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In this review, we have discussed the different statistical modeling and prediction

techniques for various infectious diseases including the recent pandemic of COVID-19.

The distribution fitting, time series modeling along with predictive monitoring approaches,

and epidemiological modeling are illustrated. When the epidemiology data is sufficient to

fit with the required sample size, the normal distribution in general or other theoretical

distributions are fitted and the best-fitted distribution is chosen for the prediction of the

spread of the disease. The infectious diseases develop over time and we have data

on the single variable that is the number of infections that happened, therefore, time

series models are fitted and the prediction is done based on the best-fitted model.

Monitoring approaches may also be applied to time series models which could estimate

the parameters more precisely. In epidemiological modeling, more biological parameters

are incorporated in the models and the forecasting of the disease spread is carried out.

We came up with, how to improve the existing modeling methods, the use of fuzzy

variables, and detection of fraud in the available data. Ultimately, we have reviewed the

results of recent statistical modeling efforts to predict the course of COVID-19 spread.

Keywords: distribution fitting models, time series regression models, epidemiological models of disease,

parameters, estimation, prediction

INTRODUCTION

Statistical modeling and prediction in epidemiology provide a method to understand why and
how infections spread and how they might be prevented or restricted. For instance, when a new
infectious disease emerges or there is an outbreak of a known infectious disease, epidemiologists are
the scientists, who collect, analyze, and interpret information to indicate interventions for halting
further dissemination. Many infectious diseases do not respect national boundaries, color, creed,
caste, communities, etc. initially affecting only one region of the world, and rapidly disseminates to
other regions and ultimately may become a pandemic like COVID-19 (1). These diseases may have
several types based on their extent of dissemination.

EPIDEMIC

Adisease that influences enormous people within a community, population, or regionmay be called
an epidemic.
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PANDEMIC

An epidemic that develops in many countries or continents is
known as a pandemic.

ENDEMIC

A disease that is related to a specific group of people or a country
is known as endemic.

OUTBREAK

When an epidemic is disseminating to a larger extent than its
expected number of cases, it is called an outbreak. It may be one
case in a new locality. If, it is not registered soon, there may be an
outbreak causing the epidemic.

The advent of commercial airlines globally has ensured
that the time between the appearance of a new pathogen and
its worldwide spread is much more sooner than ever before.
Outbreaks of viral hemorrhagic fevers (VHFs) like Ebola and
Lassa fever, and other respiratory viruses, such as influenza
or SARS-Cov2, typically attracted the attention of media and
politicians due to the potentially high rate of infectivity and
mortality. An infectious disease epidemiologist is concerned
with a range of pathogens—from viruses, bacteria, and fungi
to the infesting eukaryotic worms. Infectious agents are also
an important cause of subsequent disease e.g., some infections,
such as hepatitis C virus (HCV) and human papillomavirus
(HPV), and bacteria like Helicobacter pylori, etc. cause cancers.
Moreover, the statistical and empirical analysis in the discipline of
epidemiology allows us to take information from individuals and
to aggregate it into logical groups (defined by the characteristics
of the person, the environment, or time points). It may help us
to logically understand from where the infection has originated,
how it might be disseminating, and thereby the potential means
for prevention and its containment in the restricted zones.
This kind of theoretical analysis of the data collected from
the field may be useful for the generation of hypotheses. To
formally test a hypothesis that aims to explain these observations,
epidemiologists require more sophisticated approaches that use a
variety of study designs to minimize bias and statistical methods
to quantify the role of chance (2). The aims of such analysis
may be:

1. To understand the extent of any of the infectious diseases in
a given population in terms of transmission, new cases, and
existing cases;

2. To analyze the prognosis and natural history of infections,
including links to diseases not previously considered to be of
infectious origin;

3. To determine the infection causing a particular disease and
the risk factors that increase the frequency of infection
acquisition and progression from infection to disease,
sequelae, and different clinical outcomes;

4. To assess the efficacy and effectiveness of preventive and
curative measures;

5. To inform the policymakers that would help in prevention,
control, and eventual elimination of the infectious disease.

An understanding of the host response to microbial pathogen
exposure is a prerequisite for studying infectious diseases (1).

Similarly, the development of preventive and post-infection
therapeutic interventions such as vaccines, antibiotics, and
antiviral agents continues to play a central role in epidemiology
and control of infectious diseases:

1. To develop vaccines, which train our immune system by pre-
exposure of attenuated infectious agents or subunits of such
agents, before the real exposure of the microbial pathogen
of the particular infectious diseases. Vaccines have remained
central to protect and control infectious diseases.

2. To discover novel antibiotics as the discovery of antibiotics
has changed the complete history of bacterial infections
and their epidemiology. Regrettably, antimicrobial resistance
emerged almost immediately and has now reached alarming
levels globally.

3. Although antivirals, historically have had modest
effectiveness, recent advances have been made in the
treatment of diseases caused by viral pathogens like the
human immunodeficiency virus (HIV) and hepatitis C.

Infectious disease epidemiology has also been influenced by
the emergence of new ideas and the technological advent of
biomedical sciences (system scale “omics” based technologies
such genomics, transcriptomics, proteomics, and metabolomics),
as well as advances in disciplines, such as immunology, cell
biology, and microbiology, which have expanded our horizons
about the biology and epidemiology of infections as well as
human opportunities for therapeutic interventions. For instance,
stratified therapy, where the choice of treatment regimen takes
into account the genetic make-up of the host as well as the
microbial pathogen. It has become possible with advancements
in faster and cheaper genomic sequencing technologies.
Nonetheless, this has been accompanied by added complexity in
terms of analyzing the “big data” generated and the tools required
to undertake such analyses, given the mammoth volume of the
data generated (3). There are several major constituent factors
of infectious disease epidemiology that are important to study
with their detailed intricacies; we are highlighting them in
brief here.

The Trinity of the Microbial Pathogen, the
Host, and the Environment
The dissemination kinetics of infections must be taken into
consideration when investigating the spread of infections and
it is further required to design presumptive measures required
for the disease control. Three major elements attribute the
overall outcome in this context that influences each other in
a very complex way and contribute to the dissemination of
infectious disease.

It is an exclusive feature of any of the infectious diseases,
that their causative microbial agents may be only transmitted
from a person to another person (or from animals to the
people, or from animals to animals), leading to sustained
spread and may ultimately leading to an outbreak that
may require prompt public health action. Another unique
characteristic of infections is that some animals, typically
insects, may serve as vectors to transmit the infection to
humans. Examples include mosquitoes that can carry the
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dengue virus or the parasite that causes malaria and the
Triatominae that carry the parasite that causes Chagas’
disease (4).

Transmission in such ways may show recurrent patterns
frequently observed with infectious diseases, which may vary in
their predictability. It is logical to imagine that, such a pattern
may be described by a simple mathematical equation. If essential
determinants of the observed pattern can be described, such
a model might provide a mechanism to assess the impact of
interventions and to inform the planning of disease control.
The contagious nature of infections also means that, for most
infectious diseases, the impact of any single case and its
public health and economic consequences may go beyond those
attributable to the loss of quality of life and risk of death to that
individual. Cancer or other non-infectious metabolic diseases
may result in a substantial loss of healthy life-years among
those directly affected; however, a single infection could spread
and eventually affect many of the individuals in a population.
Therefore, evaluation of the public health impact of interventions
against infections is usually the use of models that account for the
non-static nature of infectious disease dissemination.

Another unique feature of infectious diseases is the
observation and quantification of individuals that carry
subclinical infections, therefore, they are asymptomatic carriers
or who are in the preclinical or convalescent phase of illness
may still transmit the infection to others. In the case of some
of the infectious diseases, such as tuberculosis (caused by the
bacterium, Mycobacterium tuberculosis), AIDS (caused by virus
HIV), hepatitis (caused by hepatitis virus), etc., the microbial
pathogen may remain in dormant or latent inside the host
organism’s body, such cases also remain undetectable (5).
Therefore, this implied that knowledge of the observed number
of symptomatic cases of a particular infection alone may not be
sufficient to fully understand the trends or to evaluate the effects
of therapeutic interventions applied.

The outcome of any of the infectious diseases also depends
upon the natural history of an infection in the human host
by its previous levels of exposure to the microorganism or by
active or passive immunization. For some infectious diseases,
immunity can be conferred for life, while repeat episodes due
to recurrence or reinfection are possible for other infections.
The genomes of microbial pathogen and the host determine the
behavior, response to the drug administered, pathogenicity, and
virulence of the pathogen, and thus modulate the outcome of the
disease to varying degrees; the human genome also influences
the susceptibility of the host, as well as its response to the
microbial infection as well as to the therapeutic interventions
such as drugs and the vaccines. Although classical genetics
methods allowed the identification of some drug resistance
mutations and typing of strains, next-generation sequencing
(NGS) methodologies have made possible the analysis of the
entire genes of pathogens, leading to zoom out understanding
of their evolution (phylogenetics), transmission patterns, and the
drug resistance (4).

Different types of microbes and human hosts interact via
complex mechanisms, in different parts of the host body, such
as the gut, where an abundant set of usually risk-free and

advantageous bacteria resides and called the gut microbiome
may alter the behavior of pathogenic microbes when they enter
into the gut. The relatively new discipline of metagenomics
aims to analyze the full genomic material of hosts and the
coexisting microbes both the symbionts and the pathogens (6).
Once a person is exposed to a microbial pathogen, they may
become infected. The time between exposure and the onset of
the symptoms of the disease is referred to as the incubation
period. The average period between two equivalent stages of
consecutive infected cases is the serial interval, which is most
frequently measured at symptom onset, due to the clinical ease
of defining this time point. Moreover, some of the individuals
are asymptomatic and yet disseminate the organisms to other
individuals, which could be called a carrier state. Herd immunity
refers to the indirect protection of individuals in a population
who are not vaccinated or otherwise immune; this indirect
protection arises as a consequence of the immunity of others in
their community (7).

The sources of infections include symptomatic infected
humans, animals, and the environment. For instance, respiratory
viruses such as COVID19 may be spread by coughing and
aerosolization of the microbe that is then inhaled, causing
infections in susceptible people. Some of the infectious diseases,
such as typhoid fever, may be transmitted by asymptomatic
human carriers, while others are acquired from animals (e.g.,
zoonotic infections such as salmonella) or the environment
(e.g., Legionnaires’ disease). These infectious diseases may be
disseminated directly from one infected individual to another
e.g., sexually (HIV), by touching (scabies), by biting (rabies),
or vertically from mother to child (rubella and cytomegalovirus
(CMV) or indirectly via a vector or vehicle (food- and water-
borne pathogens, healthcare-associated infections (HAIs), e.g.,
an infected catheter). Infections can also be spread by droplets
over very short distances (Ebola) and by droplet nuclei, which are
smaller and can travel longer distances (airborne transmission,
e.g., influenza and tuberculosis (TB) (8).

The Host Response
Ultimately, the immune response from the host is the most
important key factor which determines the outcome of any of
the microbial infections. Generally, this pertains to both parts of
the host’s immune system, the innate (from the hereditary) and
the adaptive (acquired) immunity. The innate immune system
includes physical barriers like the skin and diverse secretions
of the body, as well as cells of the immune system like mast
cells, histiocytes, macrophages, dendritic cells, Kupffer cells, and
Langerhans cells. These cells have surface molecules known as
receptors, which may be able to differentiate between molecules
that belong to our bodies and coming from outside of the body.
These cells take part in the initiation of the inflammation that
may attract the white blood cells and other phagocytes (cells that
are capable of ingesting and destroying the pathogens). Their
competence may vary with the age and physiological status of the
host. The innate system is cosmopolitan in nature and present
in all organisms, but the adaptive immune system is developed
in later time points of evolution along the tree of life, this
has first appeared in vertebrates. It is responsible for immune
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memory and this helps the organisms to respond to specific
pathogens, that they may have encountered previously. The
principle of vaccines relies on such memory. In general, antigens
are identified by specific white blood cells known as lymphocytes.
As explained above, adaptive immunity may be acquired through
previous exposure to the pathogen, as well as through active and
passive immunization (4). The implication of host immunity on
the worldwide burden of infections is remarkable. Various studies
of the global burden of the disease generate “big data” from a
diverse source to highlight the changing patterns of infectious
diseases and the efficacy of therapeutic interventions such as
drugs and vaccines in use. Remarkable declines in mortality from
many infections have been observed after implementation of the
public immunization and other therapeutic programs against
many infectious diseases such as diarrheal diseases, polio, lower
respiratory infections, TB, and measles (9).

Traditional approaches to manage and control infections have
not been effective in tackling the spread of many microbial
pathogens. Currently, these approaches are being extended
with the addition of novel technologies, however, the classical
principle of infectious disease control remains conserved. Behind
any efficient infectious disease control program requires a
robust surveillance system. A strategic plan to control infectious
disease must rely on sound knowledge of infectious disease
epidemiology, evidence-based public health analysis of the data
leading to effective policymaking and implementation, and
optimal communication between all of the stakeholders.

The progressing evolution and emergence of novel germs,
such as Severe acute respiratory syndrome-coronavirus2
(SARS-Cov2), SARS-Cov, Middle East Respiratory Syndrome
coronavirus (MERS-Cov), and new forms of known pathogens,
such as Ebola virus and Avian influenza, and changing
dissemination patterns of such infections, such as Dengue fever
(DF) and Chikungunya, re-emergence of previously endemic
infections, and the development of antimicrobial resistance,
such as methicillin-resistant Staphylococcus aureus (MRSA), all
these pose a serious threat to the control of infections For the
foreseeable future, infections are likely to remain a challenge
due to the movement of pathogenic species between animals
and humans and the ability of microorganisms to evolve via
mutations and the exchange of plasmids. The importance of
infectious disease epidemiology is, therefore, here, to stay in the
future as well. It is well-known that the preparation of a vaccine
for any infectious disease is a very lengthy process even it takes
a longer time to get the medicine for the same. As these diseases
spread at reasonably high rates and are dangerous for human
lives, therefore, till the medicine or the vaccine is not prepared,
prevention is better than cure policy is at the disposal. It is of
paramount importance to know with what rate it is infecting
the people, what is the death rate, what is the recovery rate,
how many hospital beds are required, and how many people
are going to be affected by any particular infectious disease,
therefore, it may be controlled. This information is of crucial
importance in making the best policies to prevent the disease. To
know all such types of information, statistical modeling plays a
very important role. There are mainly three methods to model
the spread of these infectious diseases including the current

pandemic of COVID19. In this review, we attempt to discuss
these three methods namely, distribution fitting, time series
regression models, and epidemiological modeling in detail.

THE DISTRIBUTION FITTING

Since infectious diseases spread over time and the behavior
and kinetics of infection dissemination depends on the stages
of the epidemic, the mean number of infections by one
infected person and the time in which the persons show
symptoms, etc., thus, it is the growth rate of infection which
determines the total number of infections. It depends on the
numerous factors such as health infrastructure and testing
protocols, total population, literacy, environmental conditions
of the country, complexity, heterogeneity, and dynamism of the
human behaviors, government interventions, etc. (10). It has
been observed that the epidemic spreads in different stages, for
instance, COVID-19 in most of the countries shown to be in six
stages. The growth rates for different countries are different at
different stages. The stages have been defined by the structural
breakpoints on the time series data. Some researchers have
fitted different theoretical distributions like Normal, Negative
Binomial, Poisson, Gamma, Exponential, and Lognormal, etc.
(Figures 1–5) for different stages or the break interval on
the availability of the data for the total infected days of the
particular stage (11). Datta et al. (11) fitted different distributions
for different stages and shown that in most of the stages
Lognormal distribution is the best-fitted distribution among the
class of discrete as well as continuous distributions for COVID-
19 worldwide data. They have used Chow F-test statistic to
determine different potential breakpoints for COVID-19 data
series that is they have used the Chow test to determine potential
breakpoints for different stages and to test the consistency of the
parameters’ estimates for the fitted distributions for each stage.
The breakpoints are decided for the fitted distribution on the
least values of the fitting measures like residual sum of squares
(RSS), Akaike information criteria (AIC), Bayesian information
criteria (BIC), mean absolute error (MAE), etc. (12). As it is
well-established that the infectious disease mainly depends on
two factors, the number of carriers and the time of infections,
therefore Datta et al. (11) have found the structural breaks
for each country under consideration for the total cumulative
cases of COVID-19 for different stages. They have defined five
breaks for different countries and fitted different distributions
and shown Lognormal to be the best-fitted one for almost all
stages and all countries. They have also talked about the average
number of days for different stages and other measures of the
distribution along with the P-P and Q-Q plots to see the fitting of
the distributions for different stages. Following are the generally
fitted figures for different distributions and the overall graph of
the countries which have overcome the disease COVID-19.

Many more researchers have worked in the field, which along
with their unique contributions are presented in the following
Table 1.

In our opinion, since the infectious disease spreads over time
so there must be only one continuous graph or the distribution
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FIGURE 1 | A case of normal distribution. The normal distribution is a symmetric bell-shaped curve. The standard normal distribution has a mean zero and a standard

deviation of one. The coefficient of skewness for this distribution is zero while the coefficient of kurtosis is three. The presented figure represents different normal

curves for different values of means and variances.

which should be followed by the complete data like the S-shaped
curves introduced byMalthus (13) and not in different stages like
Datta et al. (11) has proposed. As the behavior of the curve is
changing in different stages and different distributions are best
fitted for different stages, so it is not justified to present a single
problem in different stages while it must be presented through
a single distribution to present the real picture so that actual
policies may be made. As it is a big data problem so there must
be a normal distribution as the best one to define the infectious
diseases. One more drawback with the stages distribution fitting
is the required data as the required sample size may not be
obtained due to the unavailability of the data so the estimates
may not as good as they should be. As far as the Chow test is
concerned regarding the determination of the breakpoints and
the consistency checking of the estimates of parameters of the
fitted distribution, it may be significant as there are rapid changes
in different stages even within the stage as may be seen from the
graph given by Datta et al. (11).

TIME SERIES REGRESSION MODELING

Time series regression modeling and forecasting of infectious

diseases are of paramount importance for knowing the behavior

of the disease spread and to make better policies to overcome the

problem. The prime purpose of time-series regression modeling
is to gather the past information very carefully and rigorously on
a scale of time for the construction of themost suitablemodel that
may appropriately explain the natural framework of the series.
Then the constructed model is applied for forecasting the future
values of the series. Thus, the forecasting through the constructed
time series model may be considered as an act through which the
future is predicted by the past (14). As the epidemic develops
over time, so it is important to study its trending behavior
know many things like when it is going to finish, when it will
have a peak, and how many persons will be affected by it.
Many active researchers have worked and working on infectious
disease modeling for several years. Since the time series is crucial
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FIGURE 2 | The negative binomial distribution is a discrete probability distribution, which represents the number of failures in a sequence of independent and

identically distributed Bernoulli trials till the required number of successes occurred.

importance in disease modeling, it is to be mentioned that due
attention must be kept fitting an appropriate model for the said
time series. Naturally, the best time series prediction relies on the
most suitable fitted model.

Various researchers have developed the time series models
over many years to enhance the prediction precision of the
disease. Several crucial models have been suggested by various
authors for enhancing the accuracy as well as the efficiency
of time series models and their forecasting as well. The
main time series models used for forecasting the infectious
diseases are auto regressive time series models like AR (Auto
Regressive), MA (Moving Average), ARMA (Auto Regressive
Moving Average), ARIMA (Auto Regressive Integrated Moving
Average), and SARIMA (Seasonal Auto Regressive Integrated
Moving Average). The following Table 2 developed from Zhang
et al. (15), represents different autoregressive models in two
categories, stationary and non-stationary time series models.

These time series models help forecast the forthcoming
propensity of the phenomenon, risks, and distribution or dilation
trend of different diseases like Dengue, Ebola, Influenza, and
Malaria along with other infectious diseases (15). Further,
a time series will be called stationary if it possesses the
statistical properties that mean, variance, autocorrelation and
other parameters are stationary over time. The stationarity of a
time series is important for the statistical point of view as the
regression coefficients are not Best Linear Unbiased Estimates
(BLUE) for the non-stationary time series regression model
because of the problem of autocorrelation, heteroscedasticity. A
time series is known as strongly stationary or strictly stationary
if it has fixed mean, fixed variance, and fixed covariance over
fixed time intervals while a time series is known as weakly
stationary, or second-order stationary if it has fixed mean and the
covariance independent of time but depending on the size of the
fixed time intervals, which is known as autocovariance function.
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FIGURE 3 | The Poisson distribution. A Poisson distribution represents the probability of happening of rare events, where the number of favorable outcomes is very

low in comparison to the total events. The presented figure represents different Poisson curves for different values of the parameter.

Now the evaluation of the best fitted time series model for
prediction precision and comparison of different fitted models,
there are various measures like the coefficient of determination,
MSE (Mean Squared Error), MAD (Mean Absolute Deviation),
RMSE (Root Mean Squared Error), MAE (Mean Absolute Error)
or MAPE (Mean Absolute Percentage Error), AIC (Akaike
Information Criteria), BIC (Bayesian Information Criteria),
Theil’s U-statistics, etc.

Now we will discuss the different times series regression
models used in epidemiology one by one in detail but as
stationary is one of the important parts of the time series
regression modeling, so we will first understand what is
stationarity and non-stationarity in mathematical forms.

Stationary Time Series
A time series {Yt , t ∈ N (Set ofNatural Numbers)} is called
strongly stationary or strictly stationary if it is independent of

time difference that is,

(Yt1 , Yt2 , ..., Ytn )
∼= (Yt1+h, Yt2+h, ..., Ytn+h)

Where (t1, t2, ..., tn) are different time points and h is a
positive integer.

That is the joint distribution of (Yt1 , Yt2 , ..., Ytn ) is identical
to that of (Yt1+h, Yt2+h, ..., Ytn+h) for all h. Thus, the joint
distribution of (Yt1 , Yt2 , ..., Ytn ) is invariant over time.

A time series {Yt , t ∈ N} is called weakly stationary or
second-order stationery if it has fixed mean E(Yt) = µ and
covariance (Yt , Yt+h) = γh, where µ is fixed and γh is
independent of time t. The sequence {γh, h ∈ N} is known as
the autocovariance function. The autocorrelation function (ACF)
is also defined as ρh = γh/γ0 = Corr(Yt , Yt+h). Naturally,
a strictly stationary time series is weakly stationary. If the time
series follows the normal distribution, then (Yt1 , Yt2 , ..., Ytn ) is
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FIGURE 4 | The lognormal distribution is a continuous distribution of a random variable whose logarithm has a normal distribution. E.g., if X is log-normally distributed,

then Y = log(X ) will have a normal distribution. The presented figure represents different normal curves for different values of means and variances.

multivariate normal for all time points (t1, t2, ..., tn) and then
weak stationarity tends to strong stationarity. γ0 = Var(Yt) >

0 with the assumption that Yt is a random variable and γh is
symmetric in nature that is γh = γ−h for all h.

AR Model
As we are dealing with the single variable that is number of
infections and we are interested in predicting this number. Thus,
the time series regression models where the previous values
of a variable are used as the regressors, are the autoregressive
models. The autoregressive time series regression model of order
p, developed by Yule (16) is signified by AR(p) is given by,

Yt = θ1Yt−1 + θ2Yt−2 + ...+ θpYt−p + εt

or,

Yt =

p
∑

r=1

θrYt−r + εt (1)

where θ1, θ2, ..., θp are the fixed constants and εt is the error
involved in the model associated with the observation Yt for
the time point t and which are independently distributed with
0 mean and fixed variance σ 2.

The first order autoregressive model AR (1) is defined by,

Yt = θ1Yt−1 + εt = εt + θ1Yt−1 (2)

To find the autocovariance function of the above model, we put
the successive values and get,

Yt = εt + θ1{εt−1 + θ1(εt−1 + ...)} = εt + θ1εt−1 + θ21 εt−2 + ...
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FIGURE 5 | The Gamma distribution is the distribution of a random variable X for which E(X ) = κθ = α
σ
is fixed and greater than zero, and E[log(X )=ψ(κ )+ log(κ ) =

log(α)− log(σ ) is fixed (ψ is the digamma function). The presented figure represents different gamma curves for different values of the parameters α and σ .

The time series {Yt} is called stationary of order two if E(Yt) = 0
and its auto covariance function is given by,

γ0 = E(Y2
t )− {E(Yt)}

2
= E(Y2

t )

= E(εt + θ1εt−1 + θ21 εt−2 + ...)
2

= (1+ θ21 + θ41 + ...)σ 2 =
σ 2

1− θ21

and

γh = E

(

∞
∑

r=0

θ r1εt−r

∞
∑

s=0

θ s1εt+h−s

)

=
σ 2θh1

1− θ21

Alternatively, these results may be obtained more simply as,
Multiplying both sides of equation (2) by Yt−h and taking

expectation on both sides, we get,

E(YtYt−h) = E(θ1Yt−1Yt−h)+ E(εtYt−h)

Thus, the recurrence relation for the autocovariance may be
written as,

γ0 = θ1γh−1, h = 1, 2, ...

Squaring equation (2) on both sides and taking expectations on
both sides, we have

E(Y2
t ) = θ21E(Y

2
t−1)+ 2θ1E(Yt−hεt)+ E(ε2t )

= θ21E(Y
2
t−1)+ σ 2, as E(Yt−hεt) = 0

And thus we have,

γ0 =
σ 2

(1− θ21 )

Now the autocorrelation function may also be obtained for the
model in (1) by multiplying the equation (1) on both sides by
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TABLE 1 | Fitting of different distributions for different infectious diseases.

S. no. References Conclusion drawn

1 Meyer and

Held (62)

The authors have studied the short-time human travel behavior through power Law (Pareto, Uniform, Cauchy, etc.) concerning the

distance. They used extended space-time models for influenza infectious disease surveillance data to better capture the dynamics of

disease spread. They have studied the statistical properties of the best-fitted distribution for a better explanation and prediction of

influenza.

2 Virlogeux

et al. (63)

In this work a novel avian influenza virus, influenza A(H7N9) emerged in China was studied. The authors have fitted different parametric

and non-parametric distribution for A(H7N9) incubation periods and studied the properties of the fitted distributions. The best fitted

parametric distribution observed was Weibull distribution and the mean incubation period was 3.4 days with a 95% confidence interval

[3.0 3.7] and the variance was 2.9 days. The results were very similar for the non-parametric Turnbull estimate as well.

3 Virlogeux

et al. (64)

The authors studied Middle East Respiratory Syndrome coronavirus (MERS) disease in the Arabian Peninsula and in South Korea in 2015.

They examined the incubation period distribution of MERS coronavirus infection using parametric (Lognormal, Gamma, Weibull,

Exponential, Log-logistic) and non-parametric (turnbull) methods. They have shown that Gamma and Weibull are best-fitted distributions

for South Korea while Lognormal and Log-logistic are the best fitted for Saudi Arabia and estimated a mean incubation period of 6.9 days

with 95% credibility interval as [6.3 7.5] for cases in South Korea and 5.0 days with 95% credibility interval as [4.0 6.6] among cases in

Saudi Arabia.

4 Hanel et al.

(65)

The authors worked on the most standard methods based on maximum likelihood (ML) estimates of power-law function which is an

exponential distribution. The best-fitted power function distribution based on the fitting measures was observed after that the appropriate

ML estimator was derived for arbitrary exponents of power-law distributions on bounded discrete sample spaces. They had shown that a

similar estimator was also working for continuous data. This ML estimator was implemented and its performance was compared with

previous works. Further, a general protocol was given on how it could be used for estimating the spread of the infections.

5 Li et al. (66) In this study, prediction and parameter estimation of infections were studied using noisy case reporting data. A simple stochastic,

discrete-time, discrete-state epidemic model was established with both process and observation errors and was used to characterize the

efficiency of different flavors of Bayesian Markov chain Monte Carlo (MCMC). They fitted different parametric distributions with ceilings

(binomial and beta-binomial distributions) and without ceilings (Poisson and negative binomial) and the best-fitted distribution were studied

for the statistical properties to explain and prediction of the nature of the infections.

6 De-Souza

et al. (67)

The authors inferred that climate change has a high impact on governing the health and death rates due to respiratory system diseases

and remained poorly understood by probability distribution modeling. They fitted the Burr, Inverse Gaussian, Lognormal, Pert, Rayleigh,

and Weibull distributions to respiratory diseases, and the shape and scale parameters of the distributions were determined to verify the

quality of fit through fitting measures. The lognormal and Rayleigh are best observed fit for hospital admissions.

7 Valvo (68) The author studied the epidemiological model for the prediction of the time trends of COVID-19 deaths worldwide. They have taken a

bimodal distribution function as a mixture of two lognormal distributions to model the time distribution of deaths in a country. They

mentioned that an asymmetric lognormal distribution is better fitted in comparison to symmetric distribution functions. Based on the best

model, they have further analyzed and predicted the future behavior of the spread of COVID-19 and was extrapolated until the end of the

year 2020.

8 Vazquez (69) The author has shown that infection spreads are expected to grow exponentially in time but their initial kinetics is not well understood. In

this study, derivation of the analytical expressions was carried out for the kinetic behavior with a gamma distribution of generation

intervals. Omitting the exponential distribution, the spread of the infection grows as a power law at short times. At long times, the kinetics

is exponential with a growth rate estimated by the reproductive number and the parameters of the generation interval distribution. These

kinetic derivations can be deployed to do better estimates of parameters used for infection spread.

9 El-Monsef

(70)

The author has fitted finite mixture of m-Erlang distributions to analyze the COVID-19 dissemination. The author has derived different

moments and shape parameters estimate for the suggested model and shown that it has a bound hazard function. A special case of the

suggested distribution has also been discussed along with the predictive technique to estimate the parameters of the fitted distribution. In

this fitted distribution, the data of the COVID-19 cases from Egypt was used to examine the flexibility of the proposed model.

10 Almetwally

et al. (71)

The authors suggested a model for fitting the COVID 19 mortality rates in the UK and Canada using optimal statistical technique. They

have suggested a new two-parameter lifetime distribution by combining inverted Topp-Leone (ITL) and modified Kies inverted Topp-Leone

(MKITL) distributions. They have shown that the suggested model has various important properties as simple linear representation, hazard

rate function, and moment function. They have used various methods of estimation for the estimation of parameters of the suggested

distribution. They have shown through the data simulation study on COVID-19 cases that the suggested model is better than the

traditional methods.

11 Mubarak and

Almetwally

(72)

The authors have introduced a new extended three-parameter exponential distribution and studied the survival function and hazard

function. They have also used the maximum likelihood estimation (MLE) and maximum product spacing (MPS) methods for to evaluate the

parameters of this distribution. An empirical study is carried out to judge the superiority of the suggested model over some well-known

distributions using COVID-19 data and it was concluded that the suggested distribution is better fitted over competing distributions.

12 Gonçalves

et al. (73)

In the presented work, authors have concluded that the inaccurate epidemiological concepts are being used during COVID-19 pandemic.

They pointed out about social media and scientific journals regarding wrong references for “normal epidemic curve” and “log-normal

curve/distribution” and the textbooks and courses of reputed institutions have spread slightly incorrect information. Most of them have

shown histogram as epidemic curve or using epidemic data as Gaussian distribution, ignoring its property of temporal indexing. The

authors have further observed that epidemic curve may be of Gaussian curve type and be modeled from Gauss function but it could not

be a perfect normal distribution or a log-normal, as some of the previous studies have shown. Further, they have mentioned that a

pandemic gives highly-complex data and to handle it effectively, there is need to go beyond the “one-size-fits-all solution” of statistical and

mathematical modeling. Finally they suggested that the classical textbooks should be updated on pandemics and epidemiology should

give reliable information to policy making and implementation.
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TABLE 2 | Stationary and non-stationary time series regression models used in

epidemiology.

S. no. Time series model Model description

Stationary time series regression model

1. Autoregressive model

(AR)

Present values explicated linearly

based on previous values and

present residuals

2. Moving Average (MA) Present values of time series

explicated linearly for previous

values and the time series

residuals

3. Autoregressive Moving

Average (ARMA)

As a combination of AR and MA,

present values of time series

explicated linearly for current

values but also previous and

present residuals

Non-stationary time series regression model

4. Autoregressive

Integrated Moving

Average (ARIMA)

Based on the ARMA model, but

a differencing procedure

transforming non-stationary data

to stationary data

5. Seasonal

Autoregressive

Integrated Moving

Average (SARIMA)

Based on the ARIMA model, but

also includes seasonal

differencing, in case of data has

periodic patterns

Yt−h and taking expectations on both sides, we get the Yule-
Walker equations after dividing the whole equation by γ0. Thus,
we have,

ρ0 = θ1ρh−1 + θ2ρh−2 + ....+ θpρh−p, h = 1, 2, ... (3)

Equation (3) is the recurrence relation for the autocorrelation
function and the general solution for the relation (3) is,

ρh = C1w
|h|
1 + C2w

|h|
2 + ...+ Cpw

|h|
p (4)

where w1, w2, ..., wp are the roots of the equation,

wp − θ1w
p−1 − θ2w

p−2 − ... θp = 0 (5)

with the C1,C2, ...,Cp is obtained from the relations ρ0 = 1 and
from the equations for h = 1, 2, ..., p− 1.

It is obvious that for h → ∞, γh → 0 which is possible if the
roots lie inside the unit circle |wi| < 1, therefore the values of
θ1, θ2, ..., θp to be chosen are restricted.

MA Model
The residual error terms in a time series is another source
of information which is of paramount importance for model
prediction. The residual errors themselves form a time series
that can have temporal structure which in turn can be used to
correct forecasts. The model is known as a moving average model
developed by Eugen (17), bearing same name but different from
moving average smoothing method. Auto regressive model is
used when Yt depends on its some lagged values while there

are cases when Yt depends on the random error term εt and its
lagged values, which is supposed to be white noise that is, εt is
independently and identically distributed (i.i.d) with 0 mean and
fixed variance σ 2. The MA model differs from AR model in two
ways, oneMAmodel propagate to forthcoming values of the time
series outright for instance εt−1 directly is on right hand side ofYt

equation. Thus, MA (q) model is the model with q lagged values
of the error terms known as the MAmodel of order q is given by,

Yt = φ0εt + φ1εt−1 + φ2εt−2 + ...+ φqεt−q (6)

where, φ0 = 1 and φ1, φ2, ..., φq are the constants and error
terms are supposed to be white noise. The estimates of the
parameters or constants are obtained by the well-known method
of least squares and it may be observed that the above MAmodel
is stationary at second-order that is,

γh =







0, |h| > q

σ 2
q−|h|
∑

r=0
φrφr+h |h| < q

Further, it is to be worth notable that two MA models may have
the same autocorrelation function. For example, let us consider
two MA (1) models as,

Yt = εt + φεt−1 and Yt = εt + φ−1εt−1, where, φ−1 = 1/φ

For both the models for |h| > 1, we observe that ρ1 =
φ

1+φ2 and

ρh = 0, however from the model

Yt = εt + φεt−1,

we have,

εt = Yt − εt + φεt−1

= Yt − φ(Yt−1 − φεt−2) = Yt − φYt−1 − φ2Yt−2 − ...

Which is representing a tailor series expansion and which is only
valid with the condition that |φ| < 1. Thus, we may observe that
the error term εt at a time point t is represented in terms of the
lagged values of the variable Y under study and hence we may
say it is an invertible model and it is to be mentioned that no two
invertible models have the same autocorrelation function.

ARMA Model
The autoregressive moving average ARMA of order (p, q) is
obtained by combining the AR (p) model of order p and
the MA( q) model of order q. Autoregressive Moving Average
(ARMA) models, describe a weak stationary random process
in a couple of polynomials, one for the autoregression (AR)
and another for the moving average (MA). For a time series
Yt , the ARMA model predicts the future values of the series.
The AR part regresses the variable for its own lagged values.
The MA part takes into account the error terms which occur
synchronously at different time points in the past. ARMA is
suitable for unobserved shocks as in case of pandemic and it is
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due to the MA or moving average along with its behavior. The
ARMA (p, q) model introduced by Wold (18) is presented as,

Yt = (θ1Yt−1 + θ2Yt−2 + ...+ θpYt−p)

+(φ0εt + φ1εt−1 + ...+ φqεt−q),

or

Yt =

p
∑

r=1

θrYt−r +

q
∑

s=1

φsεt−s (7)

Where, θ1, θ2, ..., θp and φ1, φ2, ..., φq along with φ0 = 1 and
the error terms εt is white noise. Now the well-known Box and
Jenkins (19) procedure may be applied for better forecasting as
it uses an estimation of the parameters or constants of the model
and provides the diagnostics of these parameters to the best. The
estimation of the parameters of the ARMA model is done using
the ordinary least square method.

To understand it better let us consider an example. Let {Xt}

be the unobserved sequence of observations and {Yt} be the
observed sequence and we have,

Xt = θXt−1 + εt and Yt = Xt + ηt

where, εt and ηt are independent and white noise and it is to be
mentioned that {Xt} is AR (1). Now we may write that,

ξt = Yt − θYt−1

= (Xt + ηt)− θ(Xt−1 + ηt−1)

= (Xt − θXt−1)+ (ηt − θηt−1)

= εt + ηt − θηt−1

Now it may be observed that ξt is stationary and Cov (ξt , ξt+h) =
0, h ≥ 2. Thus, ξt may be modeled as MA (1) model and {Yt} as
ARMA (1, 1) model. To find how much order should be taken
for better forecasting that what should be the optimum values of
p and q, respectively, we use the ACF (Autocorrelation Function)
and PACF (Partial Autocorrelation Function) plot.

ARIMA Model
The autoregressive integrated moving average (ARIMA) model,
suggested Box et al. (20) is a generalization of the ARMA model
with non-stationary series. ARIMA is non-stationary means that
it has non-constant mean and variance over time. The integrated
part refers to a differencing initial step, which can be applied to
eliminate the non-stationarity of the series. Some application of
this method to epidemiological time series may be in Promprou
et al. (21), Liu et al. (22), and Coutin (23).

An ARIMA model is unequivocal by its three components:

• Auto regression (AR) model is the model which represents a
variable that regresses on its lagged, or prior, values.

• Integrated (I) shows the differencing of basic observations so
that the time series may be stationary.

• Moving average (MA) provides the docility between an
observation and a residual from the MA model for
lag observations.

Let {Yt} be the time series that is not stationary. Now we make it
stationary through the differencing method and see the order of
differencing which makes the series stationary. Let the first-order
difference of the series is,

Xt = ∇Yt = Yt − Yt−1

The second-order differences are,
Xt = ∇2Yt = ∇(∇Yt) = Yt − 2Yt−1 + Yt−2 and so on.

Whenever we observe that the differencing process is stationary,
we say that the time series is stationary and we may go for the
ARMA model for this integrated series. Thus, {Yt} is known as
an ARIMA (autoregressive integrated moving average) model,
denoted by ARIMA(p, d, q) if Xt = ∇dYt is a ARMA(p, q)
model.

SARIMA Model
SARIMA is nothing but seasonal ARIMA and is suitable for the
time series with seasonality. Seasonal Autoregressive Integrated
Moving Average (SARIMA) or Seasonal ARIMA, is an extended
version of ARIMA representing a univariate series with the new
seasonal component. There are three new hyperparameters as
AR, differencing (I) and MA for the seasonal component of the
series with an additional seasonality parameter. The SARIMA
model is denoted by ARIMA(P, D, Q)m, where m represent
observations per year and the block letters are for the seasonal
parts of the model, and small letters for the non-seasonal parts.
The parameters of the ARIMA models can be estimated through
the Box-Jenkins approach.

An overview of the Box-Jenkins Methodology involves the
three steps given below:

1. Identification. Through scatter plot, autocorrelations, partial
autocorrelations, and other knowledge. Then a family of
ingenious ARIMA models has opted and estimation of p, d,
and q is done.

2. Estimation. The model parameters phis and thetas under
consideration are estimated through well-known maximum
likelihoodmethod (MLE), backcasting, and others as discussed
by Box and Jenkins (19).

3. Diagnostic Checking. The inadequacy of the fitted model
is checked through autocorrelations of the residuals or
error, values.

These steps are kept on iteratively till the diagnostic procedure
does not provide improvement in the model. The basic
methodology is to get differences between data points to get
an outcome that is to make it stationary. The methodology
permits the model to recognize the trends through AR, MA,
and seasonal differencing for forecasting. ARIMA models are
one of the types of Box-Jenkins model. The terms ARIMA and
Box-Jenkins Model may be used equivalently.

ARIMA is a statistical technique based on observations
rather than theory, while compartmental models are essential
mechanistic mathematical models based on biological laws.
In the further sections of the current review, we have also
discussed such biological law based models in detail. Apart
from these, many more advanced and efficient computational
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techniques with mechanistic mathematical models are now in
use for the forecasting of the spread of the various infectious
diseases including COVID-19. These advanced computational
techniques includes ETS (error, trend, seasonal) state space
models which comes under the category of exponential
smoothing method, STLM (seasonal and trend decomposition
using losses) method, TBATS (trigonometric, box-cox, ARMA,
trend, seasonal) method, FASSTER (forecasting with additive
switching of seasonality, trend and exogenous regressors) model
which is used to capture patterns of multiple seasonality
in a state space framework by using state switching, neural
network method, deep learning method using artificial neural
networks (ANN), long short-term memory (LSTM) neural
network method and hybrid model such as support vector
regression (SVR) method for the explanation and forecasting of
the outbreak of infectious diseases including COVID-19 disease.
Almost all these advanced computational techniques make use of
regression analysis with some additional features.

The above time series regression models along with the
advanced computational techniques have been used by various
researchers for a better understanding and the forecasting of
different infectious diseases. Some of the latest contributions are
presented in Table 3.

EPIDEMIOLOGICAL MODELING

Epidemiology is the science of the study of the occurrence of
the disease. It is an unusually large and/or short-term spread
of the disease and is known as endemic if it outstays in a
population. As it is an infectious disease, so its spread is not
only because of disease factors like the infectious agent, mode of
transmission, latent period, infectious period, susceptibility, and
resistance but also due to social, culture, demographic, economic,
and geographic factors (24). Epidemiology also determines
different groups of individuals in the population based on
similar characteristics like sex, age, size, etc. while ignoring the
uniqueness of an individual. It determines whether the divisions
of the individuals in the population into different groups tell
something more than what we could get from each individual
separately. Through epidemiological modeling, the aim is to
describe, analyze and understand the patterns of infectious
disease in these groups.

Before discussing the epidemiological models, we will first
discuss the classification of the diseases based on their agents and
medium of transmission. Table 4 represents the classification of
the diseases adapted and modified from Hethcote (24) based on
their agents and medium of transmission.

Apart from chronic diseases like cancer, heart attack, and
diabetes, infectious diseases are a very common reason for deaths
in the whole world. The immunodeficiency virus (HIV) that may
confer Acquired Immunodeficiency Syndrome (AIDS), Ebola,
SARS, Dengue, Tuberculosis, and currently COVID-19 among
others have become very crucial infectious diseases for the whole
world. The transmission mechanism of the infectious diseases
from the infective to susceptive through the chain of infections
is of crucial importance. So it becomes necessary to model the

diseases so that their transmission mechanism may be revealed
and effective policies may be formed to control or overcome
the infectious disease. As the transmission interaction of an
infectious disease in the population is a very complicated process,
so it is very tuff to understand its dynamics without mathematical
or statistical modeling. An epidemiological model is used to
forecast the macroscopic behavior of infectious disease outbreaks
by a population through microscopic description that is the role
of an individual infectious (25).

The epidemiological modeling is also done to know the
competing risks of the deaths from infectious diseases. Modeling
also attempts to limit the extent of the infection employing some
suppressive strategies like quarantining, social distancing, culling
in animals, contact tracing, and vaccination when it is available.
One of the weaknesses of the modeling is that the data are
limited for infectious diseases and it is many times unethical
to experiment on humans, so we must go for the optimal
combination and use the available resources. Epidemiological
modeling is crucial to know the salient features of the infection
dynamics of the disease. The forecast or prediction of the
outcomes of the diseases in communities from the changes in
demographics, community structure, disease characteristics, and
suppressive strategies imposed on it.

In the eighteenth century, Bernoulli (26), who was the pioneer
scientist in the field during the 18th century formulated and
analyzed the epidemiological model for smallpox. Through
his model, he evaluated the effectiveness of the vaccination
inoculation of healthy people against the smallpox virus. He
has obtained mathematical data on this issue to influence
public health policy by encouraging the universal vaccination
for smallpox. His work was first presented at the Royal
Academy of Sciences in Paris in 1760 and later published
in 1766. Hamer (27) proposed and analyzed a discrete-time
epidemiological model and concluded the recurrence of measles.
He has pointed out about the germinable source, it has been
suggested that periodic evolutionary changes in the life history
of microorganisms may explain the waves of disease, but is the
periodic manifestation by the micro-organisms or the interaction
between the microbe and the host tissues. Ross (28) suggested a
model with differential equations for analyzing the mechanism
of malaria as a host-vector disease. He has mentioned that
it may not be fatal, although its wide prevalence in almost
all warm climates results in the aggregate a large amount of
sickness and deaths globally. Further, he has presented the real-
time data representing only in India the official estimate of
the means annual death rate of five per thousand that mean
on average one million, one hundred thirty thousand deaths
every year. He observed that the mortality by malaria is more
than the plague, cholera, and dysentery altogether. Kermack
and McKendrick (29) extended the model of Ross (28) and
obtained the threshold results of the malaria epidemic. Kermack
and McKcndrick (29) analyzed different epidemiological models
and contributed to the mathematical theory of epidemics. They
have observed that one of the most crucial characteristics in
the study of the spreading infections is the difficulty of finding
a causal factor that appears to be enough to account for the
scale of the recurrent infection waves of disease which contract
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TABLE 3 | Different time series regression models for different infectious diseases.

S. no. References Conclusion drawn

1 Zhang et al. (15) In this study, the authors have presented a complete analysis of different predicting methods based on the monthly infection spread data

of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural

networks, namely, backpropagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural

networks (ERNN) were compared. The dissimilarities, pros, and cons, between the two models. The evaluation was based on three

metrics: mean absolute error (MAE), mean absolute percentage error (MAPE) and mean square error (MSE). The results showed that

RBFNN obtained the smallest MAE, MAPE, and MSE in both the modeling and forecasting processes. Ultimately, it was suggested to use

the RBFNN method for better explanation and prediction of typhoid fever infection spread.

2 Zhang et al. (74) In this work, nine types of infections were compared based on the efficiency of four-time series methods, regression and exponential

smoothing, ARIMA, and support vector machine (SVM). The performances were evaluated based on three metrics: mean absolute error

(MAE), mean absolute percentage error (MAPE) and mean square error (MSE). The robustness of the statistical models in predicting the

potential spread of the infections showed their good application in epidemiological surveillance and found that no single method is

completely superior to the others but support vector machine-based methods are proven better than the ARIMA models and

decomposition methods in most of the cases.

3 Imai et al. (75) In this study, time series regression was applied to evaluate the short-term associations of air pollution and weather with mortality or

morbidity of infectious diseases. They used different approaches, including mathematical modeling, wavelet analysis, and ARIMA models.

They concluded that the time series regression can be used to investigate the dependence of infectious diseases on weather, but may

need modifying to allow for features specific to this context.

4 Song et al. (76) The authors compiled monthly data of influenza infections from all provinces and autonomous regions in mainland China and applied the

time series analysis to construct an ARIMA model. They have evaluated the goodness of fit through Autocorrelation function (ACF), partial

autocorrelation function (PACF), and automatic model selection was to determine the order of the model parameters. It is conceivable that

SARIMA is the best time series model for the prediction of influenza infection spread.

5 Sarkar and

Chatterjee (77)

The authors have applied different time series models to analyze and forecast financial data as well as epidemiological data of malaria

infection dissemination. They have studied epidemiological data of malaria using three-time series models, namely Auto-Regressive

Integrated Moving Average (ARIMA), Generalized Auto-Regressive Conditional Heteroskedastic (GARCH), and Random Walk. They have

shown a good fit of models on the data and provided the best forecast for future infection spread. As far as future prevalence pattern is

concerned, the prediction of these models may help researchers and public health professionals to design control programs for malaria.

6 Chae et al. (78) The authors studied the prediction of infections by optimizing the parameters of deep learning algorithms while considering big data

including social media data. The performance of the deep neural network (DNN) and long-short term memory (LSTM) learning models

were compared with the autoregressive integrated moving average (ARIMA) when predicting three infections for 1 week time into the

future. They have shown that the DNN and LSTM models perform better than ARIMA. The DNN model performed stably and the LSTM

model was more accurate when infections were spreading.

7 Tapak et al. (79) The author analyzed the correctness of support vector machine, artificial neural network, and random-forest time series models in

influenza-like illness (ILI) modeling and infection detection. Different models were applied to a data set of weekly ILI cases data in Iran. To

judge the robustness of the models, the root means square errors (RMSE), mean absolute errors (MAE), and intra-class correlation

coefficient (ICC) calculations were used as testing criteria. It was indicated that the random-forest time series model worked better in

comparison to the rest three methods. The outcome depicted that the used time series models had excellent performance suggesting

these could be effectively applied for predicting weekly ILI infections and endemics.

8 Chaurasia and

Pal (80)

In this work, the authors have analyzed the number of cases, deaths, and recovery cases in the case of COVID-19 worldwide within a

specific period. They have used several prediction techniques: naive method, simple average, moving average, single exponential

smoothing, Holt linear trend method, Holt-Winters method, and ARIMA, for comparison, and how these methods improve the Root mean

square error score. They concluded that the naive method is best in comparison to other used methods.

9 Rahmadani and

Lee (81)

The authors suggested a hybrid deep learning framework using the meta-population model and long and short term model (LSTM) for the

prediction of the COVID-19 dissemination. They expanded the susceptible–exposed–infected–recovered compartment model by taking

into account the human mobility among a number of regions. They used the meta-population model to incorporate with deep learning

models to estimate the parameters of the combined hybrid model. They have compared the suggested hybrid deep learning framework

with other estimation methods for the prediction of COVID-19 spread patterns and have shown improvement over previously presented

methods.

10 Kalantari (82) The author used the singular spectrum analysis (SSA) method for the prediction of the number of daily confirmed infection cases, deaths,

and recoveries caused by COVID-19. It was analyzed using SSA method with the other commonly used time series predicting techniques

including ARIMA, fractional ARIMA, exponential smoothing, TBATS, and neural network autoregression (NNAR) on the basis of fitting

measure root mean squared error (RMSE). It was shown that the SSA technique is best for predicting the number of daily confirmed

infection cases, deaths, and recoveries caused by COVID-19 among the studied models.

11 Satrio et al. (83) The authors utilized the machine learning model for predicting the spread of COVID-19 in Indonesia. They have also attempted to estimate

a time line for the return of the normalcy. They have utilized PROPHET forecasting model as well as ARIMA to see their robustness and

accuracy for the confirmed new infection cases, deaths, and recovered numbers. They have shown that PROPHET performs better than

ARIMA model on the analyzed data set.

12 Beneditto et al.

(83)

The authors utilized the Machine Learning model to forecast the trend of the disease in Indonesia with finding out the approximation when

normality will return. This study used Facebook’s Prophet Forecasting Model and ARIMA Forecasting Model to compare their performance

and accuracy on a dataset containing the confirmed cases, deaths, and recovered numbers, obtained from the Kaggle website. The

prediction models are then compared to the last 2 weeks of the actual data to measure their performance against each other. The result

showed that Prophet has predicted the outcomes better than ARIMA, despite it being further from the actual data the more days it

predicts.
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TABLE 4 | Different infectious diseases their causative microorganisms and modes of transmission.

Microorganism Mode of transmission

Person→person Person-environment

environment→person

Reservoir→vector

vector→person

Reservoir→person

Virus Measles, Chickenpox,

Mumps, Rubella, Smallpox,

Influenza, Herpes, HIV (AIDS

virus)

Poliomyelitis Arboviruses:

Yellow fever

Dengue fever

Encephalitis

Tick fever

Sandfly fever

Rabies

Bacteria Gonorrhea

Tuberculosis

Pneumonia

Meningitis

Strep Throat

Typhoid Fever

Cholera

Plague Brucellosis

Tularemia

Anthrax

Protozoa Syphilis Amebiasis Malaria

Trypanosomiasis

Helminths
Schistosomiasis

Filariasis

Onchocerciasis

Trichinosis

every population. They asked for extracting more details of the
effects of the various factors which may affect the spread of the
infections. Cassels et al. (30) analyzed the mathematical models
for HIV transmission dynamics. Cohen et al. (31) analyzed the
mathematical modeling of Tuberculosis transmission dynamics.
Andraud et al. (32) studied the dynamic epidemiological models
for dengue transmission and provided a systematic review of
different structural approaches. Taghikhani and Gumel (33)
worked on the mathematics of dengue transmission dynamics
and explained the roles of vector vertical transmission and
temperature fluctuations. Xia et al. (34) studied and discussed
the modeling of transmission dynamics of Ebola virus disease
in Liberia while Agusto (35) studied the mathematical model
dynamics of transmission of Ebola with decline and re-infection.
Some of the latest contributions are presented in Table 5.

Currently COVID-19 pandemic is going on worldwide and
epidemiologists are trying to model its transmission mechanism
and trying to predict various aspects so that better policies
may be made to control the disease. Li et al. (36) analyzed the
modeling and epidemic forecasting of COVID-19 and depicted
its essentialness to pestilence anticipation and monitoring
measures. Jewells et al. (37) discussed the modeling of the
COVID-19 pandemic and described its theory and projection
values for the US and worldwide. Ndaïrou et al. (38) worked
on the mathematical modeling of COVID-19 transmission
dynamics for the Wuhan city of China. Griffiths (39) pointed
out and discussed whether mathematical modeling can solve

the current COVID-19 crisis. Kucharski et al. (40) worked on
the primary transmission dynamics and control of COVID-19

through mathematical modeling. Many authors worked and

many are still working on themodeling of transmission dynamics

of COVID-19 disease to predict it so that some concrete policies

may be formed to control the crisis.
There are different epidemiological models applied to

formulate the transmission dynamics of infectious diseases.

Among them, SI (Susceptible and Infected) model, SIS
(Susceptible, Infected and Susceptible) model, SIR (Susceptible,
Infected and Recovered) model, SIRS (Susceptible, Infected,
Recovered and Susceptible) model, SEIR (Susceptible, Exposed,
Infected and Recovered) model, and SEIRS (SIR model with
untested/unreported cases) model are some of the famous and
frequently used epidemiological models for infectious diseases.
Before going into the mathematics of these models, we will
discuss the Basic Reproduction Number denoted by R0 which
is very crucial for all epidemiological models along with
the Effective Reproductive Number denoted by R and the
Herd Immunity.

The Basic Reproduction Number

R0 is a potential measure of the transmission of infectious
disease and represents the mean number of secondary infections
generated by a typical infected individual in a population
with all susceptibles (41). R0 does not include the new cases
generated by the secondary individuals. R0 is influenced by
various factors as:

(a) The contact rate in the host population.
(b) The chance of infection during contact.
(c) The period of infectiousness.

It is worth notable that R0 is a pure number that is unit or
dimension-free and may be represented as,

R0 ∝

[

Infection

Contact

]

×

[

Contact

Time

]

×

[

Time

Infection

]

= τ . c̄. d

Where, τ is the transmissibility or chance of infection during
contact between susceptible and infected individuals. c̄ being the
mean contact rate between susceptible and infected individuals
and d is the period of infectiousness.
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TABLE 5 | Various epidemiological models for different infectious diseases.

S. no. References Conclusion drawn

1 Huppert and

Katriel (84)

The authors have discussed the extent to which the disease transmission models provide reliable predictions. They examined the predictions

of the model to test which are trustworthy. An important benefit derived from mathematical modeling activity is that it demands transparency

and accuracy regarding our assumptions, thus enabling us to test our understanding of the disease epidemiology by comparing model results

and observed patterns. Models can also assist in decision-making by making projections regarding important issues such as

intervention-induced changes in the spread of disease.

2 Steele et al.

(85)

The authors mentioned that the early detection of infectious disease outbreaks can reduce the ultimate size of the outbreak, with lower overall

morbidity and mortality due to the disease. In the review, they have mentioned numerous approaches to the earlier detection of outbreaks exist.

In the systematic review the authors used of PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-analyses), The

MEDLINE (PubMed) database. Five studies were identified and included in the review. These studies evaluated the effect of electronic-based

reporting on detection timeliness, the impact of laboratory agreements on timeliness, and barriers to notification by general practitioners.

3 Driessche

(86)

The author worked on the basic reproduction number, R0, for infectious diseases, and other reproduction numbers related to R0 that are useful

in guiding control strategies. Beginning with a simple population model, the concept is developed for a threshold value of R0 determining

whether or not the disease dies out. The next generation matrix method of calculating R0 in a compartmental model is described and

illustrated. These theoretical ideas are then applied to models that are formulated for West Nile virus in birds (a vector-borne disease), cholera

in humans (a disease with two transmission pathways), anthrax in animals (a disease that can be spread by dead carcasses and spores), and

Zika in humans (spread by mosquitoes and sexual contacts). Finally, references for other ways to calculate R0 are given and these are useful

for more complicated models.

4 Walters et al.

(87)

The authors observed that mathematical models can aid in the understanding of the risks associated with the global spread of infectious

diseases. To assess the current state of mathematical models for the global spread of infectious diseases, the authors reviewed the literature

highlighting common approaches and good practice, and identifying research gaps. They found that most epidemiological data come from

published journal articles, population data come from a wide range of sources, and travel data mainly come from statistics or surveys, or

commercial datasets. However, they believed that open access datasets should be used wherever possible to aid model reproducibility and

transparency.

5 Raissi et al.

(88)

The authors considered the compartmental disease transmission models and discuss the importance of determining model parameters that

provide an insight into disease transmission and prevalence. They used three approaches including an optimization approach, a physics

informed deep learning, and a statistical inference method to estimate parameters and analyze disease transmission. The performance of the

deep learning method is validated against representative small and big data sets corresponding to a well-known benchmark example and the

results indicate that deep learning is a viable candidate to determine model parameters. The results indicate the efficiency and importance of

statistical inference methods for researchers to understand and analyze the data to make confident predictions.

6 Li et al. (36) The authors established the dynamics model of infectious diseases and the time series model to predict the trend and short-term prediction of

the transmission of COVID-19, in mainland China for clinical trials. They applied the dynamic models of the six chambers and established the

time series models based on different mathematical formulas according to the variation law of the original data. Finally, they suggested that it is

a very effective prevention and treatment method to continue to increase investment in various medical resources to ensure that suspected

patients can be diagnosed and treated promptly.

7 Prasse et al.

(89)

The authors have used a network-based model to describe the COVID-19 epidemic in the Hubei province. They have suggested the

network-inference-based prediction algorithm (NIPA) to predict the future prevalence of the COVID-19 epidemic in the cities of China and they

have shown that NIPA is best for accurate prediction of the infection spread.

8 Yang et al.

(90)

The authors have described the short-term predictor of the daily cases reported in Wuhan City using individual-level network-based model to

rebuilt the epidemic dynamics in Hubei Province and have seen the effectiveness of non-pharmaceutical interventions on the epidemic

spreading with various scenarios. They have shown through the simulation study that without continued control measures, the epidemic in

Hubei Province could have become persistent and the infection rate is controlled through protective measures and social distancing. They

have demonstrated the COVID-19 transmission with non-Markovian processes and have shown how these models produce different epidemic

trajectories, in comparison to Markov processes.

9 Popov and

Nakov (91)

The authors worked on the epidemiological models of the spread of infectious diseases, including COVID-19. The models and simulations of

an epidemic in the presence of quarantine and the moment of its termination have been made. They have pointed out that it is important to

pinpoint the timing of the lifting of measures or their granting. They have shown through the proposed simulation model that the impact of

group gatherings such as the beginning of the school year, holidays, and more, mass events on the epidemic picture. These studies are also

relevant in the event of a mutation in the virus that will change the rate of spread.

10 Saraee and

Silva (92)

In this review, the authors have compared studies that have used epidemiological models for disease forecasting and other models that have

identified socio-demographic factors associated with COVID-19. They have evaluated several models, from basic equation-based

mathematical models to more advanced machine-learning ones. They have identified high-impact models used by policymakers and

discussing their limitations, They have suggested possible areas of applications for future research.

10 Moein et al.

(93)

The authors have used different mathematical techniques, including the susceptible-infected-recovered (SIR) model for the description and

prediction of the infection spread of COVID-19. They have simulated the infection spread data in Isfahan province of Iran along with three

suppressive measures of the stringency level of physical distancing. They have shown that for the short term prediction, SIR model was only

able to predict the actual spread and pattern of COVID-19 while not in long term. They have also concluded that other published works using

SIR models for predicting COVID-19 has the same drawback. The assumptions for SIR models are not true for COVID-19 pandemic. Finally

they have suggested that more sophisticated modeling strategies and detailed knowledge of the biomedical and epidemiological aspects of

the disease are needed to predict the spread of this pandemic.

11 Alvarez et al.

(94)

The authors come up with a simple epidemiological model which may be implemented in Excel spreadsheets and able to simulate the data of

the COVID-19 pandemic significantly. They have shown that the model may closely follow the evolution of COVID-19 spread in big cities by

simply adjusting parameters of demographic conditions and aggressiveness of the response to epidemics. Further they have also advised that

the suggested epidemiological simulator may be used to judge the efficiency of the response of population to the pandemic. The simplicity and

accuracy of the model will help to understand the extent of an epidemic event and the efficacy of any policy response from the state.
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Generally, an epidemic spreads in a susceptible population
when R0 is more than one i.e., R0 > 1 and thus infection cases
will increase. Rarely the entire population will be susceptible to be
infected in the physical world. Some intromission will be immune
may be because of prior infection which has developed life-long
immunity, or maybe due to prior immunization. Therefore, the
whole population will not be infected and the mean of secondary
cases per infectious individual will be less than R0, and it is
measured through the effective reproductive rate denoted by R.
R0 depends on the disease and host population and it is different
for different infectious diseases for instance R0 = 2.6 for TB in
cattle, R0 = [3 4] for influenza in humans. R0 = [3.5 6] for
smallpox in humans and R0 = [16 18] measles in humans. For
more details on R0, please refer to Khajanchi et al. (42).

The Effective Reproductive Number
R is the mean number of secondary infections per infectious case
in a population under consideration for susceptible and non-
susceptible hosts. The number of infectious cases increases with
R > 1, like the beginning of an epidemic, while the infectious
cases diseases for R = 1, and with R < 1, the number of infected
cases will decline. R can be estimated by the product of R0 and the
fraction susceptible (X) host population. Thus, R is defined as,

R = R0.X

For instance, if R0 for influenza is 12 for any population where
50% of the population is immune, R for influenza will be 12 x
0.5= 6. In such situations, a single influenza case would generate
a mean of 6 new secondary infections. Thus, for the successful
elimination of an infectious disease from the entire population, R
must be <1 i.e., R < 1.

Herd Immunity
Herd immunity develops in the population if a reasonable part of
that population or herd gets vaccinated or immune through some
mechanism, which results the protection of susceptible persons
who are not vaccinated. The larger the portion of immune
persons in the population, lower the chance to be infected. The
diseases hardly spread from one individual to another if huge
numbers are already immune since the transmission infection
chain is broken. The herd immunity threshold is crucial for
the population that should be immune so that the disease
may be stable in the particular group. If it is attained, say by
immunization, then every individual produces only one new case
i.e., R = 1 and then the infection will be stable for the population.
The Herd Immunity Threshold for a population is defined as,

HIT =
R0 − 1

R0
= 1−

1

R0

Thus, if the threshold for herd immunity is outdoing, then
R < 1 and infection cases decrease. Hence it is a crucial
measure for infectious disease control, immunization, and
eradication programs.

Now we will discuss different epidemiological models along
with the mathematical dynamics and the transmission of
infectious diseases.

SI and SIS Models
The SI model is described by the differential equations which
govern the deterministic SI compartmental model. In this model,
people are always in the infectious state with lifelong infections,
such as herpes disease has lifelong infectiousness (Figure 6). Han
(43) worked on this model based on two-dimension small-world
networks with epidemic alert. This technique of modeling is
impractical to animal or human infections as in such case it is
supposed that an infected unit will remain in the same state. The
following diagram of the SI model represents how cases transmit
from one compartment to another in the model. The curved line
depicts the way the model transforms to an SIS (Susceptible-
Infectious-Susceptible) model, where infection does not lead to
immunity or say waning immunity. Persons have reinfections,
and infected persons move to the susceptible state. For instance,
sexually transmitted diseases (STD), like gonorrhea or chlamydia.

The infectious rate, β , checks over the spread rate,
representing the chance of transmission of disease from an
infectious individual to a susceptible one. Recovery rate, γ =

1/d̄, is the mean time, d̄, of the infection. The SI model is
ingenious among various infectious disease models. Cases are
born in simulation having no immunity or susceptibility. Once
the individual is infected and is without treatment, it remains
infected long-life and remains with the susceptible population.
This model is used for infectious diseases like cytomegalovirus
(CMV) or herpes.

SI Without Vital Dynamics
The transmission dynamics of I in a SI model behave like logistic
growth. If no birth and death occur, then every susceptible
individual will be infected. Be that as it may, it very well may
be adjusted to a SI model by killing brooding and setting the
irresistible duration to be prolonged as compared to human
life expectancy. The SI model may be represented by Ordinary
Differential Equations (ODE) as,

dS

dt
= −

βSI

N
dI

dt
=

βSI

N
= βI

(

1−
I

N

)

Where, N = S + I is the whole population or N(t) = S(t) + I(t)
is the whole population at the time t.

SI With Vital Dynamics
Let µ and υ are the birth and death rates, for the SI model,
respectively, with vital dynamics. For a population to be constant,
we assume thatµ = υ . Thus, the Ordinary Differential Equations
for the SI model for this case are,

dS

dt
= µN −

βSI

N
− υS

dI

dt
=

βSI

N
− υI

Where, N = S+ I is the total population or N(t) = S(t)+ I(t) is
the whole population at the time t.
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FIGURE 6 | The Susceptible- Infectious (SI) Model is the ingenious model among the disease models. Units are born without immunity which means they are

susceptible to all infections. When they will be infected and not given any treatments, then all cases remain life-long infected, and they remained in contact with the

susceptible population. This model applies to diseases such as cytomegalovirus (CMV) and herpes.

The ultimate part of infected individuals is concerned with
the vital dynamics µ, υ and β . The rate of infection β can be
calculated from the steady-state as,

µ = υ =
βS

N
= β

(

1−
I

N

)

SIS Model
In the SIS model, the infected cases are again in a susceptible
state since infection (Figure 7). Such type of models is applied
for the diseases which generally have encored infections, for
instance, the common cold (rhinoviruses) or STD like gonorrhea
or chlamydia. In this model, the cases move randomly in a cycle
of Susceptible-Infected-Susceptible. Therefore, only two states
exist one and another susceptible as the individuals are again
susceptible after recovery. Deletions due to death or acquired
immunization are not considered in this model.

SIS Without Vital Dynamics
Since persons in the SIS model stay susceptible since infection,
the disease achieves stability in a population, even with no deaths
and births. The Ordinary Differential Equations (ODE) for this
model with no births and deaths may get the solution to know
the dynamics of the disease. These equations may be written as,

dS

dt
= −

βSI

N
+ γ I

dI

dt
=

βSI

N
− γ I

Where, N = S + I is the whole population or N(t) = S(t) + I(t)
is the whole population at the time t.

There is a couple of equilibrium situations for the SIS model,
the initial one is, I = 0 i.e., disease Free State, and another is,

dI

dt
=

βSI

N
− γ I = βI

(

1−
I

N

)

− γ I = 0

or,

I =

(

1−
γ

β

)

N =

(

1−
1

R0

)

N

The disease spreads when dI
dt

> 0 or R0 =
β
γ

> 1, thus the

disease will transmit and attain the next stable state; else wise, it
will finally attain the state of no disease.

SIS With Vital Dynamics
Letµ and υ be the birth and death rates that are vital dynamics of
the population for the SIS model. To have a stagnant population,
we consider that µ = υ . Thus, the Ordinary Differential
Equations for the SIS model are,

dS

dt
= µN −

βSI

N
+ γ I − υS

dI

dt
=

βSI

N
− γ I − υI

Where, N = S + I is the whole population or N(t) = S(t) + I(t)
is the whole population at the time t. Similarly, we can get R0 as
in the case of the SIS model without vital dynamics.

SIR and SIRS Models
The differential equations for SIR and SIRS models
represent the devolution dynamics of the infectious diseases
(Figure 8). In the SIR model, recovered individuals gain
whole immunity to the pathogen; in the SIRS model the
immunity decreases with time and persons may be infected
again. The SIR/SIRS graph depicts how persons move
from one fragment to another in the model. The dashed
line represents how the SIR model transforms to a SIRS
(Susceptible-Infectious-Recovered-Susceptible) model, lifelong
immunity is not attained after recovery, and units may
be re-susceptible.

The rate of infection, β , checks the spread rate which
shows the chance of transmission of the disease from an
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FIGURE 7 | In Susceptible-Infectious-Susceptible (SIS) Model, the infected cases are again susceptible after recovery. This model is applied to the diseases, which

have the common occurrence of re-infection and relapse cases, e.g., common cold (rhinoviruses) or sexually transmitted diseases (STDs) such as Gonorrhea or

Syphilis.

FIGURE 8 | The Susceptible-Infected-Recovered (SIR) model is an epidemiological model that computes the theoretical infections with a contagious infection in a

closed population over time. The family of these models involves coupled equations related to the number of susceptible people, infected cases, and recovered

individuals from the disease.

infectious individual to a susceptible one. Recovery rate,
γ = 1/d̄, is obtained through the mean time, d̄, of
infection. The SIRS model ξ represents the transmission
rate from recovered to susceptible state because of decay
in immunity.

dS

dt
= −

βSI

N
+ γ I

dI

dt
=

βSI

N
− γ I

Where, N = S + I is the whole population or N(t) = S(t) + I(t)
is the whole population at the time t.

SIR Model
This model was introduced by Kermack and McKendrick (29)
and has later on used to various diseases, mainly for airborne
childhood diseases with lifelong immunity after recovery, like
measles, mumps, rubella, and pertussis. S, I, and R in the SIR
model show the number of susceptible, infected, and recovered
cases, and N = S + I + R is the whole population or N(t) =

S(t)+ I(t)+ R(t) is the whole population at the time t.
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SIR Without Vital Dynamics
For the infection period with emergent eruption as compared
to the lifetime of a person and the disease is non-fatal that is
vital dynamics may not be considered. In such a situation, the
deterministic part of the SIR model in the form of ordinary
differential equations is,

dS

dt
= −

βSI

N
dI

dt
=

βSI

N
− γ I

dR

dt
= γ I

Where, N = S + I + R is the whole population or N(t) =

S(t) + I(t) + R(t) is the whole population at the time t. In a
population with births and deaths, an epidemic will finally vanish
because of the least susceptible individuals to keep the disease.
Later infected persons will not be able to start another epidemic
because of the lifelong immune current population.

SIR With Vital Dynamics
The new births in the population with deaths and births may
produce large susceptible persons to the population, having
an epidemic or permitting new cases to dilation to the entire
population. In a real population, the dynamics of the disease will
attain a stable state. This is the situation of regional endemic for
the disease.

Let µ and υ be the birth and death rates, for the SIR model
with vital dynamics. For the population to be constant, we assume
thatµ = υ . The ordinary differential equations for the SIRmodel
with vital parameters are,

dS

dt
= µN −

βSI

N
− υS

dI

dt
=

βSI

N
− γ I − υI

dR

dt
= γ I − υR

Where, N = S + I + R is the whole population or N(t) =

S(t)+ I(t)+ R(t) is the whole population at the time t.
Under the steady-state dI

dt
= 0.

SIRS Model
In the SIR model, the people are lifelong immune to disease after
recovery from it and this applies to various infectious diseases
(Figure 9). On the other hand, there are various airborne diseases
such as seasonal influenza, where an individual loses its immunity
over time that is it is probable to be re-infected by the same virus.
In such a case, the SIRSmodel is applied where recovered persons
are returned to a susceptible state.

SIRS Without Vital Dynamics
If the individuals are highly probable to belong to the susceptible
population, the dynamics of the disease will be in an endemic

state with damped oscillation at equilibrium. The ordinary
differential equations for SIRS epidemiological model are,

dS

dt
= −

βSI

N
+ ξR

dI

dt
=

βSI

N
− γ I

dR

dt
= γ I − ξR

Where, N = S + I + R is the whole population or N(t) =

S(t)+ I(t)+ R(t) is the whole population at the time t.

SIRS With Vital Dynamics
The SIRS model with µ and υ as the birth and death rates can be
represented in ordinary differential equations as,

dS

dt
= µN −

βSI

N
+ ξR− υS

dI

dt
=

βSI

N
− γ I − υI

dR

dt
= γ I − ξR− υR

Where, N = S + I + R is the whole population or N(t) =

S(t) + I(t) + R(t) is the whole population at the time t. The
population remains constant, if µ = υ . The steady-state for the

model is dI
dt

= 0.

SEIR and SEIRS Models
In the SEIR and SEIRS models, the individuals have a long
incubation period that it takes time to be exposed, so as
the person is infected but is not still infectious (Figure 10).
For instance, chickenpox along with vector-borne diseases,
like dengue hemorrhagic fever where the pathogen is not
transmitted to others by the individual. The SEIR model
converses to an SEIRS (Susceptible—Exposed—Infectious—
Recovered—Susceptible) model, where recovered individuals
are re-susceptible. For instance, rotavirus and malaria have
long incubation periods with only temporary immunity. The
infectious rate, β , reduces the chance of transmission of disease
from an infectious person to a susceptible one. The incubation
rate, σ, represents the rate to be infected (mean time of incubation
is 1/σ). Recovery rate, γ = 1/d̄, representing the mean time, d̄,
of infection. The SEIRS model ξ is the rate by which recovered
persons become susceptible because of loss of immunity.

SEIR Model
There are diseases where the unit is infected itself but it does
not infect others. This gap between becoming infected and the
infectious state may be applied in the SIR model by adding
a latent/exposed population, E, and allow infection but no
infectious persons move from S to E and from E to I.
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FIGURE 9 | The Susceptible-Infected-Recovered- Susceptible (SIRS) model is an epidemiological model that describes the theoretically infected individuals with a

contagious infection in a closed population over time. In this model, the equations are related to the susceptible, infected, and recovered number of individuals along

with re-susceptible individuals for the disease.

FIGURE 10 | The Susceptible-Exposed-Infected-Recovered (SEIR) model is an extension of the SIR model to include an exposed but non-infectious group of

individuals. This model considers the number of susceptible, exposed, infectious, and recovered individuals with no additional mortality associated with infectious

disease.

SEIR Without Vital Dynamics
For a closed population with no vital dynamics, the SEIR
model is:

dS

dt
= −

βSI

N
dE

dt
=

βSI

N
− σE

dI

dt
= σE− γ I

dR

dt
= γ I

Where, N = S + E + I + R is the whole population or N(t) =

S(t)+ E(t)+ I(t)+ R(t) is the whole population at the time t.
As there is a delay for an individual to be infected, the

secondary spread from this individual will take more time as

compared to the SIRmodel, where there is no delay. Thus, adding
a longer delay period will produce slow growth of the outbreak.

However, as the model is not considering mortality, R0 =
β
γ
, will

not change.
The whole outbreak of the disease is observed. Starting from

rapid growth, the epidemic paralyzes the susceptible population.
Finally, the virus is unable to get substantial new susceptible
individuals and vanishes out. Adding the incubation time does
not change the total number of infected cases.

SEIRWith Vital Dynamics
As in the SIR model with births and deaths, there is epidemic
dilation since new births give more susceptible units, in a real
population, the disease dynamics will tend to a stable state.
For the SEIR model with µ and υ as the birth and death
rates, respectively, assuming equal for maintaining a constant
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FIGURE 11 | The Susceptible-Exposed-Infected-Recovered- Susceptible (SEIRS) model considers people carry lifelong immunity to disease after recovery, but for

many diseases, the immunity deteriorates over time. In such cases, the SEIRS model is applied to permit recovered individuals to come back to a susceptible state.

The parameter ξ represents the rate to be susceptible after recovery because of decay in immunity.

population, the ODE are:

dS

dt
= µN −

βSI

N
− υS

dE

dt
=

βSI

N
− υE− σE

dI

dt
= σE− γ I − υI

dR

dt
= γ I − υR

Where, N = S + E + I + R is the whole population or N(t) =

S(t)+ E(t)+ I(t)+ R(t) is the whole population at the time t.

SEIRS Model
In this model, individuals have lifelong immunity for the disease
after recovery, but in various diseases, the immunity goes to
vanishes with time (Figure 11). Thus, SEIRS model is applied to
permit the recovered persons to come back to a susceptible state.
Moreover, the recovered persons turn back to the susceptible
state by the rate ξ , because of decay in immunity? If the
susceptible population grows sufficiently, the dynamics will be
endemic with damped oscillation at equilibrium. The SEIRS
model is:

dS

dt
= −

βSI

N
+ ξR

dE

dt
=

βSI

N
− σE

dI

dt
= σE− γ I

dR

dt
= γ I − ξR

Where, N = S + E + I + R is the whole population or N(t) =

S(t)+ E(t)+ I(t)+ R(t) is the whole population at the time t.

SEIRS With Vital Dynamics
The SEIRS model with vital dynamics having vital parameters µ

and υ as birth and death rates, respectively, maintaining a stable

population, i.e., µ = υ . In the stable state dI
dt

= 0, the Ordinary
Differential Equations are,

dS

dt
= µN −

βSI

N
+ ξR− υS

dE

dt
=

βSI

N
− υE− σE

dI

dt
= σE− γ I − υI

dR

dt
= γ I − ξR− υR

Where,N = S+E+ I+R is the whole population or is the whole
population at the time t.

RECENT STATISTICAL MODELING
ATTEMPTS FOR COVID-19 DISEASE
SPREAD

A reasonably good body of literature is growing recently on
various epidemiological models on COVID-19 disease proposed
by various researchers. For instance, Hoertel et al. (44) suggested
a random Agent-Based Microsimulation (ABM) model for the
COVID-19 epidemic in France. They have shown the forceful
effect of competing for non-pharmaceutical interventions on
the accumulative incidence of the disease and mortality, and
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intensive care units (ICUs) -bed occupancy. They also discussed
the model with different suppressive measures and suggested the
lockdown period. They have calculated R0 for their model to
predict the pattern of the infection spread. They have described
that their model depends on current knowledge and updated
presupposition, as in the case of all modeling work happens, in
their work, they have additionally shown using empirical data
that lockdown and physical distancing and mask-wearing are
emphatic in downing the epidemic and decreasingmortality rates
but are not sufficient to inhibit Inevitable ICUs admissions and a
second lockdown.

De-Souza et al. (45) reported and contextualized
epidemiological, demographic, and clinical results for COVID-
19 cases throughout the first three months of the pandemic.
They derived through their model that the value of R0 was 3.1
with 95% Bayesian credible interval as [2.4–5.5] with a greater
median but overlapping credible intervals as compared to some
other gravely affected countries. They have also shown a positive
correlation between higher per capita income sub-population
and COVID-19 diagnosis while severe acute respiratory infection
cases with unknown etiology were associated with lower per-
capita income sub-population in Brazil. Hao et al. (46) suggested
SAPHIRE model to reconstruct the full-spectrum dynamics
of COVID-19 in Wuhan, China which is an extension of the
classical SEIR model, which is also discussed erstwhile in this
review. They have devised the newmodel by adding demographic
and clinical components of the model. They have calculated the
lower bounds of the infection along with R0 and shown than the
value of R0 was 3.54 for their model with 95% credible interval
as (0.23–0.33) and predicted the projection of the pandemic
through their model that it is going to finish 96% till 8 March
2020. Gaglione et al. (47) worked on an epidemiological model
to estimate of parameters of infection and recovery, and to
follow and predict the epidemiological graph with reasonable
accuracy applying to real data from the Lombardia region in
Italy, and from the USA. They also did Bayesian sequential
estimation of the parameters under consideration with a specific
prior distribution. They also demonstrated the prediction of
the pandemic spread by their dynamic and observation model
along with the basic reproduction number R0. Lavezzo et al.
(48) utilized the prevalence estimates of Vo’ at the primary
and secondary surveys to calibrate an improved susceptible–
exposed–infectious–recovered compartmental model of
SARS-CoV-2 transmission that incorporates symptomatic,
presymptomatic and asymptomatic infections, virus detectability
before and after the infectious duration and the effect of the
lockdown. They assumed that presymptomatic, symptomatic,
and asymptomatic infections transmit the virus. They calculated
the value of R0 for their model and they also performed
the Mann-Whitney U-test, a non-parametric test to test the
equality of two independent means of the first and second
survey populations along with some other statistical tests as
well. Flaxman et al. (49) have studied the impact of main
interventions across 11 European countries from the beginning
of the COVID-19 epidemics in February 2020 until 4 May
2020, when lockdowns lifting was to be started. They shown
drawbacks through their model, from the given deaths to

estimate transmission that took place many weeks previously,
allow time lag between infection and death. They used a
partial pooling of information between countries, with both
individual and shared impacts on the time-varying reproduction
number (Rt). Their model believes on the fixed estimates of
some epidemiological parameters (such as the infection fatality
rate), not including importation or subnational variation and
considers that changes in Rt has quick response to interventions
rather than slow changes in behavior. They estimated that for
all of the countries of study current interventions are sufficient
to drive Rt below 1 (probability Rt < 1.0 is >99%) and get
control over epidemic. Malavika et al. (50) utilized the Logistic
growth model for short term forecasting; SIR models to predict
the optimum number of active cases and peak time and Time
Interrupted Regression model to evaluate the effect of lock-down
and other interventions.

Other authors used different statistical techniques to analyze
and predict the transmission dynamics of the COVID-19
pandemic. Baggett et al. (51) utilized descriptive statistics
for characterization of the sample under consideration, the
percentage of positive PCR test results, and the symptom
profile of persons with PCR-confirmed infections of COVID-
19. Partners Health Care Human Research Committee exempted
their study with a waiver of informed consent. The barricades
of this study were cross-sectional nature at only one shelter
in Boston where numerous symptomatic persons had been
eliminated by prior symptom screening or self-referrals and not
to care. These results advocate PCR testing of asymptomatic
shelter residents if a symptomatic person with COVID-19 is
identified in the same shelter. Hsiang et al. (95) study different
statistical model fitting and epidemiological studies for the
transmission dynamics of COVID-19 disease. They compiled the
data on 1,700 local, regional and national non-pharmaceutical
interventions which were assigned during the current pandemic
across different localities in China, South Korea, Italy, Iran,
France, and the United States. Then they applied reduced-form
econometric methods, generally applied to see the impact of
policies on economic growth to empirically measure the effect
that these anti-contagion policies have had on the growth rate
of infections. They analyzed that anti-contagion policies have
remarkably and virtually made slow this growth and can be
helpful in making well-informed decisions regarding whether or
when these policies should be applied, intensified, or lifted, and
they may support policy-making in the more than 180 other
countries in which COVID-19 has been reported.

Banerjee et al. (52) presented the population-based cohort
data on the primary and secondary care electronic health records
from England. They have shown the prevalence of underlying
conditions defined by Public Health England guidelines in
persons with age 30 years and above registered with a
practice between 1997 and 2017, utilizing valid and freely
available phenotypes for each situation. They have estimated 1-
year mortality in every situation, through simple models and
calculated excess COVID-19-related deaths, considering relative
effect as relative risks of the COVID-19 pandemic. They also
made an online, public, prototype risk calculator for estimating
excess deaths. Several other India specific forecasting daily
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and the cumulative number of cases of infections of COVID-
19 have been published recently using modeling (42, 53–55).
Similarly, Rai et al. (56) have described the impact of social
media advertisements on the transmission dynamics of COVID-
19 pandemic in India.

CONCLUSION

In this review, we have discussed the different types of statistical
modeling used for predicting infectious disease spread. The first
one among them is distribution fitting, wherein most of the
infectious diseases as a large number of cases are infected so
the Gaussian or the normal distribution is fitted to the observed
data and the parameters of the distribution are estimated based
on the sample observations and the peak and the 99 percent
downfall, etc. are calculated using the area property of normal
distribution through these estimates of the parameters of the
fitted distribution. In a recent report by Hamzaha et al. (57). The
worldwide data on the COVID-19 outbreak was analyzed and the
fate of the disease was predicted using distribution techniques.

The second type of infectious disease modeling has been
discussed using the epidemiological models which include
SI, SIS, SIR, SIRS, SEIR, and SEIRS models. It has also
been discussed which model should be used for specific
infectious diseases and why of the basis of its nature. These
epidemiological models R0 and the average reproduction number
by the infected person, R have been discussed and the
conditions for these numbers have been discussed for the
disease to be controlled or finished. These models have been
discussed with the suppressive strategies and without suppressive
strategies along with and without the vital parameters. Similarly,
UCLA Statistical Machine Learning Lab (2020) reported
epidemiological models for COVID-19 through modified SEIR
models for predicting the dynamics among the cumulative
confirmed cases and mortality rates of COVID-19. Li et al. (36)
envisaged Mathematical Modeling and forecasting of COVID-
19 spread and its importance to epidemic stopover and curb
measures. Jewell et al. (37) described forecasting mathematical
models of the COVID-19 pandemic their principles and value
of projections. Ndaïrou et al. (38) discussed Mathematical
modeling of COVID-19 spread dynamics through a case study
of Wuhan. Griffiths (39) observed and discussed whether
mathematical modeling can solve the current COVID-19
crisis. Kucharski et al. (40) worked on anon dynamics of
spread and control of COVID-19 through a mathematical
modeling study.

The third type of infectious disease modeling has been
discussed using the time series modeling. In this time
series disease modeling, different types of time series models
for different infectious diseases have been discussed. These
time series models include AR, MA, ARMA, ARIMA, and
SARIMA models. These models have been estimated for
forecasting using well-known Box-Jenkins method. In recent
studies, the authors have carried out the prediction and
analysis of COVID-19 through the time series models. They
attempted to fit three models namely logistic, Gompertz

and Bertalanffy models to the COVID-19 data set and
showed that the logistic model is best among the three
models used for prediction in this study. Papastefanopoulos
et al. (58) analyzed COVID-19 by comparing different time
series models to predict the percentage of active cases in
a population. Yonar et al. (59) described the Modeling
and prediction for COVID-19 pandemic cases using the
curve estimation models, the Box-Jenkins, and exponential
smoothing methods for the chosen countries of G8 countries,
Germany, United Kingdom, France, Italy, Russian, Canada,
Japan, and Turkey between 1/22/2020 and 3/22/2020 through
ARIMA model.

FURTHER SUGGESTIONS AND FUTURE
PROSPECTIVES

The three types of infectious disease modeling work very well but
still, there is room for improvements in these modeling methods.
Following are some suggestions for improving these modeling
methods, respectively.

a. As far as the fitting of the Gaussian distribution is concerned,
there must be an appropriate sample size to get the
best estimates for forecasting the features of the fitted
distribution. If the sample size is not appropriate as per
the population size, the estimates will not be best that is
why we have seen in the case of COVID-19 many times
the 95 and 97% confidence interval of the disease time
to be finished are revised. Additionally, there must be
only one distribution fitting as some authors have fitted
different distribution for different stages and they have
presented the problem in different stages, which may not be a
true depiction.

b. In the case of epidemiological modeling, the model prediction
will be accurate if some of the constraints or the suppressive
measure which are qualitative in nature must be considered
as the explanatory variable and it should not be only a
dummy variable rather these should be taken as fuzzy
variables. One more thing for modeling the data may be
true and complete for which there must be maximum
testing as there are cases that are asymptomatic and they
are prone to spread the disease. Further, Benford’s law (60)
and Zipf ’s law (61) must be applied to epidemiological
models to establish the guidelines for reporting fraud free
epidemiological data.

c. In the case of time series modeling again the problem of
appropriate sample size remains the same to get the best
estimates of the parameter of the model under consideration.
Many variables are not included in the model but they are
having an impact on the output so they must be included to
get a more accurate prediction.

d. The true representation of the data is the soul of the infectious
disease modeling. Consequently, it is of prime importance for
the modeling and prediction of the phenomenon accurately,
that the data should be true and complete. In most of
the cases the available data is incomplete and not truly
represent the population and in such situation modeling
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efforts miserably fail to predict accurately. This is very true
in the case of COVID-19, which is changing its potential
of transmission very dynamically. There could be an n-
number of factors, which may initiate an outbreak and
intensify the spread of the disease. Therefore, as many
as possible, such factors, which are quantifiable, must
be included in the model for achieving a robust and
accurate prediction.
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