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The COVID-19 has wreaked havoc upon the world with over 248 million confirmed cases

and a death toll of over 5 million. It is alarming that the United States contributes over

18% of these confirmed cases and 14% of the deaths. Researchers have proposedmany

forecasting models to predict the spread of COVID-19 at the national, state, and county

levels. However, due to the large variety in the mitigation policies adopted by various

state and local governments; and unpredictable social events during the pandemic,

it is incredibly challenging to develop models that can provide accurate long-term

forecasting for disease spread. In this paper, to address such a challenge, we introduce

a new multi-period curve fitting model to give a short-term prediction of the COVID-19

spread in Metropolitan Statistical Areas (MSA) within the United States. Since most

counties/cities within a single MSA usually adopt similar mitigation strategies, this allows

us to substantially diminish the variety in adopted mitigation strategies within an MSA.

At the same time, the multi-period framework enables us to incorporate the impact of

significant social events and mitigation strategies in the model. We also propose a simple

heuristic to estimate the COVID-19 fatality based on our spread prediction. Numerical

experiments show that the proposed multi-period curve model achieves reasonably high

accuracy in the prediction of the confirmed cases and fatality.

Keywords: health care analysis, coronavirus, multi-period modeling, COVID-19, curve fitting model

1. INTRODUCTION

The outbreak of novel coronavirus disease 2019 or the COVID-19 started in Wuhan, Hubei
Province in China in late December 2029 (1). The first case for COVID-19 in the United States
was reported on January 20, 2020, which was associated with travel (2). The New York Health
Department classifies the start of the outbreak in New York City (NYC) as the date of the first
laboratory-confirmed case (February 29, 2020) (3). The spread of the virus contained through
mid of March 2020; it then spread rapidly due to travel-associated importations, large gatherings,
introductions into high-risk workplaces and densely populated areas, and cryptic transmission
resulting from limited testing and asymptomatic and presymptomatic spread (4). By the end of
March 2020, New York City had become the epicenter of COVID-19 in the U.S. with 75,922
confirmed cases and 2,356 deaths, and the virus was spreading across all the states (5). U.S. states,
territories, and jurisdictions began implementing various mitigation policies in March 2020, such
as stay-at-home orders (SAHOs) or lockdowns and social distancing to slow down the spread of
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COVID-19. Note that in the U.S., each state or jurisdiction
has the authority to enact its laws and policies to protect the
public’s health, and there exists a large variety in the types
and their issuing time (6). By the first week of April 2020,
mandatory SAHOs were issued for all the states in the US (6).
The implementation of mitigation policies such as SAHOs and
lockdowns helped to substantially slow down the spread of the
virus (7, 8). However, these policies also had a significant side
effect on the economy (9) and the mental health of people (10).
Besides the tremendous threat to public health and well-being,
the COVID-19 and the implemented mitigation policies also
had catastrophic consequences on the economy. As observed
in (11), the unemployment rate in the U.S. increased from 3.8% in
February 2020 to 14.7% in April 2020, and the overall cumulative
financial cost is estimated to be over $16 trillion (12). As the U.S.
started to reopen its economy in May 2020, the unemployment
rate started to decrease gradually and now stands at 4.8% in
September 2021 (11).

Due to economic concerns, many jurisdictions rolled back
the SAHO restrictions from the first week of May 2020 to
reopen regional businesses. We call this the “reopening phase.”
A detailed timeline in imposition and rollback of these SAHOs
from different U.S states and territories is given in Figure 1.
Following the ease of SAHOs and reopening, there were also
massive gatherings and protests in many cities across the country
starting from the last week of May 2020. This led to the so-
called “Summer Surge” of COVID-19 cases between the first
week of June to the third week of July 2020 (13). With the
help of mandatory masking (14, 15) and social distancing
restrictions (7) in counties with a high surge, the new cases
started to decrease till the first week of September 2020. After
that, the U.S. saw the fall 2020 surge of COVID-19 cases, which
is attributed to the reopening of restaurants, bars, educational
institutions, and workplaces, 2020 US presidential elections,
massive gathering and protesting, along with non-adherence to
strict social distancing and masking guidelines (7, 13, 16–18).
This fall surge lasted till mid of January 2021. We saw a decline
in new confirmed cases until the middle of June 2021, attributed
to the mass vaccination and natural immunity developed among
the people infected and recovered from COVID-19. A recent
surge in the COVID-19 cases was seen starting in the mid of
June 2021, attributed to large gatherings, vaccine reluctance, non-
adherence to masking, and the more infectious delta variant of
the COVID-19. This surge lasted till the first week of September
after which the cases started to decline as vaccination rates started
to pick up. Up to date, the U.S has seen over 46million confirmed
cases and 0.76 million deaths (2).

Experts from various fields have been studying different issues
related to the COVID-19 because of its impact on both public
health and the economy. One of the most important topics
is forecasting the spread of the COVID-19, which can inform
governments at different levels to form responsive policies.
Many forecasting models have been proposed in the literature
to predict the confirmed cases and deaths at country, state, or
county level (8, 19–23). The U.S. Center for Disease Control
(CDC) has listed and compared the performance of over 50
forecasting models (24). Friedman et al. (25) compares the

accuracy of different forecasting models for COVID-19 to point
out that there are many challenges in accurately predicting the
spread of COVID-19. The lack of highly accurate forecasting
models is also observed by Kreps and Kirner (26). They further
speculate that the limited data may be a significant cause for
the relatively poor performance of the forecasting method. Jewell
et al. (27) point out that since the situation in the pandemic is
continuously changing, it is impossible to have accurate long-
term forecasting. Eker (28) cautions that most of the COVID-19
models lack a thorough validation and clear communication
of their uncertainties. Ioannidis et al. (29) consider lack of
incorporation of epidemiological features and consideration of
a few dimensions of the problem at hand are among many other
factors resulting in accurate COVID-19 forecasts.

Most forecasting models for the spread of infectious diseases
can be classified into 3 groups based on the underlying
methodology (30). The first group includes the basic Susceptible,
Infected and Recovered (SIT) model and the elaborated
Susceptible, Exposed, Infected and Recovered (SEIR) model
for epidemiology. The SIR model, introduced by Ronald Ross
et al. (31), divides a population into 3 groups: Susceptible,
Infected, and Recovered, while the SEIR model assumes a
significant incubation period during which individuals have
been infected but are not yet infectious (called the exposed
phase) and, divides a population into 4 groups: Susceptible,
Exposed, Infected, and Recovered (32). These models then
apply a set of non-linear ordinary differential equations (ODEs)
to describe how each group in the underlying population
changes in response to each other, using assumptions about the
disease process, social interactions, public health policies, and
others (30–32). Draugelis et al. (20) at Penn Medicine modified
the SIR model to develop the COVID-19 hospital impact model
for epidemics (CHIME). The CHIME model allows users to
vary inputs and assumptions and is applicable during the period
before a region’s peak infections. Atkeson et al. (33) also used
the SIR model to forecast different COVID-19 scenarios and
study the impact of mitigation strategies on the COVID-19 death
toll. Ferguson et al. (22) adopted a variant of the SEIR model to
study the impact of non-pharmaceutical interventions (NPIs) in
reducing the mortality and health care demand from COVID-19.
Under an unmitigated scenario, their model predicted 2.2 million
deaths in the U.S. Li et al. (8, 34) extended the standard
SEIR model with additional features like under detection and
differentiated government intervention to forecast infections,
hospitalizations, and deaths from COVID-19 across the U.S. and
the world.

The second group consists of agent-based simulation models
(ABMs) (35), which allow agents to interact with other agents
and the environment via creating a simulated community
to show the interactions and the resulting spread of disease
among individuals in the simulated community. These models
take into consideration the assumptions and rules about the
individuals’ movement and mixing patterns, other behaviors and
risks, and the health interventions and policies in place (30,
36). Alessandro et al. (19) extended the agent-based model to
the individual-based, stochastic, and spatial epidemic model
to study the spatiotemporal COVID-19 spread. Their model
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FIGURE 1 | ∗ Including the type of stay-at-home order implemented, to whom it applied, and the period for which it was in place. †Jurisdictions that did not issue any

orders requiring or recommending persons to stay home during the observation period were not included in this figure. Jurisdictions without any orders were

American Samoa, Arkansas, Connecticut, Nebraska, North Dakota, and Wyoming. COVID-19, coronavirus disease 2019; CNMI, Northern Mariana Islands. Type and

duration of COVID-19 state and territorial stay-at-home orders, by jurisdiction—United States, March 1–May 31, 2020 (6).

forecasts the infections in social distancing and unmitigated
scenarios. Erik (37) proposed an agent-based model to evaluate
the COVID-19 transmission risks in facilities and proposed
testing of possible scenarios to reduce transmission risks.

The third group consists of curve-fitting/extrapolation
models, which construct a curve or a mathematical function that
best fits the epidemic by looking at the current status and then
extrapolating the likely future epidemic path. This epidemic path
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is drawn from experiences in other locations and/or assumptions
about the population, transmission, and public health policies
in place (30). The COVID-19 research team at Los Alamos
National Laboratory (LANL) (21) used a curve fitting technique
to forecast the COVID-19 confirmed cases and deaths. Although
their technique does not explicitly model the intervention effect,
it assumes that interventions will be implemented and adjust
the spread growth rate accordingly. The Institute for Health
Metrics and Evaluation (IHME) (23, 38) proposed a curve-fitting
model that considered disease spread in different geographies
and extrapolated a prediction. IHME used this model between
March 26 and the end of April.

Some other models use the combination of these methods or
others. For instance, the IHME introduced a hybrid curve fitting
and epidemiological compartment model and hybrid mortality
spline and epidemiological compartment model, which have
been in use since early May (23). Liu et al. (39) simulated
the COVID-19 spread dynamics through a combined model
of SEIR and network model and estimated the effectiveness
of the intervention policies on the epidemic peak postpone
and mitigation.

In addition to the intensive study on forecasting the spread
of the COVID-19, several experts have explored the association
between socioeconomic features and demographic characteristics
on spread and mortality from COVID-19. Placio et al. (40)
established that for Miami Dade county the COVID-19 infection
is associated with economically disadvantaged population and
shows no association with racial/ethnic distribution. Bhowmik
et al. (41) found a significant association of demographics,
mobility, and health indicators with COVID-19 hospitalization
and ICU usage. Bhowmik and Eluru (41) also developed
a model framework to evaluate the impact of mobility on
transmission rates in the county while accommodating county-
specific features. Iyanda et al. (42) established that the case
fatality ratio in the rural counties, and in people of color is
higher than the national rate highlighting the health disparities
in these groups.

The are many limitations of the forecasting models proposed
for the COVID-19 due to underlying assumptions and
uncertainties (25–28, 30, 43). For example, Dandekar et al. (44)
discussed the limitations of the parametric methods in the
Differential Equations Lead to Predictions of Hospitalizations
and Infections (DELPHI) model developed by Li et al. (8, 34).
Marsland et al. (43) observe that the SIR models based on
differential equations usually ignore the complicated clustering
and spatial distribution structures of the individuals. In contrast,
curve-fitting models such as the LANL model (21) usually
lack explainable underlying mechanics. Friedman et al. (25)
highlight the importance and difficulty of long-term forecasting
and designate the critical role of mitigation policies in
accurate forecasting. However, they also pointed out the
problem of building the framework, which includes both the
underlying prediction model and the quantification of the
mitigation policies. Notably, they mentioned the limitations of
directly forecasting fatality numbers. Jewell et al. (27) point
out the importance of developing epidemiological models to
evaluate the effectiveness of various intervention policies and

discussed the hardness and limited exigency of long-term
prediction accuracy.

In addition to the above challenges, we note that forecasting
models that make projections at the state level may not capture
the effect of different intervention policies because of their non-
uniformity in the counties. For example, in Texas, even after
the state government lifted the SAHO and started reopening
from the first week of May 2020, hot-spot counties such as
Harris and Tarrant extended the county-level SAHOs until the
second week of June 2020. Therefore, it is essential to incorporate
such information into the forecasting model. Moreover, as
discussed earlier, demographic and socioeconomic conditions
and the medical service systems in a region impact the spread
and mortality from COVID-19 (40–42, 45, 46). Therefore, it is
essential to incorporate such information in the development of
forecasting models. To address the above challenges, we propose
a multi-period curve-fitting model that predicts the COVID-19
spread at the MSA level. An MSA consists of the core area that
contains a substantial population nucleus, together with adjacent
communities that have a high degree of economic and social
integration with that core (47). Consequentially, the impact of
intervention policies in 1 county is seen in other counties as well1.
In the U.S. (48), 365 MSAs account for 85% of the US population
and over 80% of confirmed cases and deaths from COVID-19.

In this paper, we propose to develop amulti-period framework
for the COVID-19 spread forMSAs to deal with the continuously
changing dynamic in the COVID-19 spread, where the breaking
points between different periods are selected corresponding to
the government decisions concerning intervention policies and
reopening. To deal with the continuously changing dynamic in
the COVID-19 spread, we introduce a multi-period framework
where the breaking points between different periods are
selected corresponding to the government decisions concerning
intervention policies and reopening.

2. MATERIALS AND METHODS

In this section, we describe the data collation and correction
and the proposed multi-period curve fitting model for the
COVID-19 spread.

2.1. Data Collection and Correction
In this subsection, we describes the data collected on the
COVID-19 spread, interventions made, and geographical units
used in this paper. In the sub-subsection 2.1.1, we describe the
data collected on the spread of COVID-19 at the state and
the county level, the interventions made by the state and local
governments to slow down the spread of COVID-19 and, the
MSA level data. In the sub-subsection 2.1.2, we describe our data
correction and smoothing algorithms to remove noise/outliers
from the data.

1We point out that in some states such as New York where a single MSA

dominates the COVID-19 spread and mortality, the issue of non-uniformity in

the intervention policies is not a concern. However, in states where there exist

multiple MSAs with similar populations and various intervention policies, the

non-uniformity issue will become a concern.
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2.1.1. Data Collected From Different Sources
In this subsection, we discuss the data collected from different
sources. In the U.S., various state and local government agencies
record COVID-19 disease spread and mortality data. The
COVID-19 data repository by the Center for Systems Science
and Engineering at Johns Hopkins University (JHU) gathers
COVID-19 data from the U.S. and across the world (5). We use
the time series data for positive cases and deaths for COVID-19
at the county level in this study. This data is reported for 3261
counties from 58 different states and territories in the U.S.

As discussed in section 1, interventions made by state and
local governments play a critical role in slowing the spread
of COVID-19 (7). We use the interventions data from (6, 49)
to collect information on non-essential business closure, large
gatherings ban, school and restaurant closure, and stay at home
orders. This information is critical in the selection of turning
points in our spread forecasting model for COVID-19.

An MSA consists of the core area that contains a substantial
population nucleus, together with the adjacent communities that
have a high degree of economic and social integration with that
core (47). The U.S. Office of Management and Budget (OMB)
delineates MSAs according to published standards (48). These
delineation files provide information on counties included in
an MSA. For example, the “Houston-Sugar Land-Baytown, TX
MSA” has Austin, Brazoria, Chambers, Fort Bend, Galveston,
Harris, Liberty, Montgomery, San Jacinto, Waller counties. We
also create an acronym for theMSA based on the most significant
city it includes. We use these delineation files to aggregate the
county level data (5) to the MSA level. For predicting the spread
and mortality of COVID-19, we select the top 30 MSAs based on
population size.

2.1.2. Data Correction and Smoothing
In this subsection, we discuss the errors and noise in the
COIVD-19 spread data and introduce the data correction and
smoothing methods to remove these errors. The noise in the
COVID-19 spread data (5) is due to 2 types of errors. Type-1
errors are from data reporting, and type-2 errors are caused by
backlogging of the test results reported.

Type-1 errors occur because of 2 reasons. First, when more
recent days data is updated but the preceding days’ data is
not updated. For example, Santa Barbara County, California,
reported 2,742 cumulative positive cases on June 26, 2020, and
2,712 cases on June 27, 2020, which gives a negative increase
in the cumulative positive cases. It happens due to a data
update applied on June 27, but the preceding days’ data is not
updated. We use an iterative approach to fix this error to include
the data correction applied on June 27 to the preceding dates
without changing the cumulative positive cases (see proposed
Algorithm 1). Second, due to reporting schedules, such as
some counties not reporting data on weekends. For example,
Riverside County, California, does not convey any data over the
weekend (Saturday & Sunday). The data smoothing algorithm
imputes the consecutive zero value occurrences by taking average
with the first non-zero value after successive zeros. We also
address the significant fluctuation issues by taking average days
where the differences exceed a certain threshold (see proposed
Algorithm 2).

Algorithm 1: Data correction algorithm

Input: Cumulative cases Pt at time t;
Output: Corrected cases P∗t at time t.

begin

P∗T = PT
t = T − 1
while t ≥ 1 do

if Pt > P∗t+1 then

P∗t = Pt+1

else

P∗t = Pt
end if

t = t − 1
end while

end

Type-2 errors occur when a large number of backlogged test
results are reported on the same day. Such errors do not follow
any pattern and are hard to fix. We use a manual approach to
correct such errors based on the reports provided by the county
and state health departments. In our approach, based on these
reports, we redistribute the backlogged cases.

We note that the 7-day moving average has been widely
used to smooth the fluctuation in the daily COVID-19 data.
For example, CDC utilizes 7-day moving average new cases
(the current day plus 6 preceding days) on their website (2)
to smooth expected variations in daily counts. Our method is
slightly different fromCDC’s method because we add 3 preceding
days and 3 successive days to calculate the average. The smoothed
data by our central moving average method reflects more the
current trend, while CDC’s backward moving average method
represents more past day’s trend.

2.2. Multi-Period Model to Predict
COVID-19 Spread
In this subsection, we introduce a new multi-period curve-fitting
model to estimate the daily new confirmed cases for COVID-19.
In the sub-subsection 2.2.1, we discuss 4 significant waves of
the COVID-19 spread in the U.S. since 2020: the spring surge
from mid-March to mid-May, the summer surge from mid-
June to Mid August, the fall surge from mid-September to mid-
January, 2021 and the recent surge starting from mid-June,
2021. We divide the progressions of the pandemic curve into 4
periods and discuss the selection of breaking points. In the sub-
subsection 2.2.2, we propose several different predictor functions
adapted from some well-known probability distributions for
our new curve fitting model. In the sub-subsection 2.2.3, we
propose a novel curve fitting model using a convex combination
of different predictor functions to characterize the spread of
COVID-19 in these multiple periods and capture the dynamics
in each pandemic period. We also propose a simple heuristic
in sub-subsection 2.2.4 to estimate the fatality based on our
spread prediction.

2.2.1. Selection of the Periods
As discussed in the sub-subsection 1, many models have
been proposed in the literature to predict the COVID-19
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Algorithm 2: Data smoothing algorithm

Input: Daily cases pt at time t, error thresholdM, marginal error
factor ρ;
Output: Corrected cases p∗t at time t.

begin

t = argmin
pt 6=0

t

while t ≤ T do

if pt 6= 0 then
p∗t = pt
t = t + 1

else

k = 1
while t + k < T and pt+k = 0 do

k = k+ 1
end while

if t + k ≤ T then

avg{t, t + k}2

end if

t = t + k+ 1
end if

end while

t = argmin
pt 6=0

t

while t ≤ T do

if pt − pt−1 > M and pt > ρpt−1 then

if and pt ≤ ρpt−2 then

avg{t − 1, t}
else

avg{t − 2, t}
end if

end if

t = t + 1
end while

end

spread (8, 19–23). However, as observed in (25–28, 30, 43,
45, 46), most of these models have various limitations that
affect their performance. Particularly, Friedman et al. (25) and
Jewell et al. (27) highlight the importance of incorporating the
mitigation policies in the development of forecasting model and
point out the difficulty in accurate long-term forecasting.

To address the challenges pointed out in (25) and (27), in
this subsection, we propose to incorporate the mitigation policies
into the curve-fitting model by introducing the breaking points
that represent the date at which the adoption, implementation,
or easing of mitigation policies show impact on the spread of
the COVID-19.

To start, we mention that the selection of the breaking points
is nontrivial. Due to some delay effect, the impact of mitigation
policies or social events will be manifested in the empirical
data about 2 weeks later. Based on such an observation, we
propose to select the breaking points via combining the date of

2Operation shows that we update data between t1 and t2 by the average during this

interval.

Algorithm 3: Brute force search framework

Input: Selected dates T0,T
P
1 ,T

P
2 ,T

P
3 ,T

D
1 ,T

D
2 ,T

D
3 ,T4;

Output: Breaking dates T∗
1 ,T

∗
2 ,T

∗
3 , functions f

j∗
i and coefficients

λ
j
i, i = 1, 2, 3, 4, j ∈ J.

begin

for T1 = TD
1 − τ , · · · ,TD

1 + τ do

for T2 = TD
2 − τ , · · · ,TD

2 + τ do

for T3 = TD
3 − τ , · · · ,TD

3 + τ do

Solve problem (6a) to evaluate L(T1,T2,T3);
end for

end for

end for

(T∗
1 ,T

∗
2 ,T

∗
3 ) = arg min

T1 ,T2 ,T3
L(T1,T2,T3).

end

implementation and easing of themitigation policies and the date
when the empirical data reaches a local minimum. The breaking
points based on the mitigation policies and social events used in
our work are selected as follows.

1. Breaking point 0 (TP
0 = T0): March 12, 2020. The initial

breaking point is selected around the starting date of the
COVID-19 outbreak in the spring when many states and
cities started to close public schools and implement mitigation
policies. This is also when the daily positive cases reach 2% of
the maximum daily positive cases in period 1.

2. Breaking point 1 (TP
1 ): June 30, 2020. The date is about 3

weeks after the last massive gathering and protesting in many
cities across the country, andmost states started reopening the
business with different capacity restrictions.

3. Breaking point 2 (TP
2 ): October 8, 2020. This date is chosen

between the beginning of the fall semester in schools and
election day.

4. Breaking point 3 (TP
3 ): July 1, 2021. This date is

chosen at the ease of mitigation policies after massive
COVID-19 vaccination.

We also choose other breaking points TD
1 , T

D
2 , and TD

3 based
on the local minimums in the empirical data in a certain
neighborhood of the selected breaking points TP

1 , T
P
2 , and TP

3
based on mitigation policies and social events. Our model’s
starting point T0 is the first breaking point TP

0 because only
sporadic cases occur before that, and the prediction model’s end
date T4 is August 14, 2021.

2.2.2. Selection of the Predictor Function
In this sub-subsection, we describe how to select a suitable
predictor function to characterize the spread of the virus in
each period. The selection of a suitable predictor function that
epitomizes the pandemic spread pattern plays an essential role
in developing the forecasting models. As observed in (26), even
minor changes in the assumptions and the empirical data can
lead to significant differences in projections based on some
exponential function.

One possible way to find predictors in this family is to
examine some well-known probability density functions (PDFs)
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Algorithm 4: Curve fitting subroutine

Input: Breaking dates T0,T1,T2,T3,T4;

Output: Functions f
j∗
i and coefficients λ

j∗
i , i = 1, 2, 3, 4, j ∈ J.

begin

Initialize λ
j(0)
i = 1

|J| ,∀i, j;

Initialize f
j(0)
i ,∀i, j with appropriate parameters;

k = 0;
while Not Converged or k == 0 do

Solve problem (6a) with fixed λ
j(k)
i for f

j(k+1)
i ;

Solve problem (6a) with fixed f
j(k+1)
i for λ

j(k+1)
i ;

k = k+ 1;
end while

Output f
j∗
i = f

j(k)
i and λ

j∗
i = λ

j(k)
i .

end

which have a diminishing exponential term. We consider only
PDFs satisfying the uni-modal characteristics and generalize the
selected PDF by adding additional parameters to construct the
corresponding predictor function. In this way, we derive several
predictor functions. and apply them to the optimization model
(6a). Particularly, for i = 1, 2, 3, 4 and t = Ti−1,Ti−1 + 1, · · · ,Ti,
the following predictor functions are used in our experiments:

• Weibull distribution PDF:

fi(t; t̄i, ai, bi, ci, di) = ai(t − t̄i)
bi exp−ci(t−t̄i)

di
(1)

• Log-logistic distribution PDF:

fi(t; t̄i, ai, bi, ci, di, ei) =
ai(t − t̄i)

bi

(ci + (t − t̄i)di )ei
(2)

• Lévy distribution PDF:

fi(t; t̄i, ai, bi, ci) = ai
e
−

ci
t−t̄i

(t − t̄i)bi
. (3)

• Log-normal distribution PDF:

fi(t; t̄i, ai, bi, ci, di, ei) = ai
exp[−ci(log(t − t̄i)− di)

ei ]

(t − t̄i)bi
. (4)

Note that in some cases there are no spread spikes in either
the first or second period. To characterize the spread in such a
scenario, we propose to utilize the spline function below:

fi(t; t̄i, c0, c1, c2, c3) = c0 + c1(t − t̄i)+ c2(t − t̄i)
2 + c3(t − t̄i)

3.
(5)

where Ti denotes the end of period i and the start of period i+ 1,
ci0, ci1, ci2, ci3 are the polynomial parameters of period i to be
decided later on.

We remark to the reader that no single predictor function
can perfectly characterize the spread of COVID-19 in all MSAs.
Therefore, in the next subsection, we will propose a novel curve-
fitting model, which uses the convex combination of several
predictor functions to characterize the empirical curvature.

FIGURE 2 | Daily confirmed cases and fitted curve for the U.S.

FIGURE 3 | Instantaneous fatality rate for the U.S.

2.2.3. Curve Fitting Model
In this sub-subsection, we present our novel curve fitting
model for a multi-period estimation framework. Let y(t) be the
confirmed daily cases at time t and τ be a tolerance criterion. Let
J = {1, 2, 3, 4, 5} be the index set of predictor functions (1–5).
Then, we propose to solve the following optimization model
to identify the parameters in model (1–5) and corresponding

coefficients λ
j
i, i = 1, 2, 3, 4, j ∈ J.

min L(T1,T2,T3) =

3∑

i=0

Ti+1∑

t=Ti

(y(t)−
∑

j∈J

λ
j
i+1f

j
i+1(t))

2

+ µ

3∑

i=1

(Ti − TP
i )

2 (6a)

s.t.
∑

j∈J

λ
j
if
j
i (Ti) =

∑

j∈J

λ
j
i+1f

j
i+1(Ti), i = 1, 2, 3;

(6b)

|Ti − TD
i | ≤ τ , i = 1, 2, 3; (6c)

∑

j∈J

λ
j
i = 1, i = 1, 2, 3, 4; (6d)

T1,T2,T3 ∈ Z;

The last 3 quadratic terms are added in the objective function to
ensure that the breaking points T1, T2, and T3 are not far away
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from the selected breaking points TP
1 , T

P
2 , and TP

3 based on the
mitigation policies and social events. The mu factor µ balances
the fitting and themitigation policies. The constraint (6b) ensures
the smoothness of the obtained curvature, and the constraint (6c)
ensures that the 3 breaking points T1, T2, and T3 are within a
particular neighborhood of TD

1 , T
D
2 , and TD

3 , respectively. The
convex combination of predictor functions is characterized by the
constraint (6d).

The optimization model (6a) can be solved using a brute-
force search algorithm because the constraint (6c) guarantees
finiteness of feasible Ti, i = 1, 2, 3. The details are described in
Algorithm 3.

In Algorithm 3, for fixed breaking dates Ti, i = 0, 1, 2, 3, 4, we
use the Algorithm 4 to find a stationary solution.

In our experiments, we solve the problem (6a) by
implementing Algorithms 3, 4 using the nonlinear solver
in software Mathematica 12 on a Windows 10 machine equipped
with a six-core Intel CPU.

Based on the fitted curve, under the assumption that the future
spread pattern will follow our fitted curve, we make a short-term
prediction of the future spread.

2.2.4. Heuristic to Estimate COVID-19 Fatality
In this section, we propose a heuristic method to estimate the
fatality from the COVID-19. We point out that as observed

in several existing works (50–52), various reasons such as
the medical resource operation improvement and treatment
experiences accumulation may have decreased the fatality rate
in the later periods of the pandemic. Inspired by such an
observation, we propose to estimate fatality by incorporating
the fatality rate in our heuristic. In the proposed heuristic, we
first compute the instantaneous fatality rate (IFR), defined as the
cumulative death toll in the most recent 2 weeks divided by the
cumulative confirmed cases in 2 weeks, 10 days prior to it. We
remark that the choice of the 2-week period is used to smooth
the fluctuation in the reported data. At the same time, the 10 days
lag is used based on some empirical studies (53–56) which shows
that, on average, hospitalized COVID-19 patients stayed in the
hospital for 10 to 12 days. Next, we simply multiply the IFR with
the positive cases to give us the fatality estimation.

3. RESULTS

In this section, we describe the design of experiments and
results for the proposed multi-period curve fitting model and
the heuristic. To compare the performance of our model and
proposed heuristic with existing models, we implement the
model at the national level. In subsection 3.1, we discuss the
implementation of the proposed framework and heuristic at the

TABLE 1 | Comparison with fatality forecasting models.

Model 1 Week Ago 2 Weeks Ago 3 Weeks Ago 4 Weeks Ago Rank

BPagano-RtDriven 5718 7075 6374 5516 3

CEID-Walk 4575 3530 2462 1830 23

COVIDhub-baseline 4535 3561 2532 1921 21

CU-select 4998 5719 6550 9264 4

DDS-NBDS 5954 5323 7688 2671 7

Epiforecasts-ensemble1 5470 4855 5959 2525 11

GT-DeepCOVID 5487 5137 3098 2190 13

IEM_MED-CovidProject 5367 3851 2549 1311 20

JHU_CSSE-DECOM 5461 5809 4375 3896 5

JHUAPL-Bucky 6239 5764 6436 13031 8

Karlen-pypm 7190 8509 10906 10857 6

LANL-GrowthRate 5216 4106 2569 2579 15

MIT_ISOLAT-Mixtures 6390 2607 2403 1397 19

MIT-Cassandra 5940 2081 2081 2675 18

MOBS-GLEAM_COVID 5337 4883 4023 3775 12

MUNI-ARIMA 4153 4444 3323 1881 17

PSI-DRAFT 2314 2746 1885 2392 24

RobertWalraven-ESG 4038 4023 2678 3796 16

SteveMcConnell-CovidComplete 6920 7863 6901 5099 1

UA-EpiCovDA 4930 4172 2729 4646 14

UCM_MESALab-FoGSEIR 4768 3552 2475 1841 22

UCSD_NEU-DeepGLEAM 5404 4940 4051 3870 9

USC-SI_kJalpha 7702 9601 10184 10918 10

UH-CF 7253 7082 6832 6656 2

Reported 6991(963903)
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FIGURE 4 | MSA classes based on spread patterns, (A) is Class-1, (B) is Class-2, (C) is Class-3, and (D) is Class-4.
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U.S. level, and in subsection 3.2 we do this implementation for
the MSAs.

3.1. National Level
In this subsection, we implement the proposed curve-fitting
model to analyze the COVID-19 spread at the national
level. Figure 2 shows the actual and fitted curve for the
national level spread data. The fitted curve gives us a
short-term forecast of daily new confirmed cases for up to
1 week.

Next, we use our heuristic method to estimate the fatality from
the predicted spread. Figure 3 shows the IFR in the U.S. We
multiply the IFR with the confirmed cases to get an estimate of
the fatality in the next 10 days.

To validate the numerical results from the curve-fitting
model with that of other forecasting models in the literature,
we predict the MMWR Week-33 spread and fatality by using
the reported data till 1, 2, 3, or 4 weeks ago in (MMWR
week 32, 31, 20, and 29, respectively). The week notation
used by Morbidity and Mortality Weekly Report (MMWR)

by CDC starts on a Sunday and ends on a Saturday. For
example, MMWR Week-33 is from 8/15/2021 to 8/21/2021.
We compare the fatality prediction based on our heuristic
with the other forecasting models from the literature using the
data collected by The Reich Lab at UMass-Amherst (57). As
one can see from Table 1, the accuracy for estimated fatality
from the heuristic is ranked second when compared with
other models.

3.2. MSA Level
As discussed earlier, there is greater uniformity in the mitigation
policies implemented at counties within a single MSA. However,
there is a large variety in the mitigation policies implemented
across MSAs, which leads to different patterns in the spread of
COVID-19 in different MSAs. To develop accurate forecasting
models for the COIVD-19 spread in MSAs, we first divide the
MSAs into 4 groups or classes and then develop a 3-period
forecasting model for the spread of COVID-19 in MSAs within
each group.

TABLE 2 | Spread and fatality forecast for top 30 MSAs.

MSA
1 Week Ago 2 Weeks Ago 3 Weeks Ago 4 Weeks Ago Reported

Positive Fatality Positive Fatality Positive Fatality Positive Fatality Positive Fatality

Los Angeles 28859 143 32351 145 32400 102 29610 143 28854 128

New York 21429 70 18844 91 21163 90 16542 96 20525 79

Chicago 12661 59 9858 42 10541 69 12584 36 11527 51

Dallas 26485 109 18859 91 25286 81 23373 72 22223 91

Houston 26627 171 18359 124 20507 129 18249 138 22795 146

New Jersey 9203 23 8047 40 6684 52 9313 34 8235 38

Washington 6210 19 7370 23 6526 23 5830 21 6862 16

Philadelphia 7265 8 5862 10 6515 34 7549 23 7028 21

Atlanta 20027 45 21939 78 15970 42 22552 58 18875 62

Boston 4669 20 5618 21 5372 27 4753 17 5085 25

Phoenix 17118 40 14706 34 16849 56 16647 32 14632 50

San Francisco 7104 16 6683 11 6835 37 6867 22 7430 25

Riverside 10758 38 13719 18 10128 45 12338 42 11548 33

Detroit 3835 27 3679 25 3821 41 4892 28 4388 28

Seattle 8306 10 10210 12 8170 11 10215 12 8725 16

Minneapolis 4480 4 3988 26 4688 17 3948 9 4493 16

San Diego 8002 4 7662 6 9819 9 9837 19 8615 13

Denver 3425 15 3153 7 3704 18 4688 4 3926 13

St. Louis 8039 50 6097 56 6199 24 7748 46 6913 39

Baltimore 2578 20 2588 24 1790 18 2226 19 2229 13

San Antonio 14950 73 13149 60 12838 93 10353 103 12684 80

Portland 3936 3 4692 13 4041 7 3531 7 4270 14

Pittsburgh 2275 13 2679 12 2323 20 2289 8 2389 12

Sacramento 5834 35 5891 28 5631 18 4541 19 5502 24

Cincinnati 3328 3 4025 5 4633 0 4419 2 4020 4

Las Vegas 5494 153 4386 141 5187 146 4410 171 5405 142

Kansas City 6328 39 5407 41 5059 43 6325 75 5599 58
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FIGURE 5 | MSA fatality rates.

We classify the MSAs into 4 classes based on the spread
patterns in the first 2 periods as follows.

C.1: MSAs with notable spread spike in the first period and no
spread spikes in the second period;

C.2: MSAs with notable spread spikes in both the first period and
the second period;

C.3: MSAs without notable spread spikes in both the first period
and the second period;

C.4: MSAs without notable spread spikes in the first period and
a notable spike in the second period.

The spread of COVID-19 in the top 30 MSAs within the U.S. and
their associated classes are shown in Figure 4.

Next, we describe the forecasting for MSAs in each group
using the 3-period framework as discussed in the subsection 2.2.
Since, the spread of the virus may be very different in various
MSAs, we identify the breaking points between 2 consecutive
periods in a single MSA based on the mitigation policies adopted
in that MSA. The weekly projection for spread or new positive
cases for MMWRWeek-33 is listed in Table 2.

To forecast the fatality in each scenario we use our proposed
heuristic and multiply the projected positive cases with the
IFR. The instantaneous fatality rates of the top 30 MSAs
are shown in the Figure 5. The weekly fatality projection for
MMWR Week-33 is listed in Table 23. We remark that most
of the 1-week projection errors are within a 10% margin of

Frontiers in Public Health | www.frontiersin.org 11 January 2022 | Volume 9 | Article 809877

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Majeed et al. COVID-19 Spread in the U.S. Metropolitans

error. Moreover, this simple projection model achieves high
accuracy in the MSAs where the fatality rates do not show large
variation recently.

4. DISCUSSION

In this paper, we proposed a new framework to study
the COVID-19 pandemic and introduced a multi-
period model to forecast the confirmed cases and deaths
from COVID-19 at the national, state, and MSA level.
The multi period curve fitting model allows us to
incorporate the impact from significant social events
and mitigation strategies in the model by selection of
turning points.

We also introduced a new approach of forecasting the weekly
fatality using the spread forecasts and instantaneous fatality rates.
The results show that the proposed forecasting model can predict
the confirmed cases and death toll with reasonable accuracy.
For national-level fatality forecast, the model is ranked second

3We note that the MSAs from Florida are removed from the analysis as the daily

data is not reported for recent weeks.

when compared with other fatality forecasting models from
the literature.

There are many areas of interest for future research. First,
it will be of interest to investigate whether the proposed
multi-period model can be adapted to forecast the spread of
other infectious diseases such as flu by combining the disease-
specific data with intervention policies. Second, it will be
interesting to see the impact of socioeconomic and demographic
features and intervention policies on the spread and fatality
in metropolitans. This will help in understanding why certain
MSAs performed better than others in the fight against the
COVID-19 pandemic.
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