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Background: The outbreak of the novel coronavirus disease 2019 (COVID-19) has been

raging around the world for more than 1 year. Analysis of previous COVID-19 data

is useful to explore its epidemic patterns. Utilizing data mining and machine learning

methods for COVID-19 forecasting might provide a better insight into the trends of

COVID-19 cases. This study aims to model the COVID-19 cases and perform forecasting

of three important indicators of COVID-19 in the United States of America (USA), which

are the adjusted percentage of daily admitted hospitalized COVID-19 cases (hospital

admission), the number of daily confirmed COVID-19 cases (confirmed cases), and the

number of daily death cases caused by COVID-19 (death cases).

Materials and Methods: The actual COVID-19 data from March 1, 2020 to August 5,

2021 were obtained from Carnegie Mellon University Delphi Research Group. A novel

forecasting algorithm was proposed to model and predict the three indicators. This

algorithm is a hybrid of an unsupervised time series anomaly detection technique called

matrix profile and an attention-based long short-term memory (LSTM) model. Several

classic statistical models and the baseline recurrent neural network (RNN) models were

used as the baseline models. All models were evaluated using a repeated holdout training

and test strategy.

Results: The proposed matrix profile-assisted attention-based LSTM model performed

the best among all the compared models, which has the root mean square error

(RMSE) = 1.23, 31612.81, 467.17, mean absolute error (MAE) = 0.95, 26259.55,

364.02, and mean absolute percentage error (MAPE) = 0.25, 1.06, 0.55, for hospital

admission, confirmed cases, and death cases, respectively.

Conclusion: The proposed model is more powerful in forecasting COVID-19 cases.

It can potentially aid policymakers in making prevention plans and guide health care

managers to allocate health care resources reasonably.
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BACKGROUND

It has been more than 1 year since the first case of the novel
coronavirus disease (COVID-19) came to light in December 2019
(1). According to the interactive COVID-19 dashboard created
and maintained by Johns Hopkins Center for Systems Science
and Engineering (JHU-CSSE), COVID-19 has spread to 191
counties and caused 4,370,447 global deaths out of more than
207 million diagnosed cases by August 16, 2021 (2). COVID-19
was confirmed to be caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) as defined by the International
Committee on Taxonomy of Viruses (ICTV) (3). SARS-CoV-2
coronavirus is a type of β-coronavirus with many potential hosts,
leading to difficulties in prevention and treatment (4, 5).

As COVID-19 is rapidly spreading and putting the world
under a very distressing situation, theWHO declared COVID-19
as a global pandemic in March 2020 (6). Since a whole year’s data
are now available, some epidemic patterns of COVID-19 have
been observed. COVID-19 follows the dynamic transmission
of an epidemic, with different magnitudes in terms of time,
region, season, and weather, and exhibited as a non-linear
relationship. Since new case prevention and healthcare resource
management have become critical for every country, good time
series forecasting tools for COVID-19 are extremely important
and necessary for estimating the number of cases in the
coming days.

There is a classic time series forecasting algorithm called
autoregressive integrated moving average (ARIMA) (7), which is
widely applied for infectious disease prediction in public health
(8, 9). ARIMA has been applied to COVID-19 forecasting as early
as February 2020 (10). Ceylan et al. used ARIMA to predict the
prevalence of COVID-19 for confirmed and deceased cases in
Italy, Spain, and France from February 21, 2020 to April 15, 2020
(11). Chintalapudi et al. have forecasted the number of registered
and recovered cases after a 60-day lockdown in Italy by ARIMA
with an accuracy rate of more than 80% (12). Researchers have
also widely applied ARIMA in comparison with other approaches
for COVID-19 forecasting (13–18). Since the trend of COVID-
19 cases follows a seasonal pattern, and ARIMA is not able
to capture seasonal patterns well, an improved variant of the
ARIMA called Seasonal ARIMA (SARIMA) (19) was proposed
to model the seasonality of time series data.

However, SARIMA is still considered to be too simple to
recognize complex patterns in the data. In principle, more
complex models, which could include other significant observed
or hidden variables/factors in disease prevalence, could be
considered when we design the forecasting framework. For
example, unsupervised data-driven time series anomaly detection
algorithms could find significant abnormal patterns within the
time series data (20). If we could incorporate the anomaly
information into the forecasting models, the performance may
be increased. Matrix profile is one of such algorithms proposed
by Keogh et al. (19). Amatrix profile consists of two components:
a distance vector and a profile index vector. The distance vector
contains the minimum Euclidean distances among the patterns
within the time series data. The indexes of the nearest neighbors
are stored in the profile index vector. The idea is that if a part
of the time series data is far different from its nearest neighbors,

then it is likely an anomaly. Keogh and his team further
developed a series of algorithms to calculate the matrix profile
to express the abnormal patterns within time-series data (21–25).

Somemachine learning algorithms, such as echo state network
(ESN) (26), gated recurrent unit (GRU) (27), and long short-
termmemory (LSTM) (28), have also been widely applied in time
series forecasting. They all belong to a recurrent neural network
(RNN), which is a family of neural network technologies with
internal memory (state) to process sequences of inputs. With
the memory mechanism in the RNN, the standard RNN can
handle the time series data very well. However, if a time series
is very long, it will be difficult to pass information from the
earlier timesteps to the later ones. This problem is called the
vanishing gradient problem (29). The ESN does not suffer from
this vanishing gradient problem because the hidden neurons
in an ESN are very sparsely connected to form a network
reservoir. The weights of the reservoir are randomly assigned
and not trainable. The information of the earlier time points
is randomly passed to the last points. Due to the untrainable
random hidden state, the ESN has high computational efficiency,
but the untrainable random hidden state reduces the complexity
of the model thus reduces the power (30).While the GRU and the
LSTM reduce the vanishing gradient problem by making it easier
to pass previous information throughout the state sequences.
They all use gates to regulate the information flow (28). The
difference is that the LSTM has three gates and a cell state while
the GRU has only two gates. Therefore, the LSTMmay have more
flexible control of the information flow. Previous studies have
tested the performance of GRU, LSTM, and several variants of
LSTM models for predicting COVID-19 cases across different
counties and confirmed their accuracy and robustness (31–34).

However, these models cannot detect which time point
is the important one for future prediction. Recently, the
attention mechanism in machine learning was developed to
overcome this limitation (35). This is achieved by keeping the
intermediate information from the LSTM units, training
the model to pay selective attention to the inputs, and
relating them to the items in the output time series (36).
The attention mechanism increases the computational
burden but results in a more targeted model with better
performance. In addition, the model is also able to show how
attention is paid to the input time series when predicting
the output. It can increase the explainability of the LSTM
model, which is an essential characteristic of gaining trust from
end users.

Although great advancements have been made in the theories
and applications of both the matrix profile and the LSTM,
limited efforts have been made to investigate the combination
of the two approaches and explore the applications of this
combined approach to time series data forecasting (such
as COVID-19 cases). In this study, we aim to propose a
novel framework, which is a hybrid of the unsupervised
matrix profile to detect a potential time series anomaly
and an attention-based LSTM model, to model and forecast
COVID-19 cases in the United States of America (USA).
We aim to achieve a more accurate COVID-19 forecasting
model to support decision-making and guide future advanced
model building.
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MATERIALS AND METHODS

Data Source
We considered the USA COVID-19 data from March 1, 2020
to August 5, 2021, which were obtained from the website of
Carnegie Mellon University Delphi Research Group (37). We
focused on three indicators: the adjusted percentage of daily
admitted hospitalized COVID-19 cases (hospital admission), the
number of daily confirmed COVID-19 cases (confirmed cases),
and the number of daily death cases caused by COVID-19 (death
cases). The hospital admission is the estimated percentage of new
hospital admissions with COVID-19. It is based on insurance
claims data from health system partners and smoothed using a
Gaussian linear smoother.

Methods
Data Pre-processing and Remapping
To improve model performance and consider the consistency in
evaluating model performance between statistical and machine
learning approaches, pre-processing raw data by normalization is
necessary. We applied z-normalization or standardization to the
data. The formulation to transform the observed raw data into
z-score is Zi = (Yi-Ȳ)/s, where Ȳ and s are the sample mean and
standard deviation. Y i is the observed raw data at time point i.
After building a forecasting model and obtaining the predicted
value Zj, we remapped these values to the observed raw data scale
by applying the formula: Y j = s∗Zj + Ȳ . Here, Y j is the predicted
data with raw data scale at time point j.

Matrix Profile for Time Series Data Analysis
Matrix profile compares snippets of the time series by computing
the distance between each pair of snippets. A matrix profile
consists of two components: a distance profile and a profile index
vector. The distance profile contains the minimum Euclidean
distances among the sub-snippets within the time series. If the
minimum distance of a certain sub-snippet is very large, it is
probably that this sub-snippet is an anomaly because it is very
different from its nearest neighbor. The indexes of the nearest
neighbors are stored in the profile index vector. Matrix profiles of
the three COVID-19 indicators were calculated using the Python
package “matrixprofile” (38). Several algorithms are provided by
the package for computing the matrix profile, such as Scalable
Time series Anytime Matrix Profile (STAMP) and Scalable Time
series Ordered-search Matrix Profile (STOMP). We selected the
STOMP function since it is faster. The window size was set as
7 (weekly anomaly). After the matrix profiles were calculated,
top 10 discords (the top 10 sub-snippets with larger Euclidean
distances with their nearest neighbors) were highlighted for
the visualization. In addition to the distance profile, we also
considered the index profile vector. The index profile vector
stores the global index of the closest neighbor of each snippet.
For instance, if the most similar snippet of the current snippet
is at the 15th location, the global position of the current snippet
will be 15. The relative position is the relative index of the closest
neighbor of the current snippet. It can be calculated using the
index profile vector. If the current snippet is at the 10th location
and the nearest neighbor of the current snippet is at the 15th
location, then the relative position will have a value of +5. In the

remaining parts of the report, we mainly focus on the distance
profile and the relative position, which are passed together with
the normalized observed raw data into the LSTM for forecasting
the COVID-19 cases.

Baseline Models

ARIMAModel for Seasonal Data (SARIMA)
Non-seasonal ARIMA is a generalized form of the autoregressive
moving average (ARMA) model. The ARMA is a combination of
the auto regression (AR) model of order p, and moving average
(MA) model of order q.

Let yt denote the dth difference of Y t, and Y t refer to the
observation at time t, the general equation of the ARIMA (p, d,
q) model is as follows.

yt = c+ φ1yt−1 + φ2yt−2 + . . . + φpyt−p

+ εt − θ1εt−1 − θ2εt−2 − . . . − θqεt−q (1)

where φ = [φ1, φ2, . . . , φp] and θ = [θ1, θ2, . . . θq] are coefficients
of AR and MA parts of the model, respectively. Here, c is a
constant and εt is the residual assumed to be uncorrelated in the
final selected ARIMA model.

The ARIMA is not capable of modeling seasonal data.
Therefore, the SARIMA model includes the additional seasonal
term (p, d, q)m where m is the number of observations per
year. To estimate the coefficients in the SARIMA, the maximum
likelihood estimation (MLE) and the least square estimation
(LSE) were used (7). R function auto.arima() in the “forecast”
package (39) was utilized to execute SARIMA.

Standard RNNModel
Vanilla RNN has backward-linking connections. It can be
computed as follows:

yt = σ
(

Wx · xt + Wy · yt−1 + bt
)

, (2)

which can also be described as: at a given timestep t, each
recurrent layer receives the input xt and the output from the
previous timestep yt−1, then outputs the non-linearly processed
yt . The non-linearity comes from the activation function σ . Wx

andWy are the input weights and output weights. bt is the bias.

ESNModel
The simple ESN model can be computed as follows:

yt = Wy · σ (Wx · xt + Wr · ht−1 + bt), (3)

Where xt , ht , yt are the input, hidden state, and output at time
point t, respectively. σ is the activation function. Wx and Wr

weight matrices are randomly initialized and fixed in the training
step, and only the output weightWy is trainable.

GRUModel
The GRU model has a reset gate (rt), a cell state (ht), and an
output gate (yt) to control the information flow.

yt = σ (Wy ·
[

ht−1, xt
]

+ bo), (4)

rt = σ (Wr ·
[

ht−1, xt
]

+ bt), (5)

ht =
(

1 − yt
)

∗ht−1 + zt∗tanh
(

W ·
[

rt∗ht−1, xt
]

+ bC
)

, (6)
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FIGURE 1 | The overall workflow of the proposed novel matrix profile-guided attention LSTM algorithm. Matrix profile feature could be the distance profile (the

LSTM-MatAtt model) or the relative position profile (the LSTM-RelAtt). The matrix profile feature concatenated with the normalized observed data of the COVID-19

indicators are first input into the LSTM unit, then passed to the later steps of the encoder-decoder attention process. The final output is the predicted future values of

the COVID-19 indicators.

where
[

ht−1, xt
]

is the concatenation between the hidden
state of the previous timestep, ht−1, and the input of
the current timestep, xt . bo, bt , bC are the bias of
each gate.

Matrix Profile-Guided Attention LSTM Models

LSTMWithout Attention
The LSTM model contains a forget gate (ft), an input gate (it),
and an output gate (yt). The forget gate receives the hidden state
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from the previous timestep (ht−1), and concatenates them with
the input in the current timestep, then passes them into a linear
layer with a sigmoid activation.

ft = σ
(

Wf ·
[

ht−1, xt
]

+ bt
)

, (7)

Wf is the weight of the forget gate.
The input gate controls how much new information will

be passed into the current timestep, which can be formulated
as follows:

it = σ (Wi ·
[

ht−1, xt
]

+ bt), (8)

C̃t = tanh(WC ·
[

ht−1, xt
]

+ bC), (9)

C̃ is used to update the cell state (Ct) of the current timestep.

Ct = ft ∗ Ct−1 + it ∗ C̃t , (10)

The output gate controls and filters the information from the cell
state. The equation is:

yt = σ (Wo ·
[

ht−1, xt
]

+ bo), (11)

ht = yt ∗ tanh(Ct), (12)

Convolutional Neural Network LSTM
The convolutional neural network LSTM (CNN-LSTM) is a
model that uses a combination of CNN (40) to extract the
features of the input and pass the extracted features as an input
to the LSTM model. A CNN extracts features from a group of
inputs based on the kernel size. The equation for convolutional
operations is:

outputd,e =

k
∑

i

k
∑

j

wl
i,j ∗ I

l−1
d+i,e+j + bld,e (13)

Where wl
i,j is the weights in layer l at row i and column j of the

kernel, ll−1 is the output from the previous layer, and bl is the
bias in layer l. We kept the kernel size 2. With kernel size 2, the
sequence length of the input will be reduced by 1 after every layer.
In order to maintain the sequence length for the LSTM, we used
a transposed CNN to expand the sequence length to the original
length. The output of the CNN is fed as input to the LSTM.

LSTMWith Attention
We added an attention mechanism to our LSTM model. The
proposed overall workflow can be found in Figure 1. As there
are outliers in the forecasted values, the attention mechanism
can help LSTM models to focus on important parts of the time
series to prevent getting skewed values. We utilized multiheaded
attention where there are several heads and each head contains a
query, a key, and a value. Multiheaded attention has been shown
to be beneficial with different learned linear projections (25). The
equation for the attention is:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V , (14)

where Q is the query, K is the key, and V is the value. dk is the
dimension of the current layer. Q = [Qt−p,Qt−p+1, . . . , Qt],
K = [Kt−p,Kt−p+1, . . . , Kt], V = [Vt−p,Vt−p+1, . . . , Vt].
p is the attention span. The attention span would look
at the previous p timesteps, so the model attends to
them. t is the current timestep. Each head contains the
attention equation:

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ), (15)

Qt , Kt , Vt are obtained by passing the hidden outputs from the
LSTM into a linear layer:

Qt = htW
Q (16)

Kt = htW
K (17)

Vt = htW
V (18)

The multiheaded attention concatenates the attentions of the
heads and outputs the combination of the attentions of the head,
which can be formulated as:

MultiHead (Q,K,V)

= Concat
([

head1, head2, . . . , headk
])

WO (19)

Furthermore, we incorporate an encoder-decoder architecture
for the LSTM with an attention model (Figure 1). The output of
the LSTM is fed into the encoder. The attention architecture in
the encoder undergoes multiheaded attention on its own input
to determine which timestep the model should focus more on.
It then passes its learned features to the decoder. The decoder

Algorithm 1: LSTM with attention

ProcedureTraining with LSTMAttention (D,MP, Y) // D= data,
MP=matrix profile, Y= targets
X <- Concat([D, MP])
For all X, Y do // X= inputs, Y= targets

//Pass inputs into LSTM to get LSTM output:
OL <- LSTM(X)
// encoder part

AE <- MultiHeadAtt(OL)
NE <- LayerNorm(OL + AE)

AO <- ReLU(NEWNE + BNE )
EO <- LayerNorm(NE + AO)
// pass encoderOutput into decoder
// decoder part
AD <- MultiHeadAtt(EO)
DE <- LayerNorm(AD + EO)
DA <- DecoderMultiHeadAtt(DE, MP) // MP = matrix
profile value
DO <- LayerNorm(DE + DA)
Ŷ <- ReLU(DOWDO + BDO ) // Predicted output
// update weights
loss <- RMSELoss(Ŷ , Y)
backprop(loss)

End For
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receives the input from the output of the encoder. To aid in more
guidance for the attention stage in the decoder, the matrix profile
input is fed into the attention stage in the decoder in addition
to the hidden features of the decoder. The decoder outputs its
learned features and passes them into a linear layer to output
the predicted value. The overall procedure of the matrix profile-
guided attention LSTMmodel is summarized in Algorithm 1.

Given the combination of the normalized observed raw data,
matrix profiles, and the attention mechanism, we evaluated
different LSTM models for each of the three COVID-19
indicators used in the study, which include the following LSTM-
related models:

1) LSTM: using only the normalized observed raw data.
2) CNN-LSTM: using only the normalized observed raw data

with convolutional LSTM network.
3) LSTM-Att: using only the normalized observed raw data with

attention mechanism in LSTM.
4) LSTM-MatAtt: using the normalized observed raw data

and the distance profile fed into the attention-based
LSTM network.

5) LSTM-RelAtt: using the normalized observed raw data and the
relative position matrix profile feature fed into the attention-
based LSTM network.

Hyperparameter Tuning
The number of reservoirs of ESN was tuned manually, ranging
from 50 to 300, the best one was 200. GRU and simple RNN have
one hidden unit, thus, there is no need to tune the number of
hidden layers. The step size of the input time series was set as
12 for ESN, GRU, simple RNN, and all LSTM models with and
without attention or matrix profile. Epochs were tuned separately
for different models to achieve the best losses. The additional
hyperparameters that we tuned for the LSTM networks, such
as hidden dimensions, dropout, and feedforward dimensions,
can be found in Table 1. These hyperparameters were tuned
separately for different models with and without the addition of
attention and the matrix profile to achieve the best convergence.

Performance Evaluation
After building the models for each indicator, it is important to
evaluate the prediction accuracy and compare the forecasting
performance to other proposed models in forecasting the
number of COVID-19 cases. Traditional K-fold cross-validation
is designated for independent data. However, time-series data are
considered as dependent data in which we use past events to
forecast the future ones. Therefore, we consider a rep-holdout
cross-validation method. In this method, we divided the time

TABLE 1 | Parameters tuning of LSTM models.

LSTM

Runs 1 2 3 4 5 6 7 8 9 10

Hidden dimension 32 32 32 32 32 128 32 128 128 128

Dropout 0.95 0.36 0.21 0.34 0.85 0.77 0.39 0.02 0.07 0.09

Loss 404.74 229.33 316.65 188.39 293.42 297.75 242.4 258.1 287.42 309.82

CNN-LSTM

Runs 1 2 3 4 5 6 7 8 9 10

Hidden dimension 32 32 32 32 32 128 32 128 128 128

Dropout 0.95 0.36 0.21 0.34 0.85 0.77 0.39 0.02 0.07 0.09

Loss 827.48 801.15 820.6 807.1 828.87 812.52 763.49 811.17 716.7 805.17

LSTM attention (LSTM-Att)

Runs 1 2 3 4 5 6 7 8 9 10

Hidden dimension 32 32 32 32 32 128 32 128 128 128

Dropout 0.95 0.36 0.21 0.34 0.85 0.77 0.39 0.02 0.07 0.09

ff_dim* 8 16 8 64 8 16 8 32 32 16

Loss 421.18 505.58 265.48 444.86 534.89 435.63 530.28 506.72 571.58 461.99

LSTM matrix attention ( LSTM-MatAtt)

Runs 1 2 3 4 5 6 7 8 9 10

Hidden dimension 32 32 32 32 32 128 32 128 128 128

Dropout 0.95 0.36 0.21 0.34 0.85 0.77 0.39 0.02 0.07 0.09

ff_dim 8 16 8 64 8 16 8 32 32 16

Loss 1377.05 1765.31 983.64 1618.63 677.07 1639.26 1194.62 887.21 1114.19 946.79

LSTM attention (LSTM-Att)

Runs 1 2 3 4 5 6 7 8 9 10

Hidden dimension 32 32 32 32 32 128 32 128 128 128

Dropout 0.95 0.36 0.21 0.34 0.85 0.77 0.39 0.02 0.07 0.09

ff_dim 8 16 8 64 8 16 8 32 32 16

Loss 1542.63 516.51 1605.26 556.59 570.86 436.76 511.54 786.18 454.08 566.33

ff_dim is the feedforward dimension layer after the attention module.
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FIGURE 2 | The rep-holdout strategy for model training and validation. The X axis is the time points.

series data into training and testing sets by ascending time order.
To conduct the model performance evaluation, we applied the
rep-holdout strategy, in which the test sets are the last (most
recent) 10, 20, 30, 40, and 50 percentage of all time points
(Figure 2). We measured the forecasting accuracy by root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) using the test set.

RMSE =

√

∑n
t=1 (yt − y

predict
t )

2

n
, (20)

MAE =

∑n
t=1

∣

∣

∣
yt − y

predict
t

∣

∣

∣

n
, (21)

MAPE =

∑n
t=1

∣

∣

∣

∣

yt − y
predict
t

yt

∣

∣

∣

∣

n
, (22)

where n is the sample size for each testing set, yt is the actual data,

y
predict
t is the predicted data.

RESULTS

Matrix Profiles
The observed signals of the three indicators and their matrix
profiles can be found in Figure 3. The trends of the hospital
admission and death cases showed two peaks in April 2020 and
January 2021 (top panels of Figures 3A,C). In addition, some
minor decreasing and increasing trends were also observed.
Matrix profiles of these two indicators were able to detect these
ups and downs (bottom panels of Figures 3A,C). It should
be noted that the beginning of the death cases time series
was also detected as an anomaly because the death cases were
pretty low at the first few days. The confirmed cases time series
was stable overall until around November 2020 (top panel of
Figure 3B). The top 1 anomaly in its matrix profile was located
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FIGURE 3 | The raw time series and the matrix profile of the three indicators. (A) is the time series of COVID-19 hospital admissions and its matrix profile. (B) is the

time series of the daily confirmed COVID-19 cases and its matrix profile. (C) is the time series of the daily death cases caused by COVID-19 and its matrix profile. The

red segments in the matrix profile plots indicate the corresponding weeks that have large Euclidean distances to their nearest neighbor compared to all the other

weeks, which also means these weeks marked as red are the top anomalies within the whole time series.
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TABLE 2 | Model performance.

Admission Confirmed Death

Rep-hold 1 2 3 4 5 Average 1 2 3 4 5 Average 1 2 3 4 5 Average

Seasonal

autoregressive

integrated

moving average

(SARIMA)

Root mean square

error (rmse)

2.93 1.13 5.58 6 2.86 3.7 48,893.89 43,200.22 43,890.86 285,457.64 182,560.72 120,800.67 192.03 339.58 1,401.85 2,103.07 1,254.41 1,058.19

mean absolute error

(mae)

2.25 0.96 4.73 5.62 2.3 3.17 29,682.94 38,672.56 37,310.42 269,991.12 158,514.88 106,834.38 159.21 282.7 1,340.84 1,944.12 932.97 931.97

Mean absolute

percentage error

(mape)

0.89 0.53 2.2 2.42 0.67 1.34 0.76 3.65 3.05 14.88 8.7 6.21 2.51 3.15 7.94 9.55 2.49 5.13

Echo state

network (ESN)

rmse 2.85 1.39 1.82 7.03 3.23 3.27 42,964.79 48,636.51 46,766.28 178,680.95 103,114.16 84,032.54 513.06 800.7 600.22 1,805.84 1,279.4 999.84

mae 2.46 1.21 1.54 6.67 2.93 2.96 25,838.09 43,065.5 42,408.47 170,927.49 92,714.16 74,990.74 433.16 712.51 452.26 1,622.81 992.24 842.59

mape 1.34 0.72 0.84 2.82 0.96 1.34 0.85 4.23 2.31 9.13 4.83 4.27 6.37 5.87 3.24 6.28 3.58 5.07

Recurrent neural

network (RNN)

rmse 1.50 1.14 1.04 1.24 1.25 1.25 36,301.76 48,930.03 48,582.78 44,627.97 46,251.33 44,938.77 618.95 516.87 697.39 924.08 1,033.18 758.09

mae 1.24 0.86 0.76 0.96 0.98 0.96 27,413.55 30,122.34 28,976.36 28,576.04 30,771.02 29,171.86 458.87 354.16 463.03 594.38 681.61 510.41

mape 0.48 0.34 0.27 0.26 0.23 0.32 2.64 2.04 1.66 1.15 0.76 1.65 5.78 3.28 2.69 1.72 1.64 3.02

Gated recurrent

unit (GRU)

rmse 1.57 1.2 1.03 1.22 1.24 1.25 48,021.18 30,072.92 52,378.17 27,062.73 39,457.26 39,398.45 560.39 546.44 676.17 827.9 941.93 710.56

mae 1.26 0.91 0.77 0.97 1.0 0.98 30,588.13 20,542.1 31,658.96 19,509.24 25,801 25,619.89 405.84 391.32 440.34 557.95 665.99 492.29

mape 0.5 0.35 0.27 0.26 0.23 0.32 2.3 1.57 1.76 0.9 0.82 1.47 5.38 3.17 2.15 1.8 1.96 2.89

Long short-term

memory (LSTM)

rmse 0.99 0.58 0.50 2.27 3.18 1.50 40,777.76 8,524.12 6,615.82 54,148.58 76,302.02 37,273.66 199.09 387.76 709.34 1,191.08 588.35 615.12

mae 0.65 0.58 0.50 1.80 2.55 1.22 26,680.90 6,745.04 6,524.89 37,704.15 58,703.45 27,271.69 162.23 372.73 576.72 874.00 543.57 505.85

mape 0.23 0.17 0.14 0.60 0.44 0.31 1.03 0.13 0.11 0.74 0.59 0.52 1.88 0.54 0.52 0.61 0.32 0.77

Convolutional

neural network

(CNN)-LSTM

rmse 1.37 0.96 0.92 2.08 2.80 1.62 40,404.43 16,663.18 13,230.96 45,052.20 74,871.81 38,044.51 837.00 535.74 589.30 1,175.13 458.34 719.10

mae 1.27 0.77 0.92 1.49 2.34 1.36 28413.84 15,329.70 11,412.55 28,374.41 55,020.34 27,710.17 813.65 519.59 354.60 800.40 396.15 576.88

mape 0.78 0.29 0.26 0.46 0.38 0.43 1.37 0.29 0.20 0.70 0.53 0.62 2.64 0.75 0.45 0.55 0.22 0.92

LSTM-Att rmse 1.03 0.92 0.84 2.34 2.82 1.59 40,190.04 15,190.05 12,312.38 54,340.17 76,099.67 39,626.46 196.35 452.30 682.91 1,190.51 492.40 602.89

mae 0.69 0.92 0.80 1.96 2.54 1.38 27,157.88 13,731.57 10,316.78 40,776.23 58,692.52 30,135.00 156.49 390.36 537.24 907.07 434.72 485.18

mape 0.25 0.26 0.23 0.55 0.38 0.34 0.71 0.26 0.18 0.70 0.53 0.48 0.79 0.71 0.46 0.55 0.25 0.55

LSTM-MatAtt rmse 0.91 0.31 0.44 1.01 3.49 1.23 41,368.47 18,142.10 8,341.91 39,247.68 50,963.88 31,612.81 205.34 321.18 668.23 885.96 255.13 467.17

mae 0.74 0.31 0.44 0.79 2.47 0.95 34,559.99 17,091.87 8,304.28 32,947.74 38,393.86 26,259.55 166.47 255.29 527.03 659.52 211.79 364.02

mape 0.32 0.09 0.13 0.29 0.44 0.25 3.35 0.45 0.13 0.73 0.66 1.06 0.69 0.83 0.45 0.60 0.17 0.55

LSTM-RelAtt rmse 0.71 0.63 0.78 2.17 3.23 1.50 33,139.11 24,263.36 683.29 51,316.31 70,101.06 35,900.62 194.75 229.07 698.72 1,180.69 197.48 500.14

mae 0.58 0.63 0.75 1.66 2.49 1.22 24,412.11 23,770.01 505.07 36,789.93 50,511.32 27,197.69 155.75 191.42 688.39 782.20 195.39 402.63

mape 0.27 0.18 0.23 0.58 0.48 0.35 1.34 0.61 0.01 0.68 0.61 0.65 0.81 1.38 0.37 0.56 0.17 0.66
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in around November 2020, which is consistent with the visual
observation (bottom panel of Figure 3B). Overall, the data-
driven unsupervised matrix profile successfully detected the
intrinsic anomalous data in the time series of the three indicators.

Seasonal ARIMA
The performance of the SARIMA is summarized in Table 2.
Overall, SARIMA had a decent average performance of

predicting the three indicators. Rep-holdout 1 (last 10% of time
points as a testing set) did not always have best performance
in predicting the three indicators among all other rep-holdout,
and rep-holdout 5 (last 50% of time points as a testing
set) was not the worst strategy, which indicates that the
performance of the SARIMA model was not linearly related
with the size of the training data. This is also applied to
other models.

FIGURE 4 | The model fitting and forecasting results of the three COVID-19 indicators by the selected models. (A) is the results for hospital admission, (B) is the

results for confirmed cases, and (C) is the results for death cases. We showed the model fitting results based on the observed data from March 1, 2020 to August 5,

2021. The selected models are based on the performance shown in Table 2 for the categories of traditional statistical models, RNN-based models, and the family of

the LSTM models, including our proposed LSTM-based models. The model forecasting results are based on the best model among the proposed and the compared

models for each indicator.
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RNN Models
The results of the simple RNN, ESN, and GRU models can be
found in Table 2. The simple RNN and GRU achieved similar
overall performance in predicting the three indicators, but their
performances were better than that of the ESN model. The ESN
performed slightly better than the SARIMA, while the simple
RNN and GRU were much better than the SARIMA.

LSTM Models
The LSTM model with attention mechanism and matrix
profile (Model: LSTM-MatAtt) has achieved better-averaged
performance in predicting the three indicators (Table 2).
Furthermore, the LSTM-MatAtt model with rep-holdout 3 was
the best model in predicting hospital admission (RMSE = 1.23,
MAE = 0.95, MAPE = 0.25). This performance was far better
than other models we tested, no matter if they were classic
statistic models or any other RNN models (Table 2).

Overall, the LSTM models with attention mechanism fed
together with the matrix profile outperformed the classic statistic
models, the other RNN models, and the LSTM models without
the attention mechanism as well as the matrix profile assistance
in predicting the three indicators. Different models may need to
be equipped with different rep-holdouts.

COVID-19 Case Forecasting
After the performances of the models were evaluated and the
hyperparameters were fine-tuned using the rep-holdout strategy,
the final forecasting for the three indicators was performed based
on the whole data (March 1, 2020 to August 5, 2021). We let the
selected and well-trained models run freely to forecast the future
data between August 6, 2021 and October 31, 2021 (Figure 4).
Note: We can only access the data up to August 5, 2021 at the
time we submit the report.

Using the best models show in Table 2, we forecasted the cases
of hospital admission, confirmed cases, and death cases using the
trained LSTM-MatAtt models for the period fromAugust 6, 2021
to October 31, 2021 (Figure 4). The forecasting results of hospital
admission show a significant rise between July 2021 and October
2021. The confirmed cases and death cases indicate a relatively
stable trend in the next few months, but they have significantly
decreased from the peaks in January–February in 2021.

DISCUSSIONS AND CONCLUSIONS

Classic statistic time series forecasting models and the baseline
RNN models, which are the benchmarks of this study, are able
to achieve descent predictions of the three indicators of COVID-
19. The proposed novel LSTM models combining matrix profile
and attention mechanism achieved the overall best performance.
A different number of time points was assigned to the training
set according to the rep-holdout strategy. According to Table 1,
the model performances were not associated with the size of
the training sets, which means a larger training set may not
guarantee a better performance. Careful selection of a proper
training strategy could potentially increase the performance.

There are some limitations in this study. First, although
the proposed models were selected through a five rep-holdout
strategy, it was not validated in another totally independent
dataset. Second, forecasting future cases is often not accurate
while its uncertainty is seriously underestimated. One such
example is the case of SARS, where the fear of becoming a
pandemic was overblown, resulting in overspending and the
application of restrictive measures to be taken that turned
out to be unnecessary. Due to the uncertain measures taken,
mathematical models overpredicted the number of cases. This
calls us to fully take these potential uncertain factors into
account when we build the forecasting models. In our modeling
strategy, we used an indirect approach to first detect anomalies
existing in the history data, which may be related to these
uncertain measures. Despite the inaccuracies associated with the
predictions, forecasting is still useful in allowing us to better
understand the current situation and make plans.

In conclusion, a novel unsupervised matrix profile combined
with an attention-based LSTM algorithm was proposed. Our
experiments showed that the proposed algorithm has the best
ability to forecast COVID-19 cases than the classical statistic
methods and the baseline RNN models. The forecasted data may
provide potentially useful information to help decision-makers to
control the consequences of COVID-19.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://cmu-delphi.github.io/delphi-epidata/.

AUTHOR CONTRIBUTIONS

QL and DF were responsible for the conceptualization,
development of methodologies and writing, and editing
the manuscript. LL performed data analysis and wrote the
manuscript. PH provided advice on data analysis and critically
reviewed the manuscript and was also involved in supervision
and project administration. All authors had full access to all of
the data in the study and can take responsibility for the integrity
of the data and the accuracy of the data analysis.

FUNDING

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada and the University
of Manitoba. PH is the holder of the Manitoba Medical
Services Foundation (MMSF) Allen Rouse Basic Science Career
Development Research Award.

ACKNOWLEDGMENTS

Data were downloaded from the website of Carnegie Mellon
University Delphi Research Group.

Frontiers in Public Health | www.frontiersin.org 11 October 2021 | Volume 9 | Article 741030

https://cmu-delphi.github.io/delphi-epidata/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liu et al. AI for COVID-19 Cases Prediction

REFERENCES

1. Disease outbreak news. WHO | Novel Coronavirus – China. WHO (2020).

Available online at: https://www.who.int/csr/don/12-january-2020-novel-

coronavirus-china/en/ (accessed Sep 22, 2020).

2. Dong E, Du H, Gardner L. An interactive web-based dashboard

to track COVID-19 in real time. Lancet Infect Dis. (2020)

20:533–4. doi: 10.1016/S1473-3099(20)30120-1

3. Gorbalenya AE, Baker SC, Baric RS, Groot RJ De, Gulyaeva AA,

Haagmans BL, et al. The species Severe acute respiratory syndrome-related

coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature

microbiology (2020) 536.

4. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy

V, Giridharan B, et al. COVID-19: a promising cure for the global

panic. Sci Total Environ. (2020) 725:138277. doi: 10.1016/j.scitotenv.2020.

138277

5. Abd El-Aziz TM, Stockand JD. Recent progress and challenges

in drug development against COVID-19 coronavirus (SARS-

CoV-2) - an update on the status. Infect Genet Evol. (2020)

83:104327. doi: 10.1016/j.meegid.2020.104327

6. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed.

(2020) 91:157–160. doi: 10.23750/abm.v91i1.9397

7. Box GEP, Jenkins GM, Reinsel GC. Time series analysis: forecasting and

control. J Market Res. (1977) 14:269. doi: 10.2307/3150485

8. Heisterkamp SH, Dekkers ALM, Heijne JCM. Automated detection of

infectious disease outbreaks: hierarchical time series models. Stat Med. (2006)

25:4179–96. doi: 10.1002/sim.2674

9. Choi K, thacker SB. An evaluation of influenza mortality

surveillance, 1962–1979. Am J Epidemiol. (1981) 113:215–

26. doi: 10.1093/oxfordjournals.aje.a113090

10. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application

of the ARIMAmodel on the COVID-2019 epidemic dataset.Data Brief. (2020)

29:105340. doi: 10.1016/j.dib.2020.105340

11. Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and

France. Sci Total Environ. (2020) 729:138817. doi: 10.1016/j.scitotenv.2020.

138817

12. Chintalapudi N, Battineni G, Amenta F. COVID-19 virus outbreak

forecasting of registered and recovered cases after sixty day lockdown in

Italy: a data driven model approach. J Microbiol Immunol Infect. (2020)

53:396–403. doi: 10.1016/j.jmii.2020.04.004

13. Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the spread of the

COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under

current public health interventions. J Infect Public Health. (2020) 13:914–

9. doi: 10.1016/j.jiph.2020.06.001

14. Chaurasia V, Pal S. COVID-19 Pandemic: ARIMA and Regression Model-

Based Worldwide Death Cases predictions. SN Comput Sci. (2020)

1:288. doi: 10.1007/s42979-020-00298-6

15. Chaurasia V, Pal S. Application of machine learning time series analysis

for prediction COVID-19 pandemic. Res Biomed Eng. (2020) 24:1–

13. doi: 10.1007/s42600-020-00105-4

16. Hernandez-Matamoros A, Fujita H, Hayashi T, Perez-Meana H. Forecasting

of COVID19 per regions using ARIMA models and polynomial

functions. Appl Soft Comput J. (2020) 96:106610. doi: 10.1016/j.asoc.2020.

106610

17. Sahai AK, Rath N, Sood V, Singh MP. ARIMA modelling & forecasting of

COVID-19 in top five affected countries. Diabetes Metab Syndrome Clin Res

Rev. (2020) 14:1419–27. doi: 10.1016/j.dsx.2020.07.042

18. Wang Y, Xu C, Yao S, Zhao Y. Forecasting the epidemiological trends of

COVID-19 prevalence and mortality using the advanced α-Sutte Indicator.

Epidemiol Infect. (2020) 148: doi: 10.1017/S095026882000237X

19. M. WB, A. HL. Modeling and forecasting vehicular traffic flow as

a seasonal ARIMA process: theoretical basis and empirical results. J

Transport Eng. (2003) 129:664–72. doi: 10.1061/(ASCE)0733-947X(2003)

129:6(664)

20. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey.

ACM Comput Surveys. (2009) 41:1–58. doi: 10.1145/1541880.

1541882

21. Yeh C-CM, Zhu Y, Ulanova L, BegumN, Ding Y, Dau HA, et al. Matrix profile

I: all pairs similarity joins for time series: a unifying view that includes motifs,

discords and shapelets. In: 2016 IEEE 16th International Conference on Data

Mining (ICDM). Barcelona: Institute of Electrical and Electronics Engineers

(IEEE) (2016). p. 1317–22.

22. Zhu Y, Zimmerman Z, Senobari NS, Yeh C-CM, Funning G, Mueen

A, et al. Matrix profile II: exploiting a novel algorithm and gpus to

break the one hundred million barrier for time series motifs and joins.

In: 2016 IEEE 16th International Conference on Data Mining (ICDM).

Barcelona: Institute of Electrical and Electronics Engineers (IEEE) (2016),

739–48.

23. Yeh C-CM, Herle H Van, Keogh E. Matrix profile III: the matrix

profile allows visualization of salient subsequences in massive time

series. In: : 2016 IEEE 16th International Conference on Data Mining

(ICDM). Barcelona: Institute of Electrical and Electronics Engineers (IEEE).

p. 579–88.

24. Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Anh H, et al.

Time series joins, motifs, discords and shapelets: a unifying view that

exploits the matrix profile. Data Mining Knowl Discov. (2018) 32:83–

123. doi: 10.1007/s10618-017-0519-9

25. Yeh CCM, Kavantzas N, Keogh E. Matrix profile IV: using weakly labeled

time series to predict outcomes. Proc VLDB Endow. (2017) 10:1802–

12. doi: 10.14778/3137765.3137784

26. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems

and saving energy in wireless communication. Science. (2004) 304:78–

80. doi: 10.1126/science.1091277

27. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk

H, et al. Learning phrase representations using RNN encoder-decoder

for statistical machine translation. In: EMNLP 2014 - 2014 Conference

on Empirical Methods in Natural Language Processing, Proceedings of the

Conference. Doha, Qatar, Association for Computational Linguistics (2014).

p. 1724–34. doi: 10.3115/v1/D14-1179

28. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.

(1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735

29. Hochreiter S. The vanishing gradient problem during learning recurrent

neural nets and problem solutions. Int J Uncertain Fuzziness Knowl Based Syst.

(1998) 6:107–16. doi: 10.1142/S0218488598000094

30. Oztuik MC, Xu D, Principe JC. Analysis and design of echo state

networks. Neural Comput. (2007) 19:111–38. doi: 10.1162/neco.2007.

19.1.111

31. Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep

learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals. (2020)

140:110212. doi: 10.1016/j.chaos.2020.110212

32. Chimmula VKR, Zhang L. Time series forecasting of COVID-

19 transmission in Canada using LSTM networks. Chaos

Solitons Fractals. (2020) 135:109864. doi: 10.1016/j.chaos.2020.

109864

33. Barman A. Time series analysis and forecasting of COVID-19 cases

using LSTM and ARIMA models[J]. (2020). arXiv [Preprint]. arXiv 2006.

13852

34. Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Time series forecasting

of Covid-19 using deep learning models: India-USA comparative case

study. Chaos Solitons Fractals. (2020) 140:110227. doi: 10.1016/j.chaos.2020.

110227

35. Wang Y, Huang M, Zhao L, Zhu X. Attention-based LSTM for aspect-level

sentiment classification. In: EMNLP 2016 - Conference on Empirical Methods

in Natural Language Processing, Proceedings. Austin, Texas, Association for

Computational Linguistics (2016). p. 606–15. doi: 10.18653/v1/D16-1058

36. Xu J, Yao T, Zhang Y, Mei T. Learning multimodal attention LSTM

networks for video captioning. In: MM 2017 - Proceedings of the

2017 ACM Multimedia Conference. New York, United States, Association

for Computing Machinery (2017). p. 537–45. doi: 10.1145/3123266.31

23448

37. Farrow DC, Brooks LC, Rumack A, Tibshirani RJ, Rosenfeld R. Delphi

Epidata API. Delphi Research Group at Carnegie Mellon University,

Available online at: cmu-delphi.github.io/delphi-epidata/api/covidcast.html

(2021).

Frontiers in Public Health | www.frontiersin.org 12 October 2021 | Volume 9 | Article 741030

https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/j.scitotenv.2020.138277
https://doi.org/10.1016/j.meegid.2020.104327
https://doi.org/10.23750/abm.v91i1.9397
https://doi.org/10.2307/3150485
https://doi.org/10.1002/sim.2674
https://doi.org/10.1093/oxfordjournals.aje.a113090
https://doi.org/10.1016/j.dib.2020.105340
https://doi.org/10.1016/j.scitotenv.2020.138817
https://doi.org/10.1016/j.jmii.2020.04.004
https://doi.org/10.1016/j.jiph.2020.06.001
https://doi.org/10.1007/s42979-020-00298-6
https://doi.org/10.1007/s42600-020-00105-4
https://doi.org/10.1016/j.asoc.2020.106610
https://doi.org/10.1016/j.dsx.2020.07.042
https://doi.org/10.1017/S095026882000237X
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1007/s10618-017-0519-9
https://doi.org/10.14778/3137765.3137784
https://doi.org/10.1126/science.1091277
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.2007.19.1.111
https://doi.org/10.1016/j.chaos.2020.110212
https://doi.org/10.1016/j.chaos.2020.109864
https://doi.org/10.1016/j.chaos.2020.110227
https://doi.org/10.18653/v1/D16-1058
https://doi.org/10.1145/3123266.3123448
cmu-delphi.github.io/delphi-epidata/api/covidcast.html
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liu et al. AI for COVID-19 Cases Prediction

38. Van Benschoten A, Ouyang A, Bischoff F, Marrs T. MPA: a novel

cross-language API for time series analysis. J Open Source Softw. (2020)

5:2179. doi: 10.21105/joss.02179

39. Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast

package for R. J Stat Softw. (2008) 27:1–22. doi: 10.18637/jss.v027.i03

40. Petersen NC, Christoffer R, Rodrigues F, Pereira FC. Multi-output bus travel

time prediction with convolutional LSTM neural network. Expert Syst Applic.

(2019) 120:426–35. doi: 10.1016/j.eswa.2018.11.028

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Liu, Fung, Lac and Hu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Public Health | www.frontiersin.org 13 October 2021 | Volume 9 | Article 741030

https://doi.org/10.21105/joss.02179
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1016/j.eswa.2018.11.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	A Novel Matrix Profile-Guided Attention LSTM Model for Forecasting COVID-19 Cases in USA
	Background
	Materials and Methods
	Data Source
	Methods
	Data Pre-processing and Remapping
	Matrix Profile for Time Series Data Analysis
	Baseline Models
	ARIMA Model for Seasonal Data (SARIMA)
	Standard RNN Model
	ESN Model
	GRU Model

	Matrix Profile-Guided Attention LSTM Models
	LSTM Without Attention
	Convolutional Neural Network LSTM
	LSTM With Attention


	Hyperparameter Tuning
	Performance Evaluation

	Results
	Matrix Profiles
	Seasonal ARIMA
	RNN Models
	LSTM Models
	COVID-19 Case Forecasting

	Discussions and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


