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The COVID-19 pandemic of 2020–21 has been a major challenge to public health

systems worldwide. Mathematical models of epidemic are useful tools for assessment

of the situation and for providing decision-making support for relevant authorities. We

developed and implemented SEIR(MH) model that extends the conventional SEIR model

with parameters that define public lockdown (the level and start of lockdown) and the

medical system capacity to contain patients. Comparative modeling of four regions in

Europe that have similar population sizes and age structures, but different public health

systems, was performed: Baden-Württemberg, Lombardy, Belgium, and Switzerland.

Modeling suggests that the most effective measure for controlling epidemic is early

lockdown (exponential effect), followed by the number of available hospital beds (linear

effect if the capacity is insufficient, with diminishing returns when the capacity is sufficient).

Dynamic management of lockdown levels is likely to produce better outcomes than

strict lockdown.

Keywords: mathematical model, public health policies, lockdown, hospital capacity, COVID-19

INTRODUCTION

Mathematical models of epidemic help predict the spread of infection and identify the likely
outcomes of an epidemic (1, 2). These models provide information about the likely effects of public
health interventions enacted to control the epidemic. Epidemiological models provide support for
decisionmaking related to early intervention or ending themeasures. Imposing effective and timely
measures is essential for the disruption of the rapid spread stage of epidemics (3). Compartmental
epidemiological models assign population to compartments labeled by their health status. For
example, the SEIR model assigns population to Susceptible, Exposed, Infectious, and Recovered
subpopulation compartments (4, 5). These models are used to predict epidemiological parameters,
such as disease spread, the total number of infections, and the shape of epidemiological curves
(6–8). SEIR models have been used for modeling epidemics caused by influenza virus (9), Ebola
virus (10), Middle East respiratory syndrome-related coronavirus (MERS-CoV) (11), and human
immunodeficiency virus (HIV) (12).

In the past, actual epidemiological data were available only with a delay. Earlier models could
only assess the dynamics of the outbreak and the effects of control measures after the outbreak
(1, 13). The post-epidemic models focused on modeling the natural spread of infection and usually
did not include the intervention measures as part of the model. Rather, the interventions were
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considered as the means to change the basic epidemic parameters
directly. Advances in information and communication
technologies have enabled an unprecedented speed of data
exchange, and the updates of basic epidemiological parameters
are now available daily (5). Timely updates enable building
of modified SEIR models that incorporate public health
measures as internal model parameters. This, in turn, enables
the adjustment of basic SEIR models, as observed during the
COVID-19 pandemic (6, 8, 14). The modifications include the
addition of relevant parameters, such as migration index (15),
speed of the infection during latent period (16), asymptomatic
carriers’ populations and personal intervention strategy (17, 18),
simulation of the final phase of the outbreak (19), or seasonality
(20). These adjustable models were developed using early data
from specific limited locations and are based on assumptions
that were not yet confirmed at the time of modeling. The
common theme with these models is that they are reasonable
approximations of actual epidemic spread. Most of these models
represent extensions of the basic model, for example, the
SIDARTHE model (14) defines eight population compartments
that provide additional insight about populations at risk. Our
extension of the basic SEIR model considers key public health
variables and their combined effect on the control of epidemic.

We developed a modified SEIR model, SEIR(MH), that
includes additional modeling parameters as compared to the base
model. These additional parameters include the capacity of the
public health system to support control measures, such as the
conditions of public lockdown (level of lockdown F, and the
start date of lockdown TL), and the available capacity of the
medical system to contain patients (the population with access
to healthcare M, and the number of dedicated hospital beds H).
The SEIR(MH) model was applied to the COVID-19 data from
four regions in Europe that are comparable by population sizes
and socio-economic status: Baden-Württemberg (Germany),
Lombardy (Italy), Belgium, and Switzerland. These four regions
represent a variety of lockdown conditions and different initial
capacities of the medical system to contain the spread of
infection. The results of simulations by the SEIR(MH) model
agreed well with the observed curves of daily epidemic reports.
Using these data and the SEIR(MH) model, we estimated the
actual COVID-19 epidemic progression in these four regions
during the first wave. We used the resulting models to analyze
what-if scenarios to study the effects of different lockdown
policies and the numbers of COVID-19 available beds, using the
real reports data. Finally, we performed simulations of COVID-
19 epidemic situations in three virtual cities with different age
structures to demonstrate the potential utility of the SEIR(MH)
modeling for designing optimized public health measures.

MATERIALS AND METHODS

Data Sources and Assumptions
The daily statistics of new infections, current infections, and
fatalities in four studied regions (Baden-Württemberg, Belgium,
Lombardy, and Switzerland) were obtained from the COVID-
19 projections of IHME (21). In this resource, the migration
index before and after the lockdown was also collected, as well

as the COVID-19 available beds (Supplementary Table 1) (21).
These data have been updated daily through concerted effort
of many individuals and organizations and rapidly shared with
the community.

We added two state variables including M and H to extend
the traditional SEIR model (5, 15). Variables S, E, I, R, and
M represent the total number of people in each corresponding
state. S, E, I, and R represent the number of susceptible, exposed
(infected without symptoms), infected with symptoms, and
removed individuals, respectively. M represents the number of
people with medical care and H represents COVID-19 available
beds in hospitals (22). Current number of infections is defined as
I+M and the total number of infected individuals as I+M+ R.
For modeling, we made the following assumptions:

• People in state S will transit to state E after infection and
cannot transit to state I directly.

• All people in state E will eventually transit to state I after the
incubation period.

• People in state I will transit to stateM when beds are sufficient,
or transit to state R when self-recovered or died, without
medical care.

• People in state M will transit to state R when recovered or
died. We did not consider the possibility of re-infection in the
current model.

• People in states E and I are infectious with the infection
coefficients of α and β , people in state M are not infectious.
α and β are mobility-related parameters.

• The number of individuals in state M should be less than or
equal to the total number of H at each time point.

• The incubation period follows Poisson distribution with the
mean time between 4 and 7 days (23).

• The COVID-19 available beds indicate the capacity of
hospitals to take in COVID-19 patients.

• The probability of people to transit from I to M is a
function of the current number of beds and waiting time
for hospitalization. The more available beds and the longer
the waiting time, the higher the probability. The conversion
probability for each day follows the sigmoid function with the
mean waiting time between 4 and 8 days (24).

• The hospitalization time follows Poisson distribution with the
median time between 7 and 14 days (24).

Model Specification
The SEIR(MH) model is a state recursive model, where the
estimated values of key model parameters were calculated using
recursive formulas based on daily simulation of epidemic. Model
inputs were the reported data from previous days. For SEIR(MH)
modeling, the epidemic is divided into evenly spaced time steps
measured in days. The size of SEIR(MH) population in each
time step is described by the corresponding states: Susceptible
(S), Exposed without symptoms (E), Infected with symptoms (I),
Removed from the system (R), with medical care (M), and the
maximum number of beds in hospitals (H).

We use symbols X and Y for state transitions. The uppercase
T is used for the absolute date and lowercase t is used for the
offset in days (e.g., t = 3 or −3 mean “3 days later” or “3 days
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FIGURE 1 | Transition diagram of the SEIR(MH) model. S, E, I, M, and R

represent individuals in states: susceptible, exposed without symptoms,

infected with symptoms, with medical care, and removed from the system.

The number M cannot be larger than the current number of beds in hospitals,

defined as H. The arrow indicates the direction of state transmission. The

infection coefficients determine transition numbers S to E (α) and S to I (β).

PrE→I, PrI→R, PrI→M and PrM→R represent transmission probability between

indicated states.

earlier”). For any day T and state X, X (T) stands for the size of
population in state X on day T. For instance, I(T) is the number
of symptomatic infections on day T. The epidemic states on each
day T are represented by {X (T) | X ∈ {S, E, I, R, M, H}}.

During an epidemic, we assume that a fraction of the
population will transit from one state to another. For instance,
a fraction of the population infected with symptoms (state I)
starts to receive medical care (changing to stateM). The relations
among these states are defined by a transition diagram, shown
in Figure 1. Among the variables, S, E, I, R, and M make
direct transitions, while the value of H is the upper bound of
M, meaning that hospitals cannot receive more patients than
their capacity.

Our model simulates the progression of an epidemic. The
transition rules (i.e., how many people will transit from one state
to another at any time step) are defined by a set of formulas
and adjustable parameters. Given two different states X and Y ,
PrX→Y (t) represents the probability for a person in state X to
transit to state Y after t days. According to the state transition
diagram, we have the following functions: PrE→I(t), PrI→R(t),
and PrM→R(t). An exception is PrI→M(t|T−t) which depends on
both T and T − t. This is related to the fact that M(T) (number
of people in hospital) has upper bound H(T) (hospital capacity),
which changes over time (due to addition of hospital beds).
Other parameters include infection coefficients α and β that
control how fast individuals in states E and I infect unexposed
individuals. α and β are constant when interventions remain
unchanged or no intervention is taken.

1X (T) = X (T) − X (T − 1) is the difference between
population sizes in state X on days T and T − 1. Positive 1X (T)

indicates the growth of population X between T − 1 and T,
zero indicates stable situation, while negative number indicates
decline. In our simulation, the values of1E (T),1I (T),1M (T),
1H (T), and 1R (T) are calculated for each day T. By definition
X (T) = X (0) + 1X (1) + . . . + 1X (T) for any state X, where
X (0) as the initial input. Thus, we can simulate the status for
any day T and X by calculating X (T). The patient zero (index
case) E (0) and the day of patient zero T0 are not the actual cases

because the initial infection is usually a cluster of cases imported
from outside. The E (0) andT0 are an idealized case where there is
a virtual patient on a particular day that would produce the same
infection dynamics as the imported cluster of cases.

We defined1+X (T) as transit population from the preceding
state to state X, which must be non-negative. For instance, when
the exposed with symptoms (E) are 0, no people will transit to
the infected state (I) and 1+X (T) = 0. 1+X (T − t)PrX→Y (t)
represents the number of people who enter the state X on day
T − t and then change to state Y on day t (after t days). For
instance, 1+E (T − 1) PrE→I(1) is the number of individuals
who became infected with symptoms (enter state E) on day T− 1
and start to show symptoms on the next day (enter state I). If
1E (T − 1) < 0, 1+E (T − 1)PrE→I (1) = 0.

Transition Rules
The definition of the symbols 1X (T) for X ∈ {S, E, I, R, M, H}

as well as transition probability PrX→Y (t) are defined as:
1E (T) consists of two components corresponding to

two scenarios: (1) susceptible population (in S) become
infected (enter state E), (2) infected population (in E) start
to show symptoms (enter state I). For S to E transition,
min {1, E (T − 1) α + I (T − 1) β} was defined for the overall
infection probability due to contact with populations E and I.
We added the min operator to ensure the probability cannot
exceed 1. Multiplying this probability by S (T) leads to the
increase of the population in state-E. For E to I transition,
1+E (T − t)PrE→I (t) equals to the number of people who
become infected on T − t and start showing symptoms t days
later. For simulations we define a time span of k days. Thus, a

total number of
∑k

t=1 1+E (T − t)PrE→I (t) that transit from E
to I are:

1E (T) = S (T) ( E (T − 1) α + I (T − 1) β)

−
∑k

t=1
E (T − t)PrE→I (t) (1)

1I(T) has three components: (1) infected people (in E) start
showing symptoms (enter state I), (2) people with symptoms (in
I) start to receive treatment in hospital (enter state M), and (3)
people with symptoms (in I) die or recover (enter state R). The
first component maps to the last term in equation (1). The last
two components are defined as:

1I (T) =
∑k

t=1
1+E (T − t)PrE→I (t)

−
∑k

t=1
1+I (T − t)PrI→M (t|T − t)

−
∑k

t=1
1+I (T − t)PrI→R (t) (2)

1M(T) captures the following scenarios: (1) patients under
medical treatment (in state M) can recover or die (enter state
R), (2) population of infected individuals (in status I) can be
admitted to hospital (in state M), and (3) the number of new
admissions to hospitals must not exceed the hospital capacity.
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The 1M (T) captures three scenarios:

1M (T) = min[
∑k

t=1
1+I (T − t)PrI→M (t|T − t)

−
∑k

t=1
1+M (T − t)PrM→R (t) ,

H (T − 1) −M (T − 1)] (3)

1R(T) captures the population that entered state R from either
state I orM, which are both non-positive:

1R (T) =
∑k

t=1
[1+I (T − t)PrI→R (t)

+1+M (T − t)PrM→R (t)] (4)

PrE→I . We assume PrE→I(t) follows Poisson distribution where
λE→I is the average number of days for infected individuals to
start showing symptoms:

PrE→I (t) = Poission (t; λE→I) (5)

PrI→M . PrI→M (t|T − t) is the probability of being admitted to
a hospital after t days since day T. We assume PrI→M (t|T − t)
follows geometric distribution where PT−t is the probability that
an infected individual is admitted to hospital precisely on the
day T − t. During the time of an epidemic, people who need
hospitalizationmay not be admitted if the hospital capacity is full,
so placement in another hospital will be requested. The larger the
number of the patients already in hospital, the more difficult it is
for newly diagnosed patients to find a place in the hospital. This
situation is well-represented by geometric distribution:

PrI→M (t|T − t) = PT ·

T
∏

t=1

(1− PT−t) (6)

PT is a variant of logistic function:

PT =

{ 1
1+exp(−k(H(T)−M(T)−x0))

, H (T) −M (T) > 0

0, otherwise
(7)

where k and x0 are model parameters to be fitted according to
the waiting time for people to receive medical care. PT > 0
when the hospital capacity for COVID-19 is not reached,H (T)−

M (T) > 0.
PrI→R. We assume that infected population either recovers or

dies (enter R) if they are not admitted to hospital after tx days. tx
is a model parameter to be fitted and PrI→R (t) is defined as:

PrI→R (t) =

{

> tx, 1
0, otherwise

(8)

PrM→R. We assume that PrM→R (T) follows Poisson distribution
where λM→R is the average number of days for transition from
M to R, e.g., average days to recovery or before death under
medical care:

PrM→R (T) = Poisson (T; λM→R) (9)

Model Parameters Fitting
The fitting objective was to minimize the mean absolute error
between the predicted number of increased infections (I) and
the observed number of increased infections. Since SEIR(MH)
is a state recursive model, the estimated number of increased
infections (I) at time T and the estimated number of increased
exposed population (1E) at time T do not have a closed-form
solution for given sets of parameters. The estimated values of
(1I) and (1E) could not be obtained by parameter estimation
but were assessed by exploration of the search space. Thus, model
optimization is a non-trivial task. To ensure that the solution
space is fully explored, we resorted to brute-force search over
the pre-specified ranges of parameters. To reduce computation
overhead, the range of each parameter was discretized into evenly
spaced values. In addition, we performed search of the optimized
parameters in two steps: (1) narrowed down the searching space
in the first round and (2) refined to a greater precision in the
second round.

The infection coefficients before the lockdown are αpre and
βpre and after the lockdown are α and β. The infection coefficients
α and β were estimated for each region by model fitting to the
reported data. Lockdowns cause changes of the mobility factor
(parameter F). In our model F ranges from 1 (no reduction
of mobility) to 6 (extremely high reduction of mobility). The
corresponding infection coefficients before the lockdown were
calculated by αpre = α × F and βpre = β × F.

Simulation of Virtual Cities
The overall goal of virtual city epidemic simulations was to help
identify the optimal level of public health measures given three
variables: the lockdown date, lockdown level, and the number of
beds. The lockdown date TSDn is time in days from the estimated
patient zero day (TSD0). The earliest lockdown date in simulation
was TSD24, 24 days from TSD0. The latest lockdown date in
simulation was TSD72, 72 days from TSD0. In the first stage, we
fixed the number of COVID-19 beds (four per thousands) and
performed the simulation analysis of TNI and TND for three
virtual cities. Two parameters were varied in this simulation:
days between the first patient to lockdown date (TSDn) and the
lockdown factor. The second stage of simulation involved the
same procedure as in stage 1, but for eight additional available
COVID-19 bed values (0.5 to 4, increment 0.5). The third stage
involved systematic changes of all three variables to identify
optimal lockdown level for each lockdown start date (24 to 72,
increment 2) and three levels of the number of beds (1, 2, and 4).

The total number of infected people (TNI) on any day during
the epidemic was defined as the total number of people in
status I, status M, and status R. The COVID-19 infection rate
(CIR) at each day equals the ratio TNI/TPO where TPO is the
total population of the region. Using the SEIR(MH) modeling,
the CIR on each day of the three virtual cities was calculated.
The overall death rate in a population (PDR) was calculated
as PDR = CIR × CDR, and the total number of COVID-
19 deaths was calculated as TND = CIR × CDR × TPO.
Using the simulation, we could estimate the effects of public
health strategies (lockdown time, lockdown level, and available
beds for COVID-19) for regions with different age structures
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TABLE 1 | Parameters used in SEIR(MH) modeling.

Variable Variable meaning BWb Belc Lomd Swie Estimation

αa Infection coefficient by people at state E 1.1 × 10−8 1.1 × 10−8 1.2 × 10−8 1.3 × 10−8 Data fitting

βa Infection coefficient by people at state I 1.8 × 10−9 1.1 × 10−9 1.4 × 10−9 1.3 × 10−9 Data fitting

T(E->I) Average days for people converting from E to I 6 6 6 6 PMIDf: 319958571

T(I->M) Average days for people converting from I to M 7 7 7 7 PMIDf: 320315707

T(I->R) Average days for people converting from I to R 14 14 14 14 Data fittingg

T(M->R) Average days for people converting from M to R 10 10 10 10 PMIDf: 320315707

F Mobility change due to lockdown 3.00 3.47 3.85 2.55 Data fitting

O(T) Days between first patient to lockdown 39 31 31 59 Data fitting

1Th Shift curve to earlier date 0 0 −7 0 Adjustment

aα and β are the infection coefficients after the lockdown. The corresponding infection coefficients before the lockdown are calculated as αpre = α × F and βpre = β × F. The infection

coefficient before lockdown is associated with the mobility. The infection coefficients were estimated for each region by data fitting, considering changes of the factor of mobility after

the lockdown (parameter F). In our model it ranges from 1 (no reduction of mobility) to 6 (extremely high reduction of mobility). bBaden-Württemberg in Germany (BW), cBelgium (Bel),
dLombardy in Italy (Lom), eSwitzerland (Swi). fPubmed ID. gConsidering it is a disease-related intrinsic parameter, we assume the T(I->R) in each region is equal. hEarly outbreaks are

associated with delayed reporting of cases, lack of testing kits, and difficulties in identification true cases.

using the overall number of deaths in each region (TND) as
the minimization target. The simulation variables for cities are
available in Supplementary Table 2. The first stage had a total
of 2,100 simulations, the second stage involved an additional
4,200 simulations, and the third stage involved 4,725 simulations.
All simulations used a quasi-exhaustive search (25) to find
the best level of lockdown for possible situations arising from
combinations of the lockdown date, number of beds, and the
age structure.

RESULTS

Estimation of Parameters of the SEIR(MH)
Model
In our model, we divided the epidemic progress into discrete
periods, measured in days. The model has four population
variables and two health system capacity variables. The
population variables provide the size of epidemiology categories
(or compartments): Susceptible (S), Exposed without symptoms
(E), Infected with symptoms (I), and Removed from the system (R).
The health system capacity variables include the population with
medical care (M) and the maximum number of beds in hospitals
(H). All of these variables are time dependent. Among them, the
values of S, E, I, R, and M at each date are simulated, and the
values of H are pre-specified.

The SEIR(MH) model contains eight epidemiological
parameters including infection coefficients α and β ; transition
times T (E → I), T (I → M), T (I → R), T (M → R); the
mobility change factor F; the region-specific constant O (T);
and region-specific time shift variable 1T. In this study, the
SEIR(MH) model was generated using data from four European
regions including Baden-Württemberg, Lombardy, Belgium, and
Switzerland. These regions have comparable population sizes,
ranging from 8.57 to 11.48 million, and a similar age distribution
of population (Supplementary Table 3). The values of model
parameters in these four regions, their descriptions, and how
they are determined are shown in Table 1. Among them, the
values of α, β , T (I → R), F, and O (T) were fitted to the model

TABLE 2 | Estimated model parameters and observed values in four studied

regions.

Region Baden-

württemberg

Belgium Lombardy Switzerland

Perioda February 15–July 4, 2020

rb 0.83 0.84 0.88 0.93

Days 140

OPTc March 28 March 28

(true)/April 15

(outlier)

March 21 March 23

OPId 1,603 1,850/2,454 3,268 1,321

EPTe March 27 March 27 March 20 March 25

EPIf 2,093 2,259 3,815 1,739

Sg 11.07 11.48 9.95 8.57

oTNIh 36,275 61,837 94,318 32,198

eTNIh 54,494 67,239 127,899 42,848

eTNIi 54,646 67,691 128,584 42,892

aCalendar periods of SEIR(MH) modeling for each region. bCorrelation coefficient between

observed and estimated infections (r). cObserved peak time (OPT). dObserved peak

infections (OPI). eEstimated peak time (EPT). fEstimated peak infections (EPI). gTotal

population (millions) in each of the four regions (source: data.worldbank.org), hTotal

number of observed (oTNI) and estimated (eTNI) infections till July 4, 2020. iTotal number

of estimated (eTNI) infections till estimated end point.

using data from daily reports of the new infections in studied
regions. The values of T(E → I), T (I → M), and T(M → R)
were pre-specified using data from published research and
available reports. A detailed description of parameter fitting is
described in theMaterials and Methods section.

Agreement of Fitted Models With the
Reported Data From the Studied Regions
The SEIR(MH) model was evaluated using observed data
from the four European regions (Table 2). These regions
differed in their public health policies and utilization of
medical resources during the first onset of the COVID-19
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FIGURE 2 | Validation of SEIR(MH) model. Comparisons of the Infected with symptoms (I) population (observed “O” and estimated “P”) curves in (A)

Baden-Württemberg, (B) Belgium, (C) Lombardy ( “P-7” stands for adjusted curve), and (D) Switzerland. Shifting the curve to the earlier days (1T = −7) shows better

matching with the observed data during the early epidemic period in Lombardy. The justification for Lombardy model adjustment is given in the main text.

pandemic. For each region, the number of active infections
was used as the indicator for model evaluation. Using
the mobility data derived from COVID-19 projections of
the Institute for Health Metrics and Evaluation (IHME)
(21), we defined two distinct stages of the early period of
the epidemic: initial stage (without movement restrictions)
and public measure stage (with movement restrictions—the
lockdown). The performance of the SEIR(MH) model in
comparison to the actual reported observations is shown in
Figure 2.

For Baden-Württemberg, the correlation coefficient between
the observed and estimated daily active infections (population I)
was r = 0.83 from February 15 to July 4. The observed peak of
daily new infections happened between March 24 and April 5.
There were three days with the values of I number larger than
1,500 (March 24, March 28, and April 5). The infection peak
estimated by the model occurred on March 27, with 2,093 people
estimated to be in status I (Figure 2A; Table 2).

For Belgium, the correlation coefficient between observed and
estimated daily active infections was r = 0.84. The first observed
peak appeared on March 28, with 1,850 infections, in agreement
with the estimated peak on March 27, with 2,259 estimated
infections in status I for both days (Figure 2B). Belgium had a
second peak observed on April 15, with 2,454 infections. This
peak appears to be a reporting artifact (only∼500 infections were
reported on the previous day).

The comparison of observed and estimated populations I for
Lombardy-Italy (r = 0.88) and Switzerland (r = 0.93) showed
good agreements between the observed and estimated numbers
of active infections (Figures 2C,D). The detailed information is
shown in Table 2. The number of newly reported infections can
substantially differ from the actual number of new cases due to
reporting and testing delays (26). After considering these delays,
our model shows consistency between the estimated infection
curves (theoretical expectations) and the observed reported cases.
Our modeling results show similar patterns of infection curves
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in the four regions. The main difference between the overall
estimated infection curves is the flatness of the infection curves.
The infection rates in Belgium and Switzerland showed slower
decline of the infection curve than those in Baden-Württemberg
and Lombardy during the middle of the epidemic period. The
comparison of estimated infection curves to the actual data
indicated that the SEIR(MH) of the COVID-19 epidemic is
consistent with the actual epidemiological situation observed in
these four regions during the epidemic.

The infection curve for Lombardy shows a poor match
between observed and estimated (bymodel) infections during the
earliest stage of the infection spread. The analysis of Lombardy
data suggested that the reporting of the actual number of
infections was delayed by up to 7 days. The evidence for
delayed reporting includes (1) the first reporting on February
23 was a cluster of cases rather than the individual index

case (https://www.ecdc.europa.eu/en). (2) On February 14 a
38-year-old Italian in Lombardy felt unwell and visited a doctor.
The patient was prescribed treatments for influenza but was later
confirmed as a COVID-19 case (as reported in Italian and Swiss
newspapers). Thus, the adjusted curve for Lombardy was moved
to 7 days earlier to accommodate the initial delay (shown in
Figure 2C).

Dynamic Modeling of the Epidemic in Four
European Regions
Using fitted parameters, the epidemic dynamic in four studied
European regions was estimated using the SEIR(MH) modeling.
For each region, the epidemic was divided into two periods.
The time from the first patient to the date which the mobility
reduced to the minimum level is considered as the period before
lockdown. The other period covers time after the lockdown.

FIGURE 3 | Modeling the SARS-CoV-2 epidemic in four European regions. The epidemic models of SARS-CoV-2 are shown for (A) Baden-Württemberg (Germany),

(B) Belgium, (C) Lombardy (Italy), and (D) Switzerland. E, I, and R stand for exposed, infected, and recovered population, M for population having medical care in

hospitals (occupancy of beds), IMR stands for I+M+R, and IM stands for I+M (active cases).
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TABLE 3 | The lockdown levels and available beds of four regions.

Region Highest mobilitya Lowest mobilityb Lockdown levelc Beds availabled

Baden-württemberg 14.10 −55.54 69.65 18,114

Belgium 3.44 −77.61 81.05 12,955

Lombardy 4.45 −83.44 87.89 7,535

Switzerland 0.77 −45.11 45.88 6,596

The ahighest and b lowest mobility values in each region during the observed period, from the COVID-19 projections of IHME20. cThe lockdown level was evaluated by the difference

between the highest mobility and the lowest mobility estimated from the mobile phone mobility data. dThe number of available beds was obtained from COVID-19 projections of

IHME20; the number of beds in Baden-Württemberg was calculated from the total number of beds available in Germany multiplied by the number representing the proportion of

Baden-Württemberg within the total population of Germany.

The populations with the daily status of S, E, I, R, and M at
each specific date were estimated by the model. The values of
H are public health statistics data that were obtained from the
COVID-19 projections at IHME (21). For Baden-Württemberg,
the first period was from February 12 to March 22, 2020. During
that period weaker public health interventions were applied, and
the number of infections increased rapidly (Figure 3A). After
the lockdown, the mobility of people decreased sharply. We
estimated that the population sizes representing states E, I, and
M onMarch 22, 2020, were 11,977, 1,709, and 2,530, respectively.
The model showed 4,239 infected individuals with symptoms
(people in states I and M), similar to the reported number of
3,768 on the same date. However, our model estimated 11,977
individuals that were exposed but without symptoms who could
also be infectious. After the lockdown, the daily infections quickly
reached the peak and then started dropping rapidly (Figure 3A).
The shapes of the curves indicate the benefit from the decrease
of mobility following the lockdown. The epidemic estimations
for Belgium, Lombardy, and Switzerland (Figures 3B–D) show
similar shapes of infection curves to Baden-Württemberg: rapid
increase before the lockdown followed by sharp decrease after
the peak.

Our model showed that the need for hospital beds (curve M)
is always lower than the available beds for COVID-19 (curve H)
in Baden-Württemberg and Belgium (Figure 3). These numbers
indicate that there was sufficient hospital capacity for COVID-
19 patients. In Lombardy and Switzerland, bed numbers were
lower than needed during the early period of the epidemic.
In Switzerland, this period lasted for 18 days, from March 26
to April 12. During this period, over 14,518 infections were
observed, 806 infections per day on average. This created a
significant requirement for new beds designated for COVID-19,
given the initially available number of 6,596 (21). In Lombardy,
this period lasted for 58 days, from March 20 to May 16. In
addition to beds designated for COVID-19, the four regions had
additional medical resources that could provide a total number
of 3.2–8 beds per thousand population (https://data.worldbank.
org/indicator/SH.MED.BEDS.ZS) The COVID-19 pressure on
limited medical resources precipitated government intervention
of strict lockdown, such as one enforced in Lombardy.

Modeling results suggest that, if the regions kept strict
lockdown policies, the first wave of the epidemic in Baden-
Württemberg would end by August 31 with 54,646 total
infections. Under conditions of prolonged lockdown, our model

suggests that the end of the first wave would happen by
September 24, 2020, in Belgium with 67,691 total infections, by
September 17 in Lombardy with 128,584 total infections, and
by July 24 in Switzerland with 42,892 total infections (Table 2).
These results must be considered with caution because ideal
situations are difficult to implement in a real-world situation.
Due to socioeconomic issues and other cost of lockdowns, it
may be difficult to maintain the lockdown for a long time. The
release of lockdown and the influx of imported cases may lead
to subsequent waves of the epidemic. The end of the epidemic
would come earliest as the result of the lockdown, while the
total number of infections would also be relatively low given that
sufficiently large numbers of hospital beds were available, but the
population will not develop useful levels of herd immunity. In
reality, the epidemic in these regions did enter the second wave
that has shown different dynamics (larger number of infections
and lower mortality rate) than the first wave. Considering that
studied regions implemented different policies of lockdown and
had different initial resource availability, this case study provides
means to study the consequences of the date of lockdown, the
level of lockdown, and the number of available hospital beds for
control of COVID-19 spread (Table 3).

Effects of Public Health Intervention
Measures
Impact of Mobility (Lockdown) on the Epidemic
The policy of city lockdown involved two elements: the time
of introduction of the lockdown, and the level of mobility
restriction. In this study, we explored scenarios of making the
lockdown date earlier or delaying it, as well as varying the level
of mobility restriction after the lockdown. Our estimates do not
use the dates that governments announced lockdowns, but from
the actual mobility data traced through mobile phone networks.

We performed a simulation for the actual lockdown (“day L”)
and then explored possible effects of early or delayed lockdowns.
We performed 14 simulations for days −7 to −1 and days
+1 to +7 relative to day L (Figures 4A–D). Modeling results
suggest that early lockdown would shorten the epidemic, while
the delay would prolong it. The results indicate that, maintaining
the strictest level of lockdown, the 7 days earlier lockdown date
of March 15 in Baden-Württemberg would have resulted in
epidemic duration of 160 days (end around July 20) with 9,206
total infections, 42 days earlier than the estimated real end point

Frontiers in Public Health | www.frontiersin.org 8 January 2022 | Volume 9 | Article 728525

https://data.worldbank.org/indicator/SH.MED.BEDS.ZS
https://data.worldbank.org/indicator/SH.MED.BEDS.ZS
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Qiu et al. SEIR(MH) for COVID-19 Epidemic

FIGURE 4 | The impact of lockdown date and COVID-19 available beds. The estimates of the total number of infections and the length of epidemic period with earlier

(days−7 through−1) and delayed (+1, through +7 days) lockdown relative to the actual lockdown day (day L): (A) Baden-Württemberg, Germany, (B) Belgium, (C)

Lombardy, Italy, and (D) Switzerland. Estimates of the effects of multiples of available beds on the total number of infections are shown in panel (E) and estimates of

the length of the epidemic period are shown in panel (F).

of the first wave (Figure 4A). Even a one-day advance would
have reduced the number of total infections by 24% (41,514 total
infections) compared with the day L estimation (54,646). The
simulation results suggest that one-day delay in lockdown would
have resulted in 34% more infections (73,028 total infections),
while the 7 days delay scenario would have a total of 749,315
infections (Figure 4A). The simulation for the four studied
regions illustrated that moving the lockdown to an earlier date
would significantly reduce the total number of infections and
markedly shorten the time to the end point of the first wave

(Figure 4). On the other hand, the delay of lockdown date would
have exponentially increased the total number of infections.

The level of mobility restriction also impacts the dynamics of
epidemic. The infection coefficients α and β (Table 1) are model
parameters affected by the mobility: high mobility is represented
by high infection coefficients, while low mobility is represented
by low infection coefficients. The mobility change factor F (the
“lockdown level,” Table 1) reflects the effect of mobility change to
infection coefficients after the lockdown, as compared with their
values before the lockdown. For the four studied regions, factor
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F was calculated by model fitting and has respective values of
2.55, 3.00, 3.47, and 3.85 for Switzerland, Baden-Württemberg,
Belgium, and Lombardy. The spread of these values agrees
well with the actual difference of mobility in the four regions
(Table 3).

Impact of Medical Resources (Available Beds for

COVID-19) on the Epidemic
We modeled the effect of local hospital capacity available for
COVID-19 patients; the number of hospital beds was chosen as a

proxy for such capacity (Figures 4E,F). We simulated the effects
of reduced or increased number of beds for COVID-19. In our
simulation, this factor had values from 0.5 to 3 with a step of 0.5.
Hospital beds capacity is classified into three categories (levels):
(1) sufficient, with the maximum occupancy lower than 80%,
(2) heavily loaded, the maximum occupancy is higher than 80%
but below the capacity, and (3) insufficient, where the occupancy
demand is higher than the available beds (>100%).

The simulation results indicate that reduced available bed
capacity increases the total number of infections and the

FIGURE 5 | The impact of lockdown time, lockdown level, and the available beds on the number of COVID-19. The vertical axis shows relative infection rates: the

normalized infection percentage after 200 days in Baden-Württemberg for (A) 7 days early lockdown, (B) actual lockdown, and (C) late lockdown. The corresponding

results are shown for Belgium (D–F), Lombardy (G–I), and Switzerland (J–L). For better illustration, the infection level (vertical axis) here is defined as the log10CDR.
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increased number of beds decreases the total number of
infections (Figure 4E). For Baden-Württemberg, the number of
beds available for COVID-19 was sufficient, even during the
most severe period. The total infections were estimated as 45,747,
42,423, 41,248, and 40,781 (bed multiple factors of 1.5, 2.0, 2.5,
and 3.0, respectively). Compared with the actual situation of
54,646 total infections, increasing the number of beds would
reduce the total infections by 16.3, 22.4, 24.5, and 25.4%. On the
other hand, themodeling results indicate that halving the number
of beds (multiplication factor of 0.5) would result in 70.0% more
infections (92,841 in total). In Lombardy, where the number of
available beds for COVID-19 was insufficient, increasing the bed
capacity would significantly reduce the total number of infections
from the actual 128,584 to 105,396, 91,199, 80,627, and 75,751
(bed multiple factors of 1.5, 2.0, 2.5, and 3.0, respectively). Our
model estimated that reduction in total infections would be 18.0,
29.1, 37.3, and 41.1%, respectively. The modeling results indicate
that changing the number of COVID-19 dedicated beds would
change the total number of infections. An important finding
from our model is, when the number of beds has already been
sufficient, increasing the number of beds would result in rapidly
diminishing gain and is, likely, economically not viable.

To model the effects of COVID-19 available beds we set the
comparison baseline as half of the beds that were available in the
health system. For each region, this number would be insufficient.
The effects of the total number of COVID-19 available beds on
the total number of infections and the length of epidemic period
were estimated using our model with the actual number of beds,
and up to three times the actual number of beds (Figures 4E,F).
The results of modeling indicate that the number of COVID-
19 available beds was optimized in Switzerland, Belgium, and
Baden-Württemberg for managing the number of infections
while for this purpose the number of beds initially available
was insufficient in Lombardy (Figure 4E). On the other hand,
modeling shows that the initial number of COVID-19 available
beds was also optimized for the shortest duration of epidemic in
Baden-Württemberg, Switzerland, and Belgium, while it was less
effective in Lombardy (Figure 4F).

Combined Impact of the Lockdown and the Available

Beds
To explore possible effects, we modeled three potential time
points of lockdown, 7 days early (−7), the actual situation (day
L), and the lockdown with 7 days delay (+7). By varying the
multiplication factor of lockdown level (mobility modifier in
Figure 5) from 0.7 to 1.2 (0.7 times to 1.2 times of current
situation in different regions) and the COVID-19 available beds
(modifier of bed numbers in Figure 5) from 0.5 to 2.5 times of
current situation in different regions, we calculated the expected
COVID-19 infection rates (CIR) on day 200 after the first patient
(Patient 0) was identified (vertical axis—log10CIR in Figure 5).
Modeling results indicate that the lockdown date is the primary
influencing factor. For each region, the total infection rates are
much lower for 7 days earlier lockdown scenario (Figure 5A)
than the current situation (Figure 5B). With 7 days delay of
lockdown (Figure 5C), irrespective of the bed numbers and the
lockdown level, modeled infection rates are higher than the

current scenario (Figure 5). Also, lockdown level significantly
affects the resulting infection rate. For example, in Baden-
Württemberg, the highest lockdown level (multiplication factor
of 1.2) with the existing bed number (multiplication factor of
1) would reduce the infection rate at 200 days (since the start
of epidemic) from 0.49 to 0.32% (Figure 5B). This would result
in a 35.0% drop in the number of infections, as compared to
the actual situation. The simulation results suggested that the
number of infections at 200 days would drop, relative to the
actual situation, by 16.3, 22.3, and 24.5% if the number beds
increased by 1.5, 2.0, and 2.5 times, respectively (Figure 5B). If
the lockdown level was increased to 1.2 times relative to the actual
situation, even with 50% of available beds, the total infection rate
at day 200 will be only 83.7% of the actual. The increase of the
number of COVID-19 beds by multiplication factor of 2.5 would
practically result in the control the infection at 200 days (the
infection rate would drop from 0.49 to 0.27%). The lockdown
date in actual situation with the lockdown factor 0.7 and beds
factor of 0.5 would result in infection rate of 55.4% (Figure 5B)
and increase to 56.7% (Figure 5C) with the lockdown of 7 days
delay. The actual lockdown level and COVID-available beds
results in infection rate at day 200 of 0.49% (Figure 5B) and
6.69% (Figure 5C) with the actual lockdown date and 7 days of
delay, respectively.

Similar results were observed with the infection models in
Belgium, Lombardy, and Switzerland. The solution surface for
seven days earlier lockdown models in Belgium (Figure 5D),
Lombardy (Figure 5G), and Switzerland (Figure 5J) show
reductions of infections relative to the numbers representing
actual situation (Figures 5E,H,K). The earlier lockdown models
have much more pronounced improvements relative to the late
lockdown (Figures 5F,I,L). Our model, as expected, shows that
the early lockdown date and increased lockdown level would
significantly reduce the progress of epidemic. Modeling results
also suggest that sufficient medical resources—the COVID-19
available beds—help reduce the number of total infections, but
their impact is lower than the impact of the lockdown level.
Increasing the COVID-19 available beds by 2.5-fold (multiply by
2.5) in Baden-Württemberg would reduce the total number of
infections on day 200 by 24.5%, as compared to increasing the
lockdown factor by 20% (multiply by 1.2) that will reduce the
number of total infections on day 200 by 35.1%.

Our observations were supported by the outcomes of
epidemic in several other regions. Strict and early lockdown
resulted in a rapid control of COVID-19 infection in places such
as Wuhan-China (27), Denmark (28), and Norway (29). The
opposite case was in Sweden that had no lockdown, and both the
relative numbers of infections and deaths were larger than in the
neighboring countries that have similar resources but enforced
the lockdown (Denmark and Norway) (28, 29). The combination
of lockdown and the rapid increase of available beds in Wuhan,
China, helped achieve the effective control of the epidemic in
Wuhan within 76 days (from the lockdown on January 23 to the
lockdown release on April 8). Delayed increase in the number
of beds in Switzerland did not markedly improve the epidemic
outcomes (Figures 5J–L). While these results are intuitive, the
advantage of modeling is that it provides quantitative results
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FIGURE 6 | Estimation of the optimized policies in three virtual cities. Optimized lockdown factor and the corresponding death rate with different lockdown dates and

four COVID-19 available beds per thousand people in three virtual cities younger, middle, and older populations). Four beds: (A) Ytown, (B) Mtown, (C) Otown. Two

beds: (D) Ytown, (E) Mtown, (F) Otown. One bed: (G) Ytown, (H) Mtown, (I) Otown. The “best factor” is optimized lockdown level (factor F) that minimizes total

deaths for various scenarios of lockdown date and the number of beds. The infection death rate in our model is the death rate within population that got infected at

any time (total infections). The simulations indicate that the optimal policies vary between different communities.

about expected outcomes that can be used for optimal timing of
the public health measures.

The Impact of Lockdown Level, Bed Numbers, and

the Population Age Structure on the COVID-19 Death

Rate
According to our modeling results, the early lockdown, strict
lockdown level, and sufficient bed numbers are essential for
effective control of the epidemic. However, by investigating the
current COVID-19 death rate (CDR) in 36 European countries
(Supplementary Table 4), we found that the countries with high
CDR (including France, Italy, and Belgium) did implement
strict lockdown policies that resulted in mobility score derived
from IHME (21) decreases of 92.7, 83.7, and 81.0 (absolute
numbers), respectively. The population aged above 65 years
in these countries are 20.4, 23.0, and 19.0%, respectively. The
average mobility score in 10 countries with the highest CDR was
71.7, while the average proportion of populations aged 65 years or
more was 19.45%. The corresponding data for 10 countries with
the lowest CDR showed the average decrease of mobility score

of 64.1, and 17.2% of their populations were older than 65 years
of age.

We defined a function of COVID-19 death rate, which
included the parameters of lockdown level (F), available COVID-
19 beds (H), population percentage of people younger than 15
(P15), population percentage of people aged from 15 to 65 (P15–
65), and the population percentage of people older than 65 (P65).
By utilizing a regression model, we calculated the coefficient of
each parameter: F = 0.003, H = −0.008, P15 = −0.062, P15–
65 = −0.137, and p65 = 0.264. The results suggest that the
population with larger proportion of P15–65 population will have
fewer COVID-19 deaths, while larger P65 population will have
more deaths.

Assessment by Simulation of the
Optimized Public Health Strategies
We simulated three virtual cities, named Ytown, Mtown,
and Otown, with different age structures of their population.
The three virtual cities were modeled to match the younger
age structure of Niger (Ytown), average which based on
the overall age structure of China (Mtown), and older
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based on the age structure of Italy (Otown), respectively
(Supplementary Figure 1). The total population of each virtual
city was set to 10 million, and the initial infection coefficients
α and β were set as the average of the four simulated
European regions.

The results of simulations suggest that early lockdown is the
most effective policy in reducing the total number of COVID-19
infections (TNI) and total number of COVID-19 deaths (TND),
regardless of the lockdown level and the number of available beds
for control of COVID-19 (Supplementary Figures 2–4). The
number of available beds for control of COVID-19 shows reverse-
proportional effects: a larger number of beds linearly decreases
the death rate (Supplementary Figure 5). The death rates are
similar in the regions with younger and average age populations.
The simulated death rates in these regions are approximately half
of the death rates in regions with older population when other
conditions are similar.

If all three virtual cities had exactly four beds per thousand
people available for COVID-19 control, the lockdown policies
enacted on the simulated day 24 (TSD24) from the day of the first
patient (TSD0), modeling results suggest that epidemic control
would be effective irrespective of the number of beds (within the
range 1–4) or the level of lockdown (within the range 2–4). Early
lockdown would reduce both TNI (Supplementary Figure 6)
and TND (Supplementary Figures 2–4) by at least an
order of magnitude (10-fold). The level of lockdown is an
important consideration: in the simulation, the lockdown
level 2 resulted in reduction of both TND and TNI by
an order of magnitude, but both numbers kept increasing
up to day 200 (TSD200) (Supplementary Figure 6A). The
lockdown of level 3 rapidly stabilized both the TNI and
TND; early lockdown (TSD24) resulted in TNI ∼1,000
(Supplementary Figure 6B) and TND<100 for all simulated age
structures (Supplementary Figures 2D–F, 3D–F, 4D–F). For
every 8 days of the lockdown delay, the TNI and TND increased
approximately 10-fold (Supplementary Figures 2–4, 6).

Simulations of three cities where the lockdown factor
varied from 2.0 to 4.0, increment 0.1, showed that the
total number of infections was 10–100 times higher under
lockdown level 2 condition than under higher (3–4) lockdown
level (Supplementary Figures 2–4). The CDR (death rate of
infected population) was lower for lower levels of lockdown,
and conversely was higher for higher level of lockdown
(Supplementary Figure 5). Four beds per 1,000 population
reduced death rate in all population structures approximately
by half as compared to one bed per 1,000. The simulated
CDR in middle-age population (Mtown) showed 20–100%
increase (depending on variables) as compared to the younger
(Ytown) population. The CDR in older population (Otown) was
approximately two to six times larger than the CDR in the young
population (Supplementary Figure 5). Collectively, these results
indicate complex relationships between variables (lockdown date,
lockdown level, and number of beds).

Simulation results showed that under an early lockdown
(T0 = 24) with the optimal lockdown level (Ytown = 3.1,
Mtown = 3.4, and Otown = 3.9), the overall death rate in
populations (PDR) for all three virtual cities were <0.001%

(PDRYtown = 0.00039%, PDRMtown = 0.00053%, and PDROtown

= 0.00096%). The corresponding TND values after 200 days
(TNDSD200) were 39 for Ytown, 53 forMtown, and 96 for Otown
(Figures 6A–C). Considering that on day 24, the number of
observed infections was only 105, it is unlikely that, at this point,
the local authorities would notice the epidemic if it was the first
epidemic outbreak (like COVID-19 outbreaks in Wuhan, China,
or Lombardy, Italy). However, if local authorities were on alert,
due to knowledge of the ongoing epidemics in other regions, like
in Australia, early responses appear to be viable options. Our
simulations suggested that if the lockdown is delayed for 8, 16,
and 24 days, the TNDSD200 number inYtownwill quickly increase
from 39 (TSD24) to 264 (TSD32), 1773 (TSD40), and 15,962 (TSD48).

For Ytown, if COVID-19 available beds were four per 1,000,
and the city lockdown happened between day TSD24 and TSD42,
the total death rate would range from 0.00039 to 0.029%. The
TNDwould be between 39 and 2,873 for the optimized lockdown
of 3.1 (Figure 6A). If the local authority started lockdown TSD44

and TSD54, the TND would increase sharply, and the optimized
lockdown factor would change from 3.2 to 3.6. These results
reflect the need for dynamic management of public health
policies in response to different situations. During the lockdown
starting between TSD44 and TSD54, the TND would range from
4,950 to 63,629. However, if the local authority provided no
lockdown policies before day 56, the later lockdown policies will
have little effect. This scenario indicates that more than 50% of
the population will be infected, and the overall deaths will be close
to 1% of the total population (Figure 6A). The early lockdown
response has proven to be effective in control of the second
wave of COVID-19 in Victoria, Australia (lockdown fromAugust
2 to September 6, which was gradually easing until October
26). Similar successes in the control of COVID-19 epidemics
with early lockdowns were reported in Greece (30) and South
Africa (31).

The results of simulations in Mtown were similar to the
Ytown results. When T0 ranged from 24 to 42, the optimal
lockdown factor was 3.4, with total death rate slowly increasing.
The overall simulated death number was between 53 (day 24)
and 3,908 (day 42). The second stage was for T0 between 44
and 56, with the optimal factor changed from 3.5 to 3.8 and the
overall deaths from 6,586 to 119,513. After 58 days, the optimized
policy is pursuing herd immunity, which will result in 1.5–2.0%
deaths within the whole population (Figure 6B). Interestingly,
the optimized lockdown factor is different for three virtual cities.
For Otown (city with >23% of the aged population), the best
policy is strict lockdown of the city with the lockdown factor of
F = 3.9, close to the upper limit in our simulation (Figure 6C).
However, for Ytown and Mtown, the best policy may not be
the total lockdown of the city. Our estimation showed that the
lockdown factors between F = 3.1 and F = 3.4 will result in the
lowest total death rate. This indicates that different public health
strategies are appropriate for cities with different age structures.
To reduce the CDR for aged people, an early strict lockdown
policy is needed. In fact, in Otown, the lockdown level of 4 will
be the optimal policy when the lockdown is not announced early
(Figure 6C). If herd immunity policy is pursued (no lockdown)
in Otown, without any reduction in mobility, the overall death
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will increase to 627,867 and the death rate will exceed 6% even if
the beds are sufficient (four per thousand).

The number of available beds is a modifier of best lockdown
level in simulated scenarios. If the number of available beds for
COVID-19 is halved (2 per thousand), the optimized factor of
lockdown would be increased from F = 3.1 to F = 3.5 for Ytown
(Figure 6D), from F = 3.4 to F = 3.6 for Mtown (Figure 6E),
and from F = 3.9 to F = 4.0 for Otown (Figure 6F), respectively.
When the number of beds is reduced to one quarter (one per
thousand), the optimized lockdown factor would increase to
F = 3.6 for Ytown (Figure 6G), F = 3.8 for Mtown (Figure 6H),
and F = 4.0 for Otown (Figure 6I). Moreover, reducing the
number of beds will result in more deaths for any lockdown date
irrespective of the adjustment of the lockdown factor.

Overall, our results suggest that (1) reducing the social
distance (lockdown) at the early stage is the most effective
policy to reduce total infections, and (2) the optimized level
of lockdown differs for cities with different age structures. For
an aged society, strict lockdown appears to be more effective
in reducing the CDR. For younger societies, relatively loose
lockdown level (around F = 3 to F = 3.4) may minimize the
total death rate. (3) The increase of the number of COVID-
19 available beds strongly impacts both the infection rate and
the total death rate when numbers are insufficient; when beds
are sufficient, the improvements in infection rate and CDR are
modest (diminishing returns). The proposed SEIR(MH) model
can quantify the combined impact of multiple public health
interventions in populations that have different characteristics
and simulations have shown excellent concordance with the
actual situations in studied regions. This model has a potential
to assist in designing optimized public health interventions in
regions that have different sociodemographic properties.

DISCUSSION

The global pandemic of COVID-19 is a huge public health
issue for human society. During the epidemic period, adequate
nowcasting (estimating the current status) and forecasting
(predicting future status) are crucial for public health planning
and epidemic control (5, 28). We constructed a real-time status
dynamic SEIR(MH) model to estimate the epidemic in local
geographic areas. By adding the parameters of status M and H
to a traditional SEIR model, we accurately modeled COVID-
19 epidemics for four European regions. Our model allows
quantification of the lockdownmeasures using mobility as proxy.
Also, we could quantify the effects of available bed capacity.
The quantification allows forecasting of the effects of public
health measures and optimizing their impact under different
constraints. The SEIR(MH) model could simulate the effects of
public health policies in isolation or in combination, such as
assessing the effects of (1) the date of lockdown measure, (2)
the level of lockdown, (3) the number of dedicated beds, and (4)
the effect of population age structure. The SEIR(MH) model can
help rapidly assess the possible effects of complex combinations
of public health measures for the epidemic control.

The timing of mobility restriction (lockdown) is the most
important public health measure for the control of an epidemic
that has characteristics of COVID-19. The lockdown at early
stage will help quickly end the epidemic with significantly
reduced total infections and death numbers. The analysis of data
from 184 countries indicated that, on average, better control of
COVID-19 epidemic correlated with earlier lockdowns (32). We
defined four levels of lockdown: basic (F = 1), low (F = 2),
moderate (F = 3), and strict (F = 4). Our simulation results
suggest that the lockdown that starts only one week earlier than
the lockdown dates observed for COVID-19 would end the
epidemic 42 days earlier than the current situation and reduce
the number of total infections in a region with over 10 million
populations such as Baden-Württemberg, Germany, by more
than 80%. On the other hand, 7 days delay would lead to 16-fold
increase in total infections than the observed situation. Based on
our estimates, Belgium responded most quickly in 31 days after
the potential patient 0, followed by Italy (38 days considering the
7 days modification) and Germany (39 days). Switzerland did not
announce the lockdown policy in early stages and delayed the
lockdown after almost twomonths of the estimated patient 0. The
decision of lockdown in a region with 10 million populations is
not an easy decision, since the lockdown will significantly affect
the daily activities of the citizens, affect economic development,
and create other health problems due to reduced access to regular
health care, among others. It is not feasible to lock down a city
or a region when only a few cases are discovered. However, the
epidemic like COVID-19 transmits rapidly at the early stage;
therefore, it is easy to miss the best window of opportunity
for epidemic prevention and control. Potential utility of such
models is high because regional health authorities can easily get
informed from the regions that experienced early outbreaks, such
as Wuhan in China and Lombardy in Italy.

The lockdowns also increase the pressure on local medical
resources. By using the COVID-19 available beds as proxy, our
model illustrated the effect of increasing medical resources. In
bed-sufficient regions such as Baden-Württemberg, Germany,
the increase of the number of COVID-19 available beds will
slightly decrease the total infections. Our estimation for Baden-
Württemberg, Germany, suggested that doubling COVID-19
available beds would decrease 22.4% of infections, while tripling
the number of COVID-19 available beds would result in 25.4%
decrease of total infections. In bed-insufficient regions, such as
Lombardy, Italy, doubling or tripling the current available beds
would result in the decrease of total infections by 29.1 and
41.1%, respectively.

The lockdown level for epidemic control is important but,
interestingly, our modeling indicates that strict lockdown is
not always the best solution for controlling epidemics. Our
model has suggested that strict lockdown (F = 3.8 to F =

4.0) is effective only in regions with older population. For
populations that have middle or younger age structure, moderate
lockdown measures (F = 3.0 to F = 3.4) may produce better
epidemiological outcomes. Obviously, more strict restrictions
will lead to larger social distance and reduce the number of total
infections. However, the total lockdownmay increase pressure on
local medical infrastructure including rapidly growing demands
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for hospitalization and shortage of medical staff and medical
supplies, which may lead to increased death rate from other
causes. In the first wave of COVID-19, regions with higher
death rate such as France, Italy, and Belgium imposed high-
level lockdown with a very high mobility decrease (21). The
age structure of population is important; populations with
older age structure have shown a higher COVID-19 death rate
(24, 33). According to our simulation of three virtual cities,
stricter lockdown policies, around 3.8 to 4.0, are required to
decrease the total COVID-19 death rate in societies with older
age structure. On the other hand, looser lockdown policies,
around 3.2–3.4, may be preferred for populations with lower or
middle age structures. The analysis of data from 184 countries
(32) suggested that partial lockdowns may be as effective in
controlling the epidemic as strict lockdowns. The advantage
of the SEIR(MH) model is that it offers not only qualitative
assessment but it also produces quantitative projections that can
be used for comparative analysis of the effects of combined public
health interventions.

Most of the European regions released the lockdown and
now are experiencing the second wave of the epidemic (21). The
second COVID-19 wave has different characteristics, with larger
number of infections, lower death rates, different demographics
of epidemics, and the availability of vaccines. We considered only
the first wave of COVID-19 for our modeling.

Our modeling indicates that the relationships between public
health measures and the epidemic outcomes (including the
length of epidemic period and total number of infections) are
complex and depend on the population behavior that can be
captured in mobility and other geo-social data (34). A note
of caution is that these results should be used only for better
understanding of the effects of specific public health measures
(level, start time, and the duration of lockdown, as well as
the management of the number of available beds) on the
dynamics and the direct outcomes of COVID-19 epidemics. The
lockdowns and rearranging the bed capacity for the control of
an epidemic will have a broader range of socio-economic and
medical consequences that need to be considered in parallel with
analyses that focus purely on the epidemic.

While studied regions are adjacent and have similar
population and relative level of economic development, their
key underlying public health parameters are very different. This
is best observed in the differences in infection parameters,
mobility factor F (Table 1), and mobility levels before and after
the lockdown (Table 3). The mobility factor F and the level
of mobility decrease are related. For example, the mobility
factor of 3.0 means the pre-lockdown infection coefficients
αpre and βpre are three times larger than the post-lockdown
infection coefficients α and β. Higher mobility factor F means
stricter lockdown level. On the other hand, the mobility level
was calculated from the observed mobility data in IHME. The
difference between the highest mobility before lockdown and
the lowest mobility after lockdown were used to calculate the
level of mobility decrease. The mobility factors were estimated
by parameter fitting, while the lockdown levels were calculated
from the observed data. In the four studied regions, the real
lockdown levels were Lombardy (87.89) > Belgium (81.05) >

Baden-Württemberg (69.65) > Switzerland (45.88). These data
were consistent with the estimated values of F: Lombardy (3.85)
> Belgium (3.47) > Baden-Württemberg (3.00) > Switzerland
(2.55). Methods of reporting COVID-19 cases and approaches
to protecting elderly are also different between the regions
(35). Therefore, the absolute numbers of reported cases are
not directly comparable, but the shapes of the infection curves
indicate the actual dynamics of epidemics in studied regions. Our
model has demonstrated robustness since it produced infection
curves that closely resemble the actual reported numbers, where
all modeled infection curves show good agreement with the
actual data. The COVID-19 infection curves are non-linear and
asymmetric, showing a rapid exponential growth that reaches
the peak followed by a delayed reduction in new cases, with
a long right tail spreading throughout the summer, never
reaching zero.

Limitations
The issues that affect the relevancy and accuracy, or limitations,
of the model are data issues and model issues. The data
issues include the complexity and hierarchical nature of real-
world processes that generate data, fuzziness of data, biases
and potential misconceptions in data, and the noise and errors
in data (36). Mathematical models are simplifications of real-
life systems and are based on assumptions that approximate
real-life situations (21). Considering the extremely complex
nature of epidemics/pandemics, any epidemic model will be a
simplification of the real situation that may vary from one region
to another. Mathematical modeling requires compromises; the
results of modeling must be reasonably accurate, but modeling
must also be computationally viable. To make our model
realistic, data were smoothed, and the model parameters were
fitted to data. Necessary corrections were made to the model,
when discrepancies between the model output and the actual
data were observed. We considered model adjustments and
collected additional evidence to justify these changes. The
simplifying assumptions of the regional SEIR(MH) model
include considering the epidemic in geographic areas that are
isolated and our model assumes that the infections rate in
each geographic area is divided into two stages, before the
lockdown and after the lockdown, with constant infection
rate throughout the first stage of epidemic, and reduced
infection rate, another constant, throughout the second stage
of epidemic. While these limitations are a modeling concern,
the conclusions derived from the results of simulations are
consistent with the observed data across different countries
(21, 22). Irrespective of the conditions specific for different
countries, the SEIR(MH) model has demonstrated it is robust
and it enables the analysis of outcomes of public health
measures. This strategy needs to be combined with vaccination
because early lockdown slows down the development of
herd immunity.

CONCLUSIONS

In general, as the simplification of real-life systems, the
mathematical models could approximate real-life situations
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based on reasonable assumptions. In this study, we extended
the conventional SEIR model by adding the parameters that
define public lockdown and the the number of dedicated
hospital beds to simulate the real-life situations such as
lockdown policies or construction of temporary hospitals in
measured regions. Further, by performing simulations on
virtual cities with different age structure, our model could
provide optimized policy combinations by setting the total
infections and COVID-19 related death rate as goal. The
robustness of the SEIR(MH) model illustrated the utility
of this model to analysis the outcomes of different public
health measures.
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