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Early accurate diagnosis of patellofemoral pain syndrome (PFPS) is important to prevent

the further development of the disease. However, traditional diagnostic methods for PFPS

mostly rely on the subjective experience of doctors and subjective feelings of the patient,

which do not have an accurate-unified standard, and the clinical accuracy is not high.

With the development of artificial intelligence technology, artificial neural networks are

increasingly applied in medical treatment to assist doctors in diagnosis, but selecting a

suitable neural network model must be considered. In this paper, an intelligent diagnostic

method for PFPS was proposed on the basis of a one-dimensional convolutional neural

network (1D CNN), which used surface electromyography (sEMG) signals and lower limb

joint angles as inputs, and discussed the model from three aspects, namely, accuracy,

interpretability, and practicability. This article utilized the running and walking data of

41 subjects at their selected speed, including 26 PFPS patients (16 females and 10

males) and 16 painless controls (8 females and 7 males). In the proposed method, the

knee flexion angle, hip flexion angle, ankle dorsiflexion angle, and sEMG signals of the

seven muscles around the knee of three different data sets (walking data set, running

data set, and walking and running mixed data set) were used as input of the 1D CNN.

Focal loss function was introduced to the network to solve the problem of imbalance

between positive and negative samples in the data set and make the network focus on

learning the difficult-to-predict samples. Meanwhile, the attention mechanism was added

to the network to observe the dimension feature that the network pays more attention to,

thereby increasing the interpretability of the model. Finally, the depth features extracted

by 1D CNN were combined with the traditional gender features to improve the accuracy

of the model. After verification, the 1D CNN had the best performance on the running

data set (accuracy= 92.4%, sensitivity= 97%, specificity= 84%). Compared with other

methods, this method could provide new ideas for the development of models that

assisted doctors in diagnosing PFPS without using complex biomechanical modeling

and with high objective accuracy.

Keywords: patellofemoral pain syndrome, one-dimensional convolutional neural network, focal loss, attention

mechanism, joint angles, surface electromyography
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INTRODUCTION

Patellofemoral pain syndrome (PFPS) is a common knee joint
disease in clinical practice, with a prevalence of 10–28% in the
general population, about a quarter of the total population, which
is often caused by degenerative changes of articular cartilage (1–
3). This disease is common in athletes and women, causing severe
pain during sports and daily activities, and it affects athletes’
careers to a large extent (1, 4). PFPS will have a certain impact on
the physical and mental health of patients, making the patients
unable to lead an active life (5). Most of the daily activities,
that is, up and down stairs, sitting, and squatting, will aggravate
the pain of the patients (6). Moreover, PFPS may develop into
patellofemoral osteoarthritis (7).

Timely detection and definite diagnosis are the keys to prevent
the aggravation of PFPS, but they are not easy (2, 8). Despite
the high incidence of PFPS, the pathophysiology of PFPS is
unclear (9, 10). Considering that the onset of PFPS is caused
by many factors, misjudgment easily occurs (11). At present, the
cause of PFPS has two explanations. One is biomechanical joint
dislocation, muscle weakness, and excessive joint load around
the patella, and the other is pain caused by nerve structure on
neurodynamic (6). According to the survey, no clear diagnostic
criteria are available at present, but some acceptable reference
standards are identified, such as patellar apprehension, patella
palpation, patellar apprehension,Waldron test, compression test,
and patellar tracking (2). However, these standards are mostly
dependent on the subjective judgment of doctors, and the whole
diagnosis results andmedical effect are strongly related to the rich
experience and knowledge of experts, which are not friendly to
young doctors. Different standards will lead to different diagnosis
results, and no accurate and unified standard is identified for
judging PFPS; thus, the diagnostic accuracy is relatively poor (8,
12). Although some PFPS diagnoses in the form of questionnaires
(such as the Kujala score) have high sensitivity and specificity,
they rely on the subjective answers of the patient and include
a certain degree of privacy of the patient, which is difficult for
some patients to cooperate (13). At present, invasive orminimally
invasive methods are primarily used to assist in the detection
of knee injury and diseases. Among the methods, MRI, CT,
and other non-invasive detection methods can be more effective
in the detection of knee injury and diseases, but these large-
scale instruments and equipment are expensive, which are not
convenient for daily inspection. As a minimally invasive method,
arthroscopy can provide detailed diagnosis information, but
repeated incision of the knee joint will cause pain to patients,
which is not conducive to the recovery of injury and diseases.
Therefore, exploring a new high-precision and low-cost non-
invasive PFPS detection method is necessary.

In recent years, increasing studies have focused on the
relationship between PFPS and biomechanical parameters (2,
14, 15). Ferrari et al. used the mid-band parameters of surface
electromyography (sEMG) to distinguish PFPS by independent
t-test and other methods (2). Bernard et al. explored whether
the coordination of body strength in patients with PFPS has

changed (16). Besier et al. used electromyography and lower limb

kinematics data to drive a musculoskeletal model and evaluate

the muscle strength of PFPS patients and painless subjects
during walking and running (17). Myer et al. used a multiple
linear logistic regression model to predict the knee-abduction
moment when athletes land and explore the relationship between
high knee-abduction moment and increased risk of PFPS (18).
However, most of the parameters required in these studies
are obtained through artificial extraction or the biomechanical
model, which is time-consuming. The biomechanical model is
based on the musculoskeletal model to establish the relationship
between the sEMG signal and joint movement. Nevertheless,
the coordination mechanism of the human nerves, muscles, and
skeletal system cannot be fully understood, which leads to the
inability to accurately simulate the human neuromusculoskeletal
system, which causes a fatal flaw in the calculation model, that is,
an “individual error.”

Previous studies have shown that when the principle of
the system is not clear or unknown, the artificial neural
network driven by data has good system characterization and
individual adaptability (19). With the development of artificial
intelligence technology, artificial neural network methods have
been increasingly used in the field of biomechanics and disease
diagnosis (20–22). For example, Keijsers et al. used plantar
pressure measurements as input to an artificial neural network
to classify forefoot pain (23). Otag et al. used an artificial neural
network to obtain the ligamentum patellae angle and explained
that the prevalence of PFPS in women is greater than that in men
based on the difference in angle values between men and women.
However, the accuracy in the classification of the left and right
knees is mediocre, only 67% (24). Biomechanics will include a
variety of non-linear problems, which can be well-solved by an
artificial neural network. Thus, this study aims to construct a
convolutional neural network (CNN) model to distinguish PFPS
through several easy-to-measure biomechanical parameters.
Traditional CNN mostly uses two-dimensional convolution, but
these biomechanical parameters are generally time series, which
have a certain periodicity; thus, this paper proposes to use one-
dimensional convolution, causing the filters to only slide on the
time axis. Retaining the correlation among various parameters
can achieve the time variability of biomechanical parameters and
improve the accuracy of network discrimination.

The main contribution of this study is to propose a
high-precision, low-cost and easy-to-implement computer-
aided diagnostic method, which provides a new idea for the
development of a convenient PFPS diagnostic model. The focal
loss function is introduced to optimize the network parameters,
which improves the balance of the 1D CNN results. By adding
attention mechanism into the network and visualizing the output
features, we can increase the interpretability of the model to
analyze the diversity of biomechanical features involved in
PFPS. Moreover, some studies have shown that there are gender
differences in PFPS. In this paper, the depth features extracted
by one-dimensional CNN are combined with the traditional
gender features, and these features are classified through the full
connection layer to improve the accuracy of the model.

The rest of this paper is as follows. The second section
introduces the data sets and preprocessing methods used in
this experiment, and then introduces the neural network model
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TABLE 1 | Mean ± SD age, height, and body mass of subjects.

PFPS Controls

Males (n = 10) Females (n = 16) Males (n = 7) Females (n = 8)

Age (years) 30.5 ± 4.5 28.7 ± 4.6 27.2 ± 3.0 28.8 ± 4.7

Height (m) 1.78 ± 0.08 1.68 ± 0.06 1.80 ± 0.05 1.66 ± 0.05

Mass (kg) 73.5 ± 15.7 62.7 ± 10.0 73.4 ± 18.1 58.3 ± 4.6

FIGURE 1 | Data partition in 10-fold cross-validation.

used in this experiment and the experimental environment in
detail. In the third section, the experimental results are given and
compared. The fourth section discusses the experimental results,
and the fifth section summarizes and prospects the full text.

METHODS

Experimental Data
This study was a retrospective exploratory secondary analysis of a
subset of an open data set. This public data set primarily recorded
the lower limb kinematic data and sEMG signals of PFPS patients
and painless control subjects during walking and running and
muscle strength obtained from the musculoskeletal model (17).
A total of 27 patients with patellofemoral pain (16 female, 11
male) and 16 painless control groups (eight female, eight male)
were included in the study. These patients and painless controls
were identified by professional doctors, and they were tested for
walking, running, and squatting at a self-selected pace. In this
paper, 10 kinds of biomechanical characteristics were selected in
walking and running tests, which included three kinds of joint
angle values [knee flexion (KF) angle, hip flexion (HF) angle,
ankle dorsiflexion (ADF) angle], and seven kinds of sEMG signals
[semimembranosus (SEB), rectus femoris (RF), biceps femoris
short head (BF), vastus medialis (VM), vastus lateralis (VL),
lateral gastrocnemius (LG), and medial gastrocnemius (MG)].
These parameters were selected because they were related to
PFPS, which could be measured in real-time without using
biomechanical modeling. The original sEMG data used a zero-lag
fourth-order recursive Butterworth filter (30Hz) for high-pass
filtering and a Butterworth low-pass filter (6Hz) for full-wave
rectification and filtering. The detailed collection of the entire
data set could be found in Reference (17). The experimental data
used in this research were obtained from the public data set of
this website (https://www.sciencedirect.com/science/article/pii/
S0021929009000396?via%3Dihub).

Data Pre-processing
The data should be cleaned before placing into the neural
network. Considering that certain data were missing in the
walking and running data of subjects 4 and 43, we eliminated
them and tested the data of the remaining 41 subjects, including
26 PFPS patients (16 female, 10 male) and 15 painless controls
(eight female, sevenmale). Each subject had walking and running
test data. We combined the data of each subject into a 100 ∗

10 matrix to adapt to the input form of a convolutional neural
network (100 time-series recorded values, 10 characteristics). The
relevant information on subjects is shown in Table 1.

The original data had already filtered out the noise, and no
filter was needed, but we needed to standardize the parameters
of each subject. The range of the joint angle value and EMG
signal value was quite different, which was not conducive to the
convergence of the neural network; thus, we standardized the
range to make it consistent:

Xi=
Xi−X̄

Xstd
, (1)

where X̄ is the mean of each feature of the original data X, and
Xstd is the variance of each feature of the original data X.

The preprocessed data were equivalent to a two-dimensional
matrix. We flipped the data in the training set horizontally,
but we cannot flip such date vertically because the column
represented the time axis, which had strong correlation.
Therefore, the number of training sets can be doubled, and the
performance of the neural network model can be improved.

Experimental Protocol
We randomly selected 70% of the subjects as the training set and
30% as the test set, and the proportion of PFPS patients and
painless controls in the training set was the same as that in the
test set. The training set and test set were processed similarly,
and then the training set was placed into the neural network
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FIGURE 2 | Overall flow chart of the method.

for training. Considering that our data set was small and the
proportion of PFPS patients was large, we adopted hierarchical
10-fold cross-validation to adjust the network parameters, avoid
specificity, and maximize the utilization of data. The training set
was equally divided into 10 equal parts, and the proportional
relationship between PFPS patients and painless controls in
each set was the same. Nine of them were used to train the
network, and one was used for verification, which was circularly
repeated 10 times to ensure that each copy was used, which is
shown in Figure 1.

In this paper, several artificial neural network models
commonly used in classification tasks were selected for
testing, including extreme learning machine (ELM), back
propagation neural network (BP), one-dimensional convolution
neural network (1D CNN), two-dimensional convolution neural
network (2D CNN), long short-term memory (LSTM), VGGNet,
and AlexNet. The BP neural network here refers to a fully
connected neural network with a hidden layer. This article
focused on the 1D CNN, and the other neural networks were
primarily used for comparison. Except for VGGNet and AlexNet,
all parameters of other artificial neural networks were obtained
through 10-fold cross-validation to avoid particularity. The
overall flow chart of the method is shown in Figure 2.

Network Structure
CNN has been proven to have great advantages in a variety of
classification tasks, such as image recognition, natural language
processing, and human action recognition (25–30). In recent
years, a number of excellent CNN classification models have
been created, such as AlexNet (31) and VGGNet (32). These two
network models belong to the best of their kind, particularly
in image classification. In addition, they are often found in
medical image classification, which is a good computer-aided
diagnostic method. These two models have many parameters.
For small data sets, most researchers use transfer learning (33,
34). The data set in this paper is also relatively small, but it
is not suitable for transfer learning, because the premise of
transfer learning is that the data in the original task and the
target task are similar, that is, there is a certain Association
for learning. However, most of the training data used in these
large-scale classification models such as AlexNet and VGGNet

are based on image data, which is very different from the
multidimensional time series data in this paper, so it is not
applicable.

Most of the CNN convolution kernels are two-dimensional.
However, according to the characteristics of biomechanical
parameters belonging to time-series data, this article utilized the
1D CNN for learning. The network structure of 1D CNN in
this paper is shown in Figure 3. We replaced the convolution
kernel in the AlexNet model and VGGNet model with one-
dimensional convolution kernel to make a better comparison,
and other network structures remained unchanged.

Our inputs were the 100 ∗ 10 matrixes. First, we added a
soft attention mechanism to the input, which could reweight
the input information adaptively before convolution. This
process separated important input features. Then, in the first
convolutional layer, we defined 16 filters (also known as feature
detector) with the convolution kernel size of 3. The filters only
slid on the time axis, and the sliding step size was 1. During
training of the first layer, we obtained 16 different feature maps.
The structure of the filters in the second convolutional layer
was the same as that of the first layer, which was used to learn
complex features. The max pooling layer would slide a window
of height 2 on the feature map with a step size of 1 and replace
it with the maximum value, which discarded half of the value.
After the pooling operation, part of the information would be
lost; thus, the number of filters in the next two convolutional
layers was increased to 32. We added a dropout layer with a
dropout ratio of 0.3 (30% of neurons were randomly ignored)
after the last convolutional layer to avoid overfitting. Then, we
expanded the feature map output of the convolution layer into
a one-dimensional vector. Simultaneously, we placed the gender
characteristics through binary encoding (01 for males and 10
on behalf of females) and fused such characteristics with the
depth feature extracted from the convolution layer. Finally, the
fused features were placed into a fully connected neural network
with 50 neurons for learning, which were reduced to a vector
of length 2 (representing the two types of output) through
the softmax activation function. Meanwhile, the optimization
algorithm selected Adam and set the learning rate to 0.00001 and
the number of iterations to 4,000.

The network structure of the 2D CNN was similar to that of
the 1D CNN; however, the convolution kernels of the 2D CNN
were two-dimensional, which were set to 3 ∗ 3. This network
was designed to facilitate comparison with the 1D CNN. The
network structure of ELM and BP only had a single hidden layer.
The number of neurons in the hidden layer of ELM and BP
was 174 and 37, respectively, which were obtained by ten-fold
cross-validation (Figure 4).

In addition to ELM, other neural networks optimized
the parameters by reducing loss. The ordinary cross-
entropy loss function was used to optimize the network
parameters in most artificial neural networks. Given the
large proportion of PFPS tags in the data set, misjudging
painless subjects as PFPS by the neural network was easy.
Thus, we utilized the focal loss function, which could solve
the problem of imbalance between positive and negative
samples and reduce the impact of easy-to-predict samples
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FIGURE 3 | Overall framework of the 1D CNN.

FIGURE 4 | From left to right are the 10-fold cross-validation results of ELM and BP on the running dataset.

(35, 36):

LOSS = −a(1−y
′

)r∗logy
′

, y = 1, (2)

LOSS = −(1− a)y
′r∗log(1− y

′

), y = 0, (3)

where y = 1 is the label of PFPS, and y = 0 is the label

of painless control. y
′

is the corresponding predicted label. α

is the balance adjustment factor, and r is used to control the
rate of adjustment. When the sample is easy to predict, that

is, y
′

is larger, its weight 1 − y
′

will be smaller. Meanwhile,
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FIGURE 5 | Loss curve and accuracy curve of using focal loss function and

cross-entropy loss function for the 1D CNN.

setting r > 0 can reduce the loss weight of easy-to-predict
samples, which can make the model pay more attention
to the difficult-to-predict samples during training. Through
many experiments, we set α to 0.2 and r to 2. Moreover,
the difference between using the focal loss function and the
ordinary cross-entropy loss function for the neural network is
shown in Figure 5.

However, ELM does not need to adjust the parameters
by iteratively reducing the loss. When the input weight and
the bias of the hidden layer are randomly determined, the
output matrix of the hidden layer is uniquely determined. The
training of the neural network is transformed into solving a
linear system:

Hβ = T, (4)

where H is the output of the hidden layer node; β is the output
weight, and T is the expected output. We can obtain the output
weight β by transforming H into the generalized inverse matrix

H
′

and multiplying T.
At present, LSTM is the most popular model in processing

time series, which can solve the problem of long-term
dependence on information very well. So, this paper also takes
this model into account and compares it with 1D CNN. The
LSTMmodel used in this paper consists of 32 basic units.

Evaluation Indicators
There are many indicators to evaluate the quality of a neural
network. However, considering that this research involves the
auxiliary diagnosis of diseases, this article used three evaluation
indicators, including accuracy (ACC), sensitivity (SES), and

specificity (SPC), which were expressed as follows:

ACC =
TP+ TN

TP+ FP+ FN+ TN
, (5)

SES =
TP

TP+ FN
, (6)

SPC =
TN

TN+ FP
, (7)

where TP, TN, FN, and FP indicate true positive, true negative,
false negative, and false positive, respectively.

In this paper, Keras was used as a deep learning model
framework, and TensorFlow was selected as the backend,
which created a 1D CNN model. Meanwhile, the experimental
environment was CUDA 10.1; the GPU was NVIDIA GeForce
GTX 1080; the CPU was Intel Core i7-8700, and the operating
system was Windows 10.

RESULTS

We tested each model on three different data sets of the subjects,
including walking data, running data, and the combination of
walking and running data to explore the pros and cons of the
models as a whole. The three data sets were divided similarly, and
70% of the data sets were randomly selected for training, and the
training data were subjected to 10-fold cross-validation to obtain
the optimal model parameters. Then, the remaining 30% of the
data were used for testing. Considering that our data set was
small, the batch size of the network was set to the entire training
set. Using this method, the loss direction determined by the full
data set could represent the sample population, thereby moving
accurately toward the direction of the extreme value.

We repeated each experiment 10 times independently and
took the average of the results as the judgement of the model. For
the data division of each trial, the data distribution in the training
set and test set was the same.

Comparison Results of all Neural Network
Models
The overall results are shown in Tables 2–4. It can be seen
from the figure that all the neural network models have the best
effect on the running data set. In order to make the comparison
results on the running data set more visible, this paper makes a
histogram, as shown in Figure 6.

Results of Attention Mechanism
According to the comparison results in the previous section, this
paper will make further research on the running data set. The soft
attention mechanism could reweight all information adaptively
before aggregation. Consequently, important information could
be separated, and the interference of unimportant information
could be avoided to improve the accuracy. In this study, the
weight of time dimension was fixed, and only the input feature
dimension was weighted. After the neural network model was
trained, the weight of feature dimension was determined. Finally,
we visualized the weight assigned to each feature by the attention

Frontiers in Public Health | www.frontiersin.org 6 April 2021 | Volume 9 | Article 615597

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Shi et al. Diagnosis of Patellofemoral Pain Syndrome

TABLE 2 | Results on walking data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.68 0.77 0.53 43.8

2D CNN 0.61 0.81 0.29 158

LSTM 0.63 0.73 0.51 153.1

VGGNet 0.61 0.91 0.14 1913

AlexNet 0.61 1.00 0.00 800.7

ELM 0.66 0.89 0.29 0.02

BP 0.58 0.59 0.55 4.32

TABLE 3 | Results on running data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.924 0.97 0.84 43.7

2D CNN 0.64 0.81 0.35 157.4

LSTM 0.79 0.83 0.69 152

VGGNet 0.74 0.80 0.59 1912.4

AlexNet 0.769 0.88 0.60 800.5

ELM 0.71 0.88 0.51 0.03

BP 0.65 0.87 0.32 4.42

TABLE 4 | Results on combined walking and running data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.77 0.77 0.70 43.8

2D CNN 0.615 0.88 0.20 160

LSTM 0.76 0.90 0.58 155

VGGNet 0.62 0.80 0.42 1914

AlexNet 0.76 0.84 0.64 801

ELM 0.59 0.82 0.20 0.03

BP 0.56 0.66 0.40 4.51

mechanism and observed the features that belonged to the key
features (Figure 7).

Visualization Results of the CNN Model
In this section, the T-SNE method was used to visualize the
feature distribution of the input layer, final convolution layer,
and output layer of the four CNN models for running data
set. In this way, we can easily compare the ability of learning
features from the original biomechanical data among different
CNN models Figure 8).

DISCUSSION

As shown in Tables 2–4, all the neural network models perform
best in the running data set, which indicates that PFPS will have
a significant impact on the lower limb biomechanical features
of patients during running. Pain is a protective mechanism for
patients, and patients will take corresponding compensatory
behavior to complete the exercise to reduce pain, thereby

resulting in changes in biomechanical features. The task intensity
of running is higher than that of walking, which may lead to
evident compensatory changes in patients with pain, thereby
making the neural network easier to learn.

By adding attention mechanism into the 1D CNN model and
outputting the weight results of attention mechanism, we ranked
the importance of biomechanical features in identifying PFPS
and determined the biomechanical features that were important
for the identification of PFPS. As shown in Figure 6, the three
most concerned features of the neural network are VM, SEB,
and KF. However, whether the changes of these biomechanical
features cause PFPS, or whether the pain of PFPS causes the
changes of these biomechanical features, that is, whether these
biomechanical features are risk factors for PFPS, remain unclear.

All neural network models have high specificity and low
sensitivity. There are two reasons for this result. First, more PFPS
patients are included in the data set, which makes the learning of
the network prone to deviation. Second, the data set is relatively
small, which makes the neural network easy to overfit. Previous
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FIGURE 6 | The results of each neural network on the running data set.

FIGURE 7 | Attention probability distribution of input features on running

data set.

studies have shown that CNN tends to perform better in big data.
In the case of a larger data set, we hypothesize that the accuracy of
our model can be improved. In addition, although ELM and BP
are feedforward neural networks with a hidden layer, the number
of hidden layer nodes is different when they reach the optimal
situation probably because their network weights are determined
in different ways. ELM directly determines the weight of neurons
in the hidden layer by solving the generalized inverse matrix,
whereas BP gradually determines the weight of neurons in the
hidden layer by back propagation.

In all data sets, the 1D CNN performs best, particularly
on the running data set (ACC = 0.924, SES = 0.97, SPC =

0.84). Meanwhile, the comparison of the classification results
shows that the 1D CNN is suitable for the characteristics of
these biomechanical parameters than the 2D CNN. In addition,
the introduction of focal loss does not greatly improve the
accuracy of the neural network, but it makes the neural network
easier to learn to ensure that the SES and SPC values will not
differ remarkably. The results of 1D CNN are also better than

FIGURE 8 | Visualization of feature representations extracted from input layer,

last convolutional layer and output layer for running data set.

LSTM, which may be because 1D CNN pays more attention
to the feature changes in local time period, while LSTM is
more suitable for data with long-term dependence. The disease
detection of pain type should pay more attention to the instant
changes caused by pain. Moreover, because LSTM adopts full
connection computing mode, its computation is very time-
consuming, resulting in poor real-time performance. Compared
with the LSTM model, the local connection and weight sharing
mechanism of the 1D CNN model reduces a large number of
network parameters, so that themodel can train faster and reduce
the risk of overfitting.

In this paper, the t-SNE method was used to reduce the
dimension and visualize the features extracted from the CNN
model and determine whether the features extracted from the
neural network model were separable, which increased the
interpretability of the model. As shown in Figure 7, the 1D CNN
model constructed in this paper could easily obtain segment
able features.

CONCLUSION

This paper proposed a method to assist the diagnosis of PFPS
through the 1D CNN model. Different from previous studies,
this method does not require complex biomechanical models,
and it can achieve high accuracy (ACC = 0.924) only through
some directly measurable biomechanical parameters and the
gender of subjects. This method is easy to operate. After the
neural network has learned a certain number of features, the
model is saved. Then, the PFPS can be intelligently determined
by the neural network in real-time through the lower limb
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joint angle values and sEMG signals of subjects in a gait
cycle. This prospective study provides new insights into the
auxiliary diagnosis of PFPS, which can be used to develop a
convenient, efficient, and universal auxiliary diagnosis model
for PFPS.

Compared with previous research (2, 37), the method of this
study has higher sensitivity (SES = 97%), and specificity (SPC
= 84%). Ferrari et al. used the mid-band parameters of sEMG,
which were associated with anterior knee pain to determine
PFPS. The method had 70% sensitivity and 87% specificity, and
the trial involved 51 subjects, including 22 PFPS patients and 29
painless controls (2). Briani et al. used the sEMG signal of VM to
diagnose PFPS, and obtained 72% sensitivity and 69% specificity,
and obtained 68% sensitivity and 62% specificity through the
sEMG signal of VL. The trial involved 59 subjects, including 31
patients with PFPS and 28 painless controls (37).

This study is a preliminary investigation, and its applicability
requires caution. This study has some limitations, which need
to be considered in future studies. For example, a comparative
experiment should be conducted to explore whether these
biomechanical changes caused by pain or PFPS caused by these
biomechanical changes. Another limitation is that the data set
of the paper is relatively small, and the convolutional neural
network often performs better on large data sets; therefore, larger
sample size must also be considered in the next work. Meanwhile,
future work must focus on the specific subclassifications of
PFP diagnoses.
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