise awareness

of the extent to which air quality is associated with the risk of

hypothyroidism. This may provide guidance for the prevention

and treatment of hypothyroidism.
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