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This work presents simulation results for different mitigation and confinement scenarios

for the propagation of COVID-19 in the metropolitan area of Madrid. These scenarios

were implemented and tested using EpiGraph, an epidemic simulator which has

been extended to simulate COVID-19 propagation. EpiGraph implements a social

interaction model, which realistically captures a large number of characteristics of

individuals and groups, as well as their individual interconnections, which are extracted

from connection patterns in social networks. Besides the epidemiological and social

interaction components, it also models people’s short and long-distance movements as

part of a transportation model. These features, together with the capacity to simulate

scenarios with millions of individuals and apply different contention and mitigation

measures, gives EpiGraph the potential to reproduce the COVID-19 evolution and

study medium-term effects of the virus when applying mitigation methods. EpiGraph,

obtains closely aligned infected and death curves related to the first wave in the Madrid

metropolitan area, achieving similar seroprevalence values. We also show that selective

lockdown for people over 60 would reduce the number of deaths. In addition, evaluate

the effect of the use of facemasks after the first wave, which shows that the percentage of

people that comply with mask use is a crucial factor for mitigating the infection’s spread.

Keywords: COVID-19, simulation, social distancing, mitigation policies, face mask

1. INTRODUCTION

At the beginning of March, when the number of infections started to escalate sharply in Italy and
the first deaths occurred in Europe, the medical community did not yet fully understand the details
of how the SARS-CoV-2 virus propagates. A few weeks later, more than 250 million people were in
lock-down in Europe; it had started to become clear that this was an exceptional situation. At that
point, the need to understand the evolution of the epidemic and the means to contain and mitigate
its propagation became a priority for the health authorities. Many researchers started to work on
how to better tackle these challenges. EpiGraph (1) is an already existing epidemic simulator that we
had developed some years ago and was able to perform large scale, realistic stochastic simulations
of the propagation of the influenza virus. During the past months we have adapted our simulator
to COVID-19, we added more components, and we increased the detail level and accuracy of the
simulations. The current version of EpiGraph has more than 12,000 lines of code written in the
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C language and parallelized using the MPI library. The
simulations we present in this work were executed on
the Marenostrum4 supercomputer at the Barcelona
Supercomputing Center.

EpiGraph consists of four different modules that work
together to capture the transmission between different
individuals based on social interconnections, mobility patterns,
and climate factors (2). The simulator implements a sophisticated
social interaction model, in which the individuals are realistically
represented through different characteristics such as age and
occupation. Besides the epidemiological and social interaction
components, EpiGraph also models people’s movements between
different urban areas. In this work we have reproduced the
mitigation policies taken by the Spanish government and we
replicated the behavior of the first infection wave in the Madrid
metropolitan area. Starting from this initial scenario, we present
an analysis of the effect of potential mitigation policies, such as
age-dependent social distancing and mobility restrictions and
face mask use.

This work was developed in the context of the projectMedium
and Long-term Simulation of Covid-19 funded by the Institute of
Health Carlos III, for providing support to the Spanish health
authorities, both for the forecast of the current COVID-19
propagation, as well as the evaluation of possible future scenarios.
The main contributions of this work are the following:

• We provide a fully detailed description of the EpiGraph
simulator and how it is adapted to COVID-19. As part of
this, we show how EpiGraph was configured to reproduce
the first COVID-19 wave (in Spring of 2020) for the Madrid
metropolitan area.

• We evaluate the propagation of the virus under the different
mobility restriction policies adopted at different times during
the epidemic, including the de-escalation period.

• We analyze the effectiveness of selective social distancing
measures and the impact of mask use considering different
protection levels.

Section 2 contains a detailed description of the simulator,
including its validation comparing both real and simulated
values. In section 3, we analyze different mitigation scenarios.
Section 4 provides a discussions of the findings as well as the
limitations of the work; section 5 describes related work. Finally,
section 6 presents the main conclusions of our work.

2. MATERIALS AND METHODS

2.1. Background
Algorithm 1 shows an outline of EpiGraph’s simulation
algorithm. The iterative algorithm discretizes the total simulation
time in time steps of 10 min (line 1). In each time step, the
algorithm considers each city in the simulated territory (line
2). A city has a given population which is modeled based on
the Spanish census data1, with the associated social connections
between the individuals. Line 5 updates the health status of each
infected individual of each city, as indicated by the epidemic

1National Statistics Institute (INE). Available online at: http://www.ine.es/ (2021).

Algorithm 1 :EpiGraph transmission algorithm. Variable simulation_time

represents the simulation duration, simulated_territory is the simulated area

including several cities, each one of them with a social interaction model for the

population, and status contains characteristics and health status of each individual

for each city.

1: for timestep = 1 → simulation_time do

2: for city ∈ simulated_territory do

3: for individual ∈ city do

4: if status[individual] is infectious then

5: UpdateStatus(status[individual])

6: ComputeSpread(individual, city)

7: end if

8: end for

9: Individual_Interventions(status)

10: Social_Interventions(city)

11: Transportation(city, simulated_territory)

12: end for

13: end for

model used by the simulator. The next step (line 6) computes
how the infectious agent spreads via the social model, starting
from every infected individual and evaluating the probability of
transmission to each of their contacts. This probability depends
on the type of connection, the time of day, and the characteristics
of the individual potentially being infected, such as their age or
the use of face masks.

We call an individual intervention (line 9) an action taken
by the individual to mitigate the propagation of the infectious
disease. In Epigraph these actions are activated or deactivated
based on defined policies. One example of intervention is that
at simulation day 30, a certain individual starts using surgical
face masks at work, but not at family time. We call a social
intervention (line 10) those interventions—such as school closing
or social distancing—that are imposed (or lifted) by the health
authorities at a certain time of the simulation. Finally, in the
propagation of the infection via the transportation model (line
11), some individuals move between their city and another,
depending on the city sizes and the geographical distance
between them. This allows us to model the medium and long
distance travel of people. The following sections describe each
one of these components in greater detail.

2.2. Social Model
This section describes how EpiGraph models individuals’
characteristics and their social interactions within the region
under study. The simulator considers independently every single
individual in the population. In this work we simulate the
metropolitan area of Madrid with 5,018,241 individuals. In
other experiments (not included in this work) we have been
able to carry out European-level simulation with up to 198
million inhabitants.

EpiGraph’s social model is an agent-based model that
captures individual attributes and specifies the way that the
individuals interact based on patterns extracted from social
networks (Facebook) and from companies (Enron Email
Corpus). Attributes include age, gender, and race, which are
instantiated based on real census data. We use demographic
information to reproduce social habits for four different group
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FIGURE 1 | Student activity cycle for weekdays (A) and Worker activity cycle for weekdays (B). The interaction patterns are specific for Spain. Night time is

considered to extend from midnight to 9:00 and is not included in the figure (but is considered in the simulation). The text in italic shows the effect of social restrictions.

types (also called collectives): students, workers, stay-at-home
people, and elders. The way the individuals establish social
contacts2 is time-dependent in order to realistically reflect the
temporal nature of the different classes of interactions that each

2We define a social contact (also called contact or interaction) between two

individuals a co-location in time (and space) at a distance that is small enough

to make transmission possible.

individual has throughout the day. For each one of the group
types we consider three different temporal distribution of the
individual’s activities, those related to weekdays, Saturdays, and
holidays (including Sundays).

Figure 1 shows the activity cycles for students and workers
during weekdays while Figure 2 shows the activity cycles for
stay-at-home and elderly collectives. An activity cycle determines
the contacts that are active at a certain time, i.e., the individual
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FIGURE 2 | Stay-at-home activity cycle for weekdays (A) and Elders’ cycle for weekdays (B). The interaction patterns are specific for Spain. Night time is considered

to extend from midnight to 9:00 and is not included in the figure (but is considered in the simulation). The text in italic shows the effect of social restrictions.

interactions with other individuals that may produce a disease
transmission. These patterns are specific to the place being
modeled; in Spain, for instance, breakfast is around 8:00,
lunch time around 14:00, and dinner time starts at 20:00. The
period ranging from 0:00 until 9:00 (not shown in the figures)
corresponds to family time (i.e., only family connections are
active). Note that family time includes all the activities carried
out at home (dinner time, family time and night sleep).

For the student group type (Figure 1A), school time is
considered to be from 9:00 to 15:003. We assume that school
time is followed by a short period of family time, after which
there is a leisure period in which the students are in contact

3This time interval is an average value obtained from public and private school

timetables, and takes into account that some students leave school before lunch

while others stay on during the afternoon.
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with other individuals different from those belonging to the
same school group. There are two social distancing policies
applied for students: school closure, and social distancing in
which school and leisure times are replaced by family time. In
EpiGraph, we distinguish between different levels of family-time
interactions, based on the family members that are at home at
each time of the day, as follows; at night-time each individual
is in contact with all family members; when schools are closed,
the family-time for this period takes into account only those
family members that are at home. For instance, if work places
are opened, family time will not include the working members.
On the other hand, when social distancing is not imposed, social
contacts with stay-at-home and elderly family members are not
taken into account during this time period because we assume
that these two group types are not at home at this time. For the
same reasons, during the family time slot from 15:00 to 16:00,
stay-at-home persons and elderly family members are included
in the interactions, while working members are not.

EpiGraph can model that a certain percentage of infected
individuals stay at home during part of the infectious period. We
call this the convalescing at home period, in which sick individuals
have symptoms that, although not being severe, force them to
remain in bed, canceling work, study and social activities. For
convalescing individuals, the only contacts are within the family.
That is, the infection can only be propagated within the family.
In this work we have considered that 20% of the population are
convalescing at home after being infected. The simulation also
considers individuals with severe symptoms that are hospitalized.
In this case, we assume that the patients are isolated in the
hospital and do not transmit the disease. The probability of being
hospitalized is age-dependent, as described in section 2.4.

The activity cycle for the remaining group types (workers,
stay-at-home people, and the elders) are shown in Figures 1B,
2A,B. Each worker has an associated work time slot followed
by a short period of leisure time. For stay-at-home individuals
and elderly, we define informal-meetup as the contacts that a
person belonging to these group types creates via typical weekday
activities. This includes shopping, retirement home meetings,
and social activities related to peer meetings belonging to the
same group. In addition, individuals also have leisure periods in
which they interact with other groups that may belong to the
same or to a different collective.

Supplementary Material includes the activity cycles for
Saturdays and Sundays/holidays. For students above 15 years
old, we model leisure time on Saturday-night between 20:00 and
0:00. Younger students have assigned family time during this
period. In our experiments, 35% of the total of workers work on
Saturdays, while the rest don’t. For those who do, leisure time
ranges from 20:00 to midnight and is shared with the family
group. For the stay-at-home and elders’ groups there are no
contacts within the informal-meetup groups during Saturdays
and holidays. We assume that informal-meetup contacts are only
related to weekday activities and not performed on weekends.

Figure 3 shows an example of a work group consisting of
11 individuals. All the interactions, -denoted as intra-group
contacts- and connected by solid lines are between individuals
belonging to the same group and occur during the daily activities

of this group. The number of interconnections of each individual
may be different, e.g., individual A has four connections while B
only has one within the same group (work group). This reflects
the nature of a real social graph used to generate the groups,
where different persons have different connection degrees (3).
If individuals A and B are infected, then the people susceptible
to being infected within the group will be the nodes displayed
in yellow. In this case, individual A has more chances of
propagating the disease within the group than individual B.
Section 2.4 describes how EpiGraph simulates the propagation
of the infectious pathogen throughout the network.

EpiGraph creates different graphs for each work group,
school group, stay-at-home (informal meetup) group, and elderly
(informal meetups) group. Supplementary Table 1 shows the
parameters used for modeling each of these groups. Rather
than assuming a distribution or generating synthetic interaction
graphs, we use real information from social networks to model
the social interaction patterns. Each group has a different size,
in betweenMinSize andMaxSize. We have used the Enron Email
Corpus (70,578 nodes and 312,620 edges) for generating the work
and informal-meetup groups while the Facebook (250,000 edges
and 3,239,137 edges) network was used to generate the school
groups. The adjustment to the desired target size is done using
a graph-scaling algorithm based on Random Walk (4). This
algorithm selects as many nodes as the group size (i.e., number
of individuals in the group) in a random fashion, creating a
sampled graph with similar structure to the original one but
with a smaller number of nodes. This procedure creates different
connection patterns for each group, while maintaining certain
graph-related properties such as the distribution of the number
of contacts per individual (3). The resulting contact network has
an average connectivity of <k> = 6.4. This value is obtained
according to Equation (1). Where, N is the total number of
simulated individuals, Ki,1, Ki,2, and Ki,3 represent the number
of connections of type 1 (work, school and informal meetups),
2 (leisure) and 3 (family) of each individual i, respectively. On
the other hand, Pi,1, Pi,2, and Pi,3 represent the duration in
hours of each of each connection during a day for individual
i. Figure 4 shows a graphic example of an adjacency matrix
A for two groups of 500 individuals each and the histogram
(in logarithmic scale) with the distribution of the number of
contacts. In this representation, a matrix entry Ai,j 6= 0 means
that individual i and j have a contact. Note that the family
and leisure contacts are not included, thus the figure only
shows the contacts within the group. We can observe that the
connection pattern is different for each group and that the
histogram follows an exponential distribution, which is the usual
connection distribution of social networks.

< k >=

∑N
i=1 Ki,1Pi,1 + Ki,2Pi,2 + Ki,3Pi,3

24
(1)

Existing work such as (5) analyzes the relationship between the
structure of the connection network and the propagation of
an epidemic, concluding that there exists a direct relationship
between the network structure and both the size of the epidemic
(as the number of infected individuals) and the timing of the
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FIGURE 3 | Graphical example of three different groups consisting of 30 individuals in total. The work group consists of 11 individuals that are connected by solid

lines that represent the intra-group connections. Yellow nodes are those directly connected with A and B individuals (highlighted in red color) within the same group

(work group). The figure also shows inter-group edges represented with dashed lines. These connections are between the work group and the informal meetup and

school groups. In this example, work and informal meetup groups are weakly connected whereas work and school groups are strongly connected.

FIGURE 4 | Adjacency matrix (on the left) that provides a graphical example of two connection patterns related to two work groups of 500 individuals. The leisure and

family connections are not included. The chart on the right shows the histogram (in logarithmic scale) of the number of individuals that have different number

of contacts.

propagation. These findings imply that the use of connection
networks based on actual social interactions (3) can contribute
to enhancing the simulation accuracy.

The social model includes two more types of social contacts
for leisure and family activities. Leisure contacts are modeled
by means of inter-group contacts. These contacts are between
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FIGURE 5 | Contact matrices for strong connections (A) and weak connections (B). The matrices show the percentage of individuals in the group with smallest

number of individuals, that are in contact with the other collective. Sat-worker represents the worker subset that work on Saturdays.

individuals belonging to different groups (for instance, work
and school groups) and occur mostly after the main daily
activity and before family time, as well as during the weekends.
These contacts represent interactions with friends as well as
casual contacts with unknown people. In dashed lines, Figure 3
shows the leisure contacts of the work group with a school and
an informal-meetup groups. Note that now, individual B has
more inter-group contacts than A. Leisure contacts provide
heterogeneity of connections between groups, given that a certain
individual can be connected with others belonging to different
collectives, for instance, young people with elders, workers with
unemployed, etc.

EpiGraph distinguishes two classes of inter-group
connections: strong and weak. Groups that are strongly
inter-related are tightly coupled, which means that there is a high
percentage of individuals that have inter-group connections.
This is the case of the work and school groups in the figure.
In contrast, weakly inter-related groups, like the work and
informal meetup groups in Figure 3, have a small percentage of
inter-group connections. This reflects the asymmetry of daily
interactions, where some groups (for instance, two different
classes sharing the same playground, or two different informal
meetup groups sharing the same leisure space) are strongly
coupled while in others, that more weakly-related, only few
people are involved in the inter-group interactions. The exact
percentage of inter-group contacts is given by the contact
matrices shown in Figure 5. These matrices show for each pair
of collectives, the percentage of individuals that are in contact,
either within a strong or a weak inter-relation. For instance, two
strongly inter-related work groups will have a large fraction of
the individuals with inter-group contacts4. Note that, in general,

4For groups with different sizes, the maximum number of available inter-group

connections is the size of the smaller group. For instance, two groups with 50

and 100 individuals that are strongly connected with 90% contacts, will have 45

inter-group connections between them.

only a small fraction of any group is either strongly or weakly
connected. In our experiments, each group is connected strongly
with 0.1% and weakly with 2.42% of the total number of existing
groups. The inter-related groups are randomly selected, as well
as the individuals with inter-group connections.

The third class of contacts are family contacts, interactions
with family members who may or may not be part of the
same group. The family connections graph is completely
connected. However, connections are time-dependent.
Supplementary Table 2 shows the distribution of the number
of family members, obtained from the INE1. Please note that
we include single-member family units, where the individual
lives alone.

2.3. Transportation Model
The transportation model reflects the movement of people
between cities for work, study, or vacation, and it is based on
the gravity model proposed by Viboud et al. (6). Note that the
movement of people within a city is already captured by the
social model. The transportation model serves the purpose of
moving individuals between different cities, allowing for disease
transmission over large areas. The geographical information that
EpiGraph takes into account includes latitude, longitude, and
distance between urban regions, and was extracted from the
GoogleMaps web service using the Google DistanceMatrix API5.

(di,j < 120Km) 1Pi,j =
P0.30i Pj0.64

d3.05i,j

(2)

(di,j ≥ 120Km) 1Pi,j =
P0.24i Pj0.14

d0.29i,j

(3)

5Google Maps API. Available online at: https://developers.google.com/maps

(2021).
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FIGURE 6 | Compartmental model used by EpiGraph. It consists of the following states: susceptible (S), primary exposed (EP ), secondary exposed (ES),

asymptomatic (A), primary infectee (IP ), secondary infectee with antiviral treatment (ISV ), hospitalized (H), recovered (R) and dead (D). Each state shows the basic

reproduction number of the state (non-existing R0s means that are not applicable). The edges show the transition probabilities (which are normalized) between the

compartments. Duration of the main infection stages consists of an incubation that includes EP and ES; infectious includes IP, IS, and ISV (which is not considered in

our experiments); hospitalized is represented as H; and asymptomatic is A. Note that the asymptomatic stage starts after the primary exposed stage (EP ), which in

this approximation lasts only 1 day.

This model considers the exchange of individuals between cities,
for each pair of cities i and j. This number (1Pi, j) depends on the
population size in both locations (Pi and Pj) as well as the distance
between them (di,j). Equation (2) refers to travel distances of less
than 120 Km—which reflects the daily commute of students and
workers to neighboring cities. Equation (3) refers to the long-
distance commute of workers that need to reside at a different
location for several days in a row. Additionally, we consider
people from any group type that move at any distance for
several days for vacation purposes. Once the volume of inter-city
commuters is calculated, we randomly select individuals from
specific group types within the populations and move them for
a specific period of time to other locations. In our experiments,
for the short distance commuters, 85% are workers and 15%
are students; for the long-distance commuters the percentages
are 50% workers, 30% students, 15% retired individuals, and 5%
unemployed people.

2.4. COVID-19 Model
The epidemic model implemented in EpiGraph is a
compartmental stochastic SEIR model extended to include

compartments for incubation, asymptomatic, and dead, as
well as an additional hospitalized state. However, instead
of being an analytic model based on differential equations,
Epigraph follows an approach based on probabilities using
randomness to determine the duration and transitions between
the compartments. In addition, the basic reproduction numbers
R0s are different for each compartment. Figure 6 shows
the infection phases, which are described below; Table 1

shows the R0 values for each compartment, as well as
the transition probabilities for the compartments that can
transit to different states (like EP). The different infection
stages are:

• Incubation stage. At the beginning of this stage individuals
are infected but symptoms are not present and they are not yet
able to transmit the virus. This stage is represented as primary
exposed EP. From this stage the infection can enter one of
two phases, based on a probability PEI : a secondary exposed
stage ES where slight symptoms appear and the individual
becomes infectious with a certain RES0 , or an asymptomatic
stage (described below). We assume that RES0 is the same as
the asymptomatic RA0 .
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TABLE 1 | R0 Values and transition probabilities for each compartment state.

Compartment

state

R0 values References Probability

EP REP0 0 PA 25%

ES RES
O

1.42 N/A

A RA
O

1.42 (7) N/A

IP RIP
O

4.5 (8) PIS 100%

IS RIS
O

3.38 (9, 10) PH Table 2

ISV RISV0 N/A N/A

H RH0 0.34 PD Table 2

In this work we have not considered the use of antivirals, thus ISV state is not reached

and the associated RISV0 value is not applicable. ES and A states do not have a related

transition probability because there is only a destination state.

• In the asymptomatic stage (compartment A), infected
individuals do not notice symptoms but are able to transmit
the disease with a certain RA0 reproduction number. After a
certain time, they pass to the recovered compartment in which
the subject acquires viral immunity.

• In the first symptomatic stage—called primary infection state
IP—symptoms appear and a certain fraction of the individuals
(given by a probability PV ) seek medical attention. This may
imply initiating antiviral therapy (ISV state) —which is not
considered in this work. In our experiments, all infected
individuals will transition from IP to IS. In addition, IP, IS,
and IV have associated basic reproduction numbers of RIP0 ,
RIS0 , and RIV0 .

• A certain fraction of the individuals are hospitalized
(hospitalized stage). The probability of entering this stage
is given by the parameter PH(age), which is age-dependent.
Table 2 shows the values for PH(age), obtained from (11).
Note that this probability increases with age. From this state,
an individual may transition to either the recovered or the
dead stage. During hospitalization, we use RH0 for modeling
the transmission in hospitals. In this work we assume that
due to the controlled conditions of hospitalized individuals,
the transmission risk is reduced to 10% compared to a non-
hospitalized person, and we use RH0 = 0.34 as a result. For the
purpose of this work, we assume that a recovered individual
acquires indefinite immunity to the virus.

• The individuals that reach the dead stage are removed from
the simulation. The transition probability, denoted as PD(age),
is also age-dependent.Table 2 shows these probabilities, which
have been obtained from (11). Note that this probability is
applied over the portion of hospitalized individuals.

The time spent in a given state is generated following a normal
distribution to simulate the time ranges specific to each stage of
the infection and the fact that each individual may go through
phases of different lengths. Figure 6 shows an overview of the
different infection stages. We also consider that a percentage of
the sick individuals stay in bed, thus reducing the number of
people that they interact with.

While the EpiGraph model implements all the necessary
phases and variables, it needs to be fine-tuned for COVID-19.

We adopt most of the concrete values for the model parameters
from the existing literature. More specifically, (12) reports
on an incubation period of 5 in mean. We considered that
of these, 3 days correspond to the primary and 2 days to
the secondary incubation phases (13). The difference between
these phases is that in the primary phase there is no risk of
transmitting the disease. We used a normal distribution to
associate a different stage duration to each infected individual.
We took the standard deviation for the incubation period to be
1.5 days, and we distribute it proportionally between stages. We
assume that the related RESO is the same as the asymptomatic RAO
(described below).

We adopt an average infectious period of 5.90 days; a similar
value to that reported in (14). This period is divided into two
phases: the primary infection period that we assume to last for
only 1 day, while the secondary infection lasts the remaining
4.9 days (14). We adopt a standard deviation for the infectious
period of 2 days, which was proportionally distributed between
the first and second periods. We found studies that pointed to
higher virulence at infection onset, which we understood as the
primary infectious stage. We therefore take the higher number in
the literature (4.5) as the RIPO at the onset of the infection (8), i.e.,
for the primary infectious stage. For the rest of the period, i.e., the
secondary infection period, R0 is taken to be 3.38 (9, 10).

Based on a study of the Diamond Princess cruise ship (15), 322
of 621 people on board tested positive but showed no symptoms.
Given the controlled environment and fact that it was easy to test
the passengers in their entirety, we believe that the percentage
of people that go from incubation to asymptomatic is actually
quite large. For lack of other data, we set it to roughly half the
percentage on this cruise ship. This is also coherent with the
ECDC reported values (16). Consequently, we assume that 25%
of the infected individuals become asymptomatic. We used an
asymptomatic phase duration of 5 days (13). According to (7),
asymptomatic individuals were 42% less likely to transmit the
virus than symptomatic people. Consequently, we take this basic
reproductive number RAO to be 42% of RISO .

In (17, 18), it is mentioned that the median number of
days from first symptoms to death was 13. Given that the
average duration of the ES, IP, and IS stages is 8 days6 and
an individual only dies after a hospitalization period, we adopt
the mean time of being in hospital of 5 days. The simulator
evaluates the risk of being hospitalized and dying based on the
age of each individual. The age distribution among the existing
group types was extracted from the INE (the Spanish National
Statistical Institute).

2.5. COVID-19 Mitigation Strategies
Given that the simulator considers every single individual
and their connections, it is possible to model in detail the
different social distancing and mitigation policies imposed by the
authorities.We developed a new component called themitigation
model that links these policies with the social and the mobility
models. The policies that we are considering are:

6Note that here we are not considering the EP stage because we assume that

individuals in this stage have not developed symptoms.
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TABLE 2 | Values of PH and PD based on age.

Age interval

< 10 10–19 20–29 30–39 40–49 50–59 60–69 70-79 ≥ 80

PH (%) 0.4 0.4 3.4 9.0 19.6 31.4 40.8 49.8 45.2

PD (%) 0.0 0.4 0.8 0.8 1.2 2.0 4.7 12.2 30.0

PH is the probability an infected person has of becoming hospitalized and PD is the probability a hospitalized person (a fraction of the total infected) of dying.

• Social distancing. EpiGraph distinguishes four classes of
contacts between individuals: at school, at work, with family,
and during leisure time. We leverage this distinction to
evaluate social distancing policies that can apply differently
to the contact types, for instance the closure of the schools
and work places. We have considered both essential and non-
essential workers—which represent 35 and 65% of company
employees—as well as the interruption of leisure activities.

• Mobility restrictions. The transportation model of EpiGraph
includes long and short-distance movements of individuals
between cities. In this work, we have introduced policies that
restrict each one of them independently.

• Face-masks. We have introduced the use of surgical and ffp2-
grade face-masks, which we evaluate when used by the general
population or by targeted groups, such as the elderly.

2.6. Setting Up the Simulator Configuration
For the experiments presented in this work, we focus on
results for the metropolitan area of Madrid, which includes the
city of Madrid and the following surrounding satellite cities:
Alcalá de Henares, Alcobendas, Alcorcón, Fuenlabrada, Getafe,
Leganés, Móstoles and Parla—for a total of 5,018,241 inhabitants
according to the census data1. The baseline scenario we modeled
reproduces the social distancing measures that were applied in
the Madrid metropolitan area in Spring of 2020. The simulation
starts on March 3rd with a certain percentage of infected
individuals, rather than with a patient zero. In our experiments,
0.6% of the population of each city was initially infected at this
time. The lockdown occurred on simulation day 13 (equivalent
to March 16th), when partial enforcement policies were applied,
which include school closure, working from home for 65%
percent of the businesses, social distancing (where all leisure
connections are disabled), and travel restrictions—all reflecting
the real-life policies that were enforced in Spain on that very
date. On week before lockdown (March 9th) we introduced
partial social distancing with a reduction in the number and
duration of leisure contacts. This reflects the existing change
in the behavior of the population just before lockdown. On
simulation day 27 (which corresponds to the 30th of March),
100% of the companies closed or instated 100%work-from-home
policies. At this point only the family connections are active.
Finally, on day 41 (13rd of April), 35% of the companies reopen,
activating the corresponding work connections. In this baseline
scenario the rest of the population remains confined indefinitely
in order to avoid creating a second wave of infection.

EpiGraph has to be initially calibrated to reproduce precisely
the COVID19 spread. For each contact between a pair of infected

and susceptible individuals, the transmission probability depends
on the infected individual’s R0 value in the current infection
phase and the duration of the contact. We have used a scale
factor that increases or decreases this probability in order to
produce realistic infection spreads. In total, three configuration
parameters need to be specified: the scale factor, the initial
number of infected individuals and the simulation starting time.
In this work, the calibration was performed using the first wave
in Spain. The goal was to replicate the shapes of the curves using
the distributions of the number of daily infections and deaths (see
details below), as well as to achieve the same prevalence value as
the one in Spain after this first wave. After the calibration process
the best fitting values were 7.14 for the scale factor, 0.6% for the
initial percentage of infected population and March 3rd for the
simulation start time. Note that these parameters are constant
and will be used in all the experiments shown in this paper.

In the simulation outcome, and average percentage of 12.2%
of the population becomes infected in the period until the
simulation ends (on June 26th), a percentage similar to the one
obtained from the prevalence study carried out in Spain (19),
which predicts a prevalence of 11.7% for the metropolitan area of
Madrid at this time, and a 5% as the average value for the country.

Figure 7 (left) shows both the real (in red) and simulated (in
blue) distributions of infected cases. The simulated values are
the average of five independent simulation and have been scaled
to the current population of the community (6.6 million, which
includes the inhabitants of other smaller urban and rural areas).
The daily reported cases of infections were obtained from7. Our
aim is to compare the temporal distribution of infections for the
reported and simulated cases. Note that the reported cases do
not precisely reflect the actual number of infected individuals
at a certain time, given that an important fraction of the cases
are unaccounted for, including most of the asymptomatic cases
and the unreported infections. In order to compare the two
curves, in Figure 7 (left) we scaled each one according to their
prevalence percentages (11.7 and 12.2% for the real and simulated
distributions, respectively) on June 26th (which corresponds to
the end of the simulated scenario). The area under the red curve
corresponds to the 11.7% of Madrid’s population, while the area
under the blue curve represents 12.2% of the population8. We
can observe that the curves have a similar shape, with a rapid

7Red Nacional de Vigilancia de la Salud Publica. Available online at: https://

cnecovid.isciii.es/covid19/ (2021).
8In the figures, we have represented the values using the same time step (for the x-

axis values) used by the simulator (10 min). This makes the graphics more detailed

and smooth.
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FIGURE 7 | Baseline scenario. simulated and real data of the COVID-19 spread in Madrid metropolitan area for Spring 2020. Simulation starts on March 3rd. The

figure on the left shows the number of infected per time step (10 min). The figure on the right shows the accumulated number of deaths.

initial increase in the number of cases and a long decreasing
infection tail.

The last validation was carried out using the number of
officially reported deaths. Figure 7 (right) shows with a red line
the accumulated official number of deaths7. Note that, due to
the uncertainly of the data, it is impossible to know if all the
COVID19 deaths have been reported. For this reason, this curve
represents a lower bound of the deaths. The blue line represents
the simulated values that are the average of five independent
simulations. According to (17, 18), the average time between
the first symptoms and death is 13 days, which is the same that
the simulations takes to go through the incubation, infectious,
and hospitalized stages (see Figure 6). Empirically, the time
difference between the simulated and the real deaths is 7 days (in
the figure the simulated values have been already shifted by this
value). This discrepancy is likely related to delays in the reporting
of the deaths.

Figure 8 shows the age distribution of the simulated
population as well as the distribution of infection and death
cases. We can observe that the elderly suffer a higher death toll,
as expected.

3. RESULTS

In this section, we present results for different scenarios,
including different lockdown alternatives, the impact of the
use of face masks, social distancing measures, and the use of
testing for the quarantine of early-detected infected individuals.
All experiments start on the 7th of March with 0.01% of the
population being infected; we apply the calibration described in
section 2.6. The simulation captures as infected individuals not
only the reported cases, but also those individuals that are not
reported, as well as the asymptomatic cases.

On 18th of May, Madrid entered Phase 0.5 and most
of the lockdown restriction were lifted. The first alternative

scenario represents the worst-case scenario, in which at this time
(simulationweek 11) all the restrictions are lifted, including social
distancing measures and travel restrictions, and schools open. No
masks were used at this time.

The idea of this scenario is to evaluate the maximum virus
spread. Figure 11A shows that under these conditions, 95.7% of
the population becomes eventually infected, and the death toll
rises to 70,000. In this scenario, the effect of school closure on
the disease propagation is minimal; we have simulated the same
scenario keeping schools closed, while the rest of the restrictions
are lifted, and 93.5% of the population becomes infected.

3.1. Evaluating Face Mask Effectiveness
In this section, we evaluate the mitigation capabilities of different
types of face masks, while considering different percentages of
the population that use each type. The effectiveness of masks
and face covers remains uncertain and depends on diverse and
complex aspects including, among others, the ability to reduce
the outward particle emission rates for the different transmission
modes (droplet spray or aerosol) (20), the way this effectiveness
is degraded after using or washing the mask, and the lack of
experience in using them correctly, all of them resulting in
increasing the risk of infection. EpiGraph models face mask
effectiveness as a scale factor over the probability of transmitting
the infection. For example, an effectiveness of 90% means that
the probability of contagion using masks is reduced to 10% with
respect to the case of not using them. Note that the way we
define mask effectiveness is different from that of existing studies:
instead of representing the capability of the mask to prevent the
infection, we consider its effectiveness as a whole, which includes
not only the protection provided by the mask by itself but also
the change that taking this measure triggers in the individual
habits; for instance, keeping a safe security distance with other
people or the use of hygienization measures, e.g., hand washing
or using hydro-alcoholic gels after contact with others. With this
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FIGURE 8 | Baseline scenario. From top to down: age distribution of the population, age distribution of the number of deaths, percentage of deaths for each age

interval, percentage of infected for each age interval.

definition, we believe that the actual effectiveness provided by a
mask may be larger than the actual reported one.

For the sake of simplicity, and in order to focus on the
effect of face masks, all the scenarios in this section use
the worst-case baseline shown in Figure 11, in which all the
work and leisure restrictions are lifted on the 18th of May.
Note that this scenario is similar to the existing condition
in Spain at this time. At this time we assume that a certain
percentage of the population starts using masks during outdoor
activities but not during family time (which is to be expected),
thus the transmission risk between cohabiting individuals (i.e.,
family contacts) is not avoided. EpiGraph considers distinct
effectiveness with regard to preventing an infected individual
from transmitting the disease or a susceptible individual from
becoming infected. In this first part of the experiments we
assume that both effectiveness are the same, thus the mask
protects both infected and susceptible individuals. Figure 9

shows the final number of infected individuals for different usage
percentages (x-axis) and mask effectiveness. We can observe that
both parameters are strongly related with the infection spread.
EpiGraph performs the simulations using a stochastic approach

in which the results of different executions may differ. This
may create small fluctuations in the results. We think that these
fluctuations are the reason of having non-monotonic decreasing
values when the percentage of mask use is larger than 70% and
the mask effectiveness are larger than 95%.

The second study that we have performed, shown in
Figure 10, consists of three scenarios that distinguish the mask
protection between infected and susceptible individuals and
considers different mask effectiveness. In the first one, denoted
that the mask protects both of them, is similar to the previous
ones where the masks have the same effectiveness for both
infected and susceptible individuals. In the second one (where
the mask protects the susceptible individuals) we consider that
the masks are only effective for susceptible individuals. In
this case, a mask does not reduce the transmission risk from
the infected individual but protects a susceptible from being
infected. In the third scenario (where the mask protects the
infected individuals) the opposite is true: the mask prevents the
transmission from infected individuals but it does not protect
the susceptible. Note that these hypotheses, although unrealistic,
are included as limits to represent the most extreme scenarios
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FIGURE 9 | Percentage of infected individuals for different percentages of people using masks and different mask effectiveness. The simulated scenario considers

that all work and leisure restrictions are lifted on the 18th of May (while schools remain closed).

where the protection is completely biased to only infected or
only susceptible individuals. A real mask would produce an
intermediate protection between these limits. In the figure, we
can observe that these scenarios produce a significant decrease in
the final number of infected individuals.

3.2. Policies Targeting the Elderly
The mobility strategies we consider relate to different work and
free movement restrictions for people above 65 years of age,
school closing, and travel restrictions. We refer to people above
65 as the elderly. Given that this group has the highest mortality
levels, in this section we evaluate the effectiveness of specific
targeted lockdown policies. In order to simplify the analysis, the
use of face masks is not initially considered in this section.

Scenario 2 is an ideal (and rather unrealistic) case in which
the elderly keep social distancing indefinitely since March 16th.
This is defined as disabling contacts of all types, including with
their families. Starting from the baseline scenario, work and
free movement restrictions are lifted for people under 60 on
18th of May. Schools remain closed and travel restrictions are

maintained. Figure 11B shows the simulation results. Note that
the number of infected individuals is slightly reduced when
compared to the first scenario (now is 76%) but the total number
of deaths is reduced to nearly one third (23,800 deaths). The
reason is that the most vulnerable population group is prevented
from getting infected, thus reducing the number of hospitalized
and death cases.

Scenario 3 reflects a less restricted case, in which the elderly
keep social distancing until simulation week 20 (17th of July).
At this time they are allowed to return to normal life using
mask with a protection of 99.8%. The aim of this scenario is to
isolate the effect of the confinement of the elderly, while the rest
of the population does not take any special measures to avoid
transmission. Results show the same percentage of infections
and 23,900 that the number of infections does not increase
significantly due to herd immunity being already reached at the
time the confinement of the elderly ends. Note that in these
experiments we assume that a recovered individual acquires
indefinite immunity to the virus and that the virus does not
mutate during the simulation time.
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FIGURE 10 | Percentage of infected individuals for different percentages of the population using masks. We consider three different mask protection levels: protecting

the infected, the susceptible, or both of them. All work and leisure restrictions are lifted on the 18th of May (schools remain closed).

Scenario 4 is a variation of Scenario 3 in which the elderly
keep social distancing until the 18th of May (instead of the 17th
of July). From this date on, they use masks with a protection
of 99.8% at all times except during family connections. In this
scenario, the number of infections increases to 88.7% and the
deaths to 57,000. Note that, despite of mask use by the elderly,
now they are not isolated during the second infection peak an
thus suffer a significant number of deaths.

In order to represent a more realistic scenario we have
modeled Scenario 5 (shown in Figure 12A) in which 70% of the
population (picked at random) uses masks with an effectiveness
of 99.5%. In this scenario a second infection wave occurs and, at
the end of the simulation (week 38 corresponding to November
24th), 19.0% of the population is infected and results in 15,000
deaths. Note that the infection percentage is similar to the
prevalence study for Madrid (21), which rounds 18.6% of Madrid
population and that was carried out between the 16th and the
29th of November. The aim of this scenario is not to precisely
reproduce the second infection wave in Madrid, but rather to
evaluate different policies under a similar percentage of infections
as the real one.

Scenario 6 (shown in Figure 12B) corresponds to a variation
of Scenario 5 where people over 60 restrict themselves from all
contacts but the familiar ones (where no masks are used). In this

case the percentage of infections is reduced to 16.0% and the
number of deaths is reduced in a greater proportion, all the way
down to 11,600.

The last scenario (Scenario 7) has the same social distancing

restrictions for the elderly as Scenario 6. In addition, workers

over a certain age threshold are isolated from all contacts but
the familiar ones. When this threshold was set to 60 years, the
percentage of infections and number of deaths is similar to
Scenario 6 (15.7% and 11,400), but when this threshold is reduced
to 50 years, these values are reduced to 12.9% and 10,900.

4. DISCUSSION

This work presents the first results of the simulations using
EpiGraph, for the Madrid metropolitan area and the first
COVID-19 wave of Spring 2020. After creating an accurate social
model of Madrid and reproducing the same mitigation measures
as those taken by the authorities we first validated the simulator
by comparing the predictions with the real values. Here we faced
the problem related to the uncertainly of the real data, which is
based on reported cases. Given that the reported cases are only a
fraction of the real ones and that it is impossible to determine
precisely how big this fraction is, we first compared the final
number of infected individuals with the seroprevalence study
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FIGURE 11 | Scenarios 1 and 2. In both of them simulation starts on March 3rd and the same restrictions than the baseline scenario are applied until 18th of May.

Since then all restrictions are lifted until the end of the simulation. No masks are used. (A) Scenario 1: all the restrictions are lifted for all the population. (B) Scenario 2:

people over 60 are kept isolated since March 16th until the end of the simulation.

provided in (22). These values were similar enough, at 15 vs. 12%.
The second validation was comparing the number of reported
and simulated deaths (shown in Figure 8). Again, here there is
also an uncertainly because the reported death cases related to
COVID-19 that are provided by the health authorities smaller
that the total number of deaths reported by the civil registry.
Here, the simulated values are higher than the reported cases.

Once the validation was completed, we used the simulator
to evaluate different scenarios after the real lockdown situation
of the region and related to social distancing of the elderly and
the impact of masks use. The information provided by these
simulations represent a two-fold contribution. On the one hand,
they were used to assess different social distancing policies; on the
other hand, they evaluate different protection levels of mask use

among different percentages of the population. In total, both of
them provide examples of the simulator features.

EpiGraph is a thoroughly validated simulator that models in
detail most of the important factors in the propagation of an
epidemic. It does nevertheless have certain limitations, some that
have to do with the modeling of a new virus which is not 100%
understood. The first limitation is that in the current version of
EpiGraph, a recovered individual acquires indefinite immunity
to the virus, which makes it impossible to be re-infected for the
duration of the simulation. If the simulated time is long, this
assumption may no longer hold. We are currently working on
implementing this feature in the simulator.

Another limitation is that the current transportation model
is a gravity model based only on the distance between the cities
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FIGURE 12 | Scenarios 5 and 6. In both of them simulation starts on March 3rd and the same restrictions than the baseline scenario are applied until 18th of May.

Since then, all restrictions are lifted until the end of the simulation. Since 18th of May 70% of the population (piked at random) start using masks with an effectiveness

of 99.5%. (A) Scenario 5: all the restrictions are lifted for all the population. (B) Scenario 6: people over 60 avoid any social contacts but keep the familiar ones.

and the population size. Having real knowledge about mobility
patterns, for instance about those individuals using public
transportation means, would provide a much more realistic
approximation than the gravitymodel. It is also worth tomention
that in the context of this work (with a prolonged lockdown) the
influence of the transportation is reduced.

We currently assume 25% percent of the infected people
to be asymptomatic. Research such as (23) assumes that the
transmission rate of the virus is constant during the exponentially
growing phase, and they use a time-dependent exponentially
decreasing transmission rate to model the change in R0 after
the early exponentially increasing phase. Theirs is an attempt
to examine the number of asymptomatic infectious cases and

unreported infectious cases; this type of approximation may be
useful to perform a more precise calibration of the simulator. A
last limitation is that EpiGraph uses contact matrices based on
group types. We are currently working on a more detailed model
based on contact matrices for age ranges, which will increase the
accuracy of the social model.

Finally, it is necessary to refine the social model in order
to include different collectives, among others, health and
social-health workers and elderly people at nursing homes.
This would produce more realistic forecasts. In this work,
health care facilities are modeled as informal meetup groups for
the elderly, which allow social gatherings. Besides that, leisure
contacts also provide heterogeneity by allowing contacts with
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different collectives in which individuals may belong to different
age groups.

5. RELATED WORK

There are a vast number of publications on Covid since the
beginning of the pandemic, a lot of them treating the same
problem as we do—simulating the propagation of the virus under
different scenarios of intervention on part of the governments.
Friedman et al. (24) identifies 383 published or publicly released
COVID-19 forecasting models.

DELPHI (Differential Equations Leads to Predictions of
Hospitalizations and Infections) (25) is a compartmental model
that is based on the widely successful SEIR model, with
additional features such as modeling under-detected cases and
governmental response measures. To model the response, the
authors multiply an initial infection rate with an arc tan
curve, along with an exponential jump correction to model the
resurgence in cases in many places. They model the potential
impact of various policies on future infections by estimating
the average effect of each measure as implemented across states,
via training.

Youyang Gu‘s COVID-19 model (26) applies machine
learning to derive the basic reproduction number (R0) from
data published by Johns Hopkins University’s Center for
Systems Science and Engineering (CSSE), and hooks this to
a compartmental model. Their infection estimates include all
infected individuals of the SARS-CoV-2 virus, not just those that
took a COVID-19 test and tested positive.

The COFFEE model from Los Alamos National
Laboratory (27) produces “forecasts, not projections; meaning
it does not explicitly model the effects of interventions or other
‘what-if ’ scenarios. We distinguish forecasts as attempts to
predict what will happen vs. projections as attempts to describe
what would happen given certain hypotheses.” COFFEE is
probabilistic and it is fit to geographic regions independently,
facilitating parallelization for fast computations. The method
fits weighted regressions to the training data and compute Joint
Probability Distributions over tuning parameters.

Imperial College London has several planning tools in place.
Of these, Flaxman et al. (28) describes an extension of a
semi-mechanistic Bayesian hierarchical model that infers the
impact of interventions and estimates the number of infections
over time. This approach works under the assumption that
changes in the reproductive number are an immediate response
to interventions rather than broader gradual changes in behavior,
and are calculated backward from temporal data. The authors
use the discrete renewal equation as a incubation process for the
modeling of infections and propose a generative mechanism to
connect infections to death data. They use this joint Bayesian
hierarchical model to produce short-term predictions, and they
apply their model to 11 different countries.

In (29), the authors use a deterministic SEIR framework
to model the propagation of the virus and the effect of non-
pharmaceutical interventions (social distancing mandates and
mask use) until the Spring of 2021. The model also uses

projections of pneumonia seasonality, mobility, testing rates, and
mask use per capita to predict infections, deaths, and hospital
demand. In terms of social distancing, they include the following
measures: (1) severe travel restrictions, (2) closing of public
educational facilities, (3) closure of non-essential businesses,
(4) stay-at-home orders, and (5) restrictions on gathering size.
Based on data from Facebook, Google, SafeGraph, and Descartes
Labs, the authors use a Bayesian, hierarchical meta-regression
model with random effects by location to approximate the
expected change in mobility. Based on data from February
to September, they fit relationships between changes in the
rates at which infectious individuals may come into contact
and infect susceptible individuals and mobility, testing, masks,
pneumonia seasonality and others. Some of the limitations
of this approach are the exclusion of movement between
locations, the absence of age structure andmixing within location
(assumption of a well-mixed population), and the inability to
model super-spreader-like events.

In (30), the authors focus on a better description of sojourn
time, the duration before clinical symptoms become apparent
but during which it is detectable by a screening test. Its clinical
relevance is that it represents the duration of the temporal
window of opportunity for early detection. The authors conduct
a simple sensitivity analysis to determine the most important
parameters in the model, which turn out to be the fraction
of cases that are asymptomatic. Contrary to simple SLIR (or
SEIR) models, this model allows to consider infection by
asymptomatic individuals. Their predictions are over the short
term, about 1 month. Other works, such as (23), also hone on
identifying the unreported asymptomatic infectious cases (in
mainland China). Their objective is to identify numbers for these
individuals from specific time data of reported symptomatic
infectious cases.

Also from the Centre for the Mathematical Modeling of
Infectious Diseases COVID-19 working group, paper (31) tackles
the problem of contact matrices. This work updates synthetic
contact matrices that were published for Europe in 2017, with
themost recent data and extends this analysis to 177 geographical
locations. These matrices were constructed based on information
that is more widely available than diary-based contact surveys
and considers setting-specific survey data on household, school,
classroom, and workplace composition combined with empirical
data on contact patterns in Europe.

Authors in (32) discuss the “fundamental social causes”
of disease, a factor that was up until now largely neglected
when analyzing and predicting the effectiveness of prevention
and mitigation measures. They argue that “inequitable social
conditions lead to bothmore infections and worse outcomes” and
expand the definition of “most at risk” to prioritize populations
with social conditions and thus obtain more effective control of
the epidemic.

The European Centre for Disease Prevention and Control
(ECDC) (16) has built a Monte-Carlo based model of COVID
that they use for forecasting. To model the behavior of the people
and how well they are responding to the measures, they compare
the predictions with Google data about mobile phone use. The
most recent data on daily confirmed COVID-19 cases and daily
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deaths are inserted into the model to calibrate it. It currently
works well for some countries but not for others.

There exist other COVID simulators based on the SEIR
model (33), but they compute the number of infected, recovered,
and dead individuals based on a mathematical model—solving
the differential equations with a forward Euler scheme—on
the basis of the number of contacts, probability of disease
transmission, incubation period, recovery rate, and fatality
rate. More complex versions of the SEIR model include, for
instance, a quarantine class and a class of isolated (hospitalized)
members (34). In (35), the authors use spatial diffusion of the
virus, an alternative to contact networks. De la Sen et al. (36)
propose an SEIADRmodel, where A are asymptomatic infectious
and D are dead-infective. In other models, recovered can become
susceptible again [e.g., (37)], and, in addition, there are stochastic
models (38), although the calibration becomes extremely difficult
with incomplete data.

In (39), the authors hypothesize—and discover evidence
for—the order of symptom occurrence in COVID-19 vs. other
respiratory diseases, to help patients and medical professionals
more quickly distinguish between them. Although orthogonal,
these findings may be used to improve testing and filter cases
to more precisely record actual infections by Covid—in those
cases where testing is not an option. This would give us more
precise data to test on, which may help to calibrate our tool
more precisely.

In general, simulation approaches based on agents are able
to model the spread of infections more realistically and in
detail, although they tend to suffer from scalability problems.
We discuss a few of these approaches below. OpenABM-
Covid19 (40) explores different ways in which contact tracing,
in particular digital contact tracing via mobile phone apps
can contribute to epidemic control, while emphasizing larger
population simulations and computational efficiency. CPU time
is spent mostly on rebuilding the daily interaction networks
and updating the individual’s interaction diaries. Individuals
move daily between networks representing households and either
workplaces, schools, or regular social environments for older
people. The occupation networks are modeled as small-world
networks. Individuals also interact through random networks
representing public transport, transient social gatherings etc.
Network parameters are chosen such that the average number
of interactions match age-stratified data from reports. The
current version of the model does not currently include events
in hospitals, care-home settings, non-hospital deaths, gender,
or co-morbidities. Different from us, the authors create daily
contact networks based on actual mobile phone data. Occupation
networks, on the other hand, are assumed to be of the small-
world type and they are created as such rather than from
interconnection patterns.

Covasim (41) includes demographic information about age
structure and population size; realistic transmission networks in
different social layers, including households, schools, workplaces,
and communities; age-specific disease outcomes; and intra-host
viral dynamics, including viral-load-based transmissibility. In
terms of the contact network they use, Covasim is capable of
generating three alternative types: random networks, SynthPops

networks, and hybrid networks; in addition users have the option
of defining their own networks. The SynthPops algorithm first
chooses a reference individual for the specific layer, e.g., a school,
to infer the school type, and then uses age the mixing contact
matrix in the school setting to infer the likely ages of the other
students in the school. Students are drawn from an ordered list
of households. To deal with scalability issues, once a certain
threshold in population number is reached, the non-susceptible
agents in the model are downsampled and a corresponding
scaling factor is introduced. Calibration to existing time-series
data is performed externally to Covasim. One difference from
our work is that the contacts are not based on existing patterns;
scalability issues are partly sidestepped by dynamic scaling. On
the other hand, their approach models critical patients, hospital
capacity and ICU beds.

In (42), the authors integrate anonymized, geolocalized
mobility data with census and demographic data to build a
detailed agent-based model of Covid-19 transmission in the
Boston metropolitan area. Their approach defines a weighted
network with layers for the network of social interactions at
(1) workplace and community level, (2) households, and (3)
schools. Connections between two agents in the workplace
and community layer are estimated from the data by the
probability of both being present in a specific place weighted
by the time they have spent in the same place. They do
not include specific co-morbidities or pre-existing conditions
of the specific population. Different from us, the authors
construct the interaction network based on co-location at
the same time, starting from mobility data. Interactions are
considered well-mixed in school environments, while in our
simulator every individual has its own characteristics and
interaction patterns.

The work in (43) calibrates the simulator based on daily ICU
admissions, ICU-bed occupancy, daily mortality and cumulative
mortality. They approximate the value for the R0 from the
observed average number of new individuals infected by each
single infected individual from the beginning of the epidemic
until about 30 days after. The numbers of infected and infecting
people were estimated using the model. We, on the other hand,
use the R0s from the literature for each of the infection phases.
One of their conclusions is that, in the absence of a vaccine,
emphasis should be placed on policies that protect the most-
vulnerable population while herd immunity is hoped to be
achieved in the less vulnerable people. The social contact network
among the individuals in the population is based on the geo-
localized activity sequence over the day, taking into account
co-location probability and duration, another difference with
our work.

Koo et al. (44) uses FluTE, an agent-based influenza epidemic
simulation model, which accounts for demography, host
movement, and social contact rates in workplaces, schools, and
homes. Individuals are allocated to workplaces or educational
facilities on the basis of local transportation data and home
addresses according to 2010 census data in Singapore. They
conclude that spread control is feasible provided that R0
is low (≤1.5), with a combination of quarantine, school
closure, and workplace distancing, assuming a low percentage
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of asymptomatic of 7.5% The preventive effect of these
interventions reduces considerably when higher asymptomatic
proportions are assumed (all under 50%), when quarantining
and treatment of infected individuals becomes more important
and also unfeasible when the number of infected individuals
exceeds the capacity of health-care facilities. This work relies
on detailed data in Singapore, which is feasible given the size
and infrastructure of the country. The study focuses on the
types of measures that enable controlling the infection spread,
although the values they use for some of the parameters seem
unrealistically small.

Lau et al. use in (45) a dataset that contains demographic
information of 9,559 symptomatic cases in Georgia, US,
including age, sex, and race, and symptom onset times. It also
contains geo-location information of the residences of all these
recorded cases. Aggregate mobility data are used to characterize
the average change of movement distance before and after the
implementation of social distancing measures. Their framework
infers the transmission paths among all cases and therefore
generates the offspring distribution of each case; it also allows
the computation of population-level epidemiological parameters
such as R0 and quantify the degree of super-spreading over
space and time. This is a very different type of work from
ours, as it relies on concrete and detailed data from about
10K cases, based on which the authors can tackle the issue
of superspreaders.

The work presented in (46) uses an ABM model specifically
calibrated to reproduce the reproductive number, the length of
incubation and generation periods, age-dependent fractions of
the symptomatic cases and the probability of transmission from
asymptomatic/pre-symptomatic agents in Australia. Contact
and transmission rates were set to differ across distinct
social contexts such as households, household clusters, local
neighborhoods, schools, classrooms and workplaces. To infer a
directed transmission link from the simulation results, the model
connects any two infected individuals with the same household
identifier, same neighborhood (household cluster) label or same
wider community (SLA) index. The authors compare the findings
using the ABM with genomic surveillance based on near real-
time genome sequencing of Covid-19 in a sub-population of
infected patients during the first 10 weeks of containment in
Australia. The approach has limitations, e.g., the genomic study
did not describe transmissions from asymptomatic carriage,
while the ABM did not explicitly simulate transmissions in
hospitals, residential age care facilities, or introduced bymaritime
traffic, for example, cruise ships. The results compare favorably,
but including genomic sequencing allows to find potential
sources of infections that cannot be identified using conventional
epidemiological methods. Differently from other work we have
seen, this work relies on genomic surveillance data to confirm
the results obtained by their ABM simulator.

In (47), Silva et al. emulated a closed society living on a shared
environment, consisting of agents that represent people, houses,
businesses, the government and the healthcare system, each one
with specific attributes and behaviors. The ABM proposed by the
authors also models the economy in this society of agents, which
helps them estimate the economic impact under different types

of interventions. Their model considers that a contact happens
when the distance between any two agents is less than or equal
to a defined threshold; this contact can be epidemiological or
economical. This is a rare example of an approach that also
models the behavior of other entities that are not individuals and
thus can help understand the impact of the pandemic both on
citizens and the economy.

6. CONCLUSION

This work was developed in the context of the project Medium
and Long-term Simulation of Covid-19 funded by the Spanish
Health Ministry. The results we obtained provided support to
the health authorities for the forecasting of the first wave and
in the evaluation of possible future scenarios. The work targets
the metropolitan area of Madrid, which we model in detail
to take into account social aspects such as age distribution
and occupation, size of family units, percentage of workers,
school children, unemployed, and stay home parents. The
epidemiological model is updated with the COVID-specific
values, including the R0s of each state and the time spent
in each infection phase, as well as the probabilities for
hospitalization and death depending on age (which we use
in conjunction with existent mortality data for calibration of
the simulator).

The main conclusions of this work are that EpiGraph is able
to reproduce both the existing infected and death curves for
Madrid metropolitan area in the Spring 2020. Regarding the
elderly confinement, this social distancing policy would help
to lower the number of deaths (not the number of infections),
which, although reduced, would have remained important. We
also evaluated that school opening after the lock down, which has
a minor impact on the infection spread. In terms of mask use,
the percentage of people that comply becomes a crucial factor
for mitigating the infection spread. In the longer term, our tool
could help to plan for a more resilient and efficient approach to
epidemics, and study how to flexibly respond and adapt to this
type of unexpected situations.
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