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The basic Generative Adversarial Networks (GAN) model is composed of the input vector,

generator, and discriminator. Among them, the generator and discriminator are implicit

function expressions, usually implemented by deep neural networks. GAN can learn the

generative model of any data distribution through adversarial methods with excellent

performance. It has been widely applied to different areas since it was proposed in 2014.

In this review, we introduced the origin, specific working principle, and development

history of GAN, various applications of GAN in digital image processing, Cycle-GAN,

and its application in medical imaging analysis, as well as the latest applications of GAN

in medical informatics and bioinformatics.

Keywords: Generative Adversarial Networks (GAN), generator, discriminator, data augmentation, image

conversion, biomedical applications

INTRODUCTION

Generative Adversarial Networks (GAN) was introduced into the field of deep learning by
Goodfellow et al. (1). As can be seen from its name, GAN, a form of generative models, is trained
in an adversarial setting deep neural network. More specifically, GAN learns the generative model
of data distribution through adversarial methods. GAN is the most successful generative model
developed in recent years and has become one of the hottest research directions in the field of
artificial intelligence. Because of its excellent performance, GAN attracts great attention since it
was proposed. It is especially important that GAN can not only be used as a generative model
with excellent performance, but also its inspiring adversarial learning idea penetrates deeply into all
aspects of deep learning, resulting in a series of new research directions and various applications (2).

The basic function of GAN is to train a generator and discriminator in an adversarial way. Based
on different requirements of projects, either a stronger generator or a more sensitive discriminator
is designed as the target goal. In this manuscript, we focus on the generation purpose of GAN
used in four areas: digital image processing, medical image processing, medical informatics, and
its latest applications in omic data. The generation purpose can be further categorized into data
simulation (3), data augmentation for small dataset (4), style transformation (5), and gene data
simulation (6). The great successful applications of GAN in medical image generation (7, 8) and
cell gene imputation (6) motivated us to review the literatures in these four sub areas, rather than
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just focusing on the digital image processing field. We searched
in the top conferences of computer science and Google Scholar
with keywords related to GAN. Through screening the literature
abstracts by our team in digital image processing, medical
imaging analysis, medical informatics, and bioinformatics,
respectively, the literature that was very relevant to our subject
was retained for full text reading. The contents of these eligible
literatures are summarized below.

A BRIEF OVERVIEW OF GAN

Origin of GAN
In general, deep learningmodels can be divided into discriminant
models and generative models (9). In the perspective of the
probability and statistical theory, a discriminant model is a
method of modeling the relationship between unknown data
y and known data x. A generating model refers to a model
that can randomly generate observations, especially under the
condition of given some implicit parameters (10). Due to the
invention of algorithms such as Back Propagation (BP) and
Dropout, the discriminant model has been evolved rapidly.
The development of the generative model is lagged due to the
difficulty of modeling, though the generative model has a pivotal
role in the history of machine learning. When processing large
amounts of data, such as images, speech, text, genomics, etc., the
generative models can help us simulate the distribution of these
high-dimensional data. It will be beneficial formany applications,
such as super-resolution, data augmentation, image and medical
image conversion, caption generation, electronic health records
data generation, biomedical data generation, data imputation,
and other ill-posed problems (11–15).

Likelihood describes the probability of the event under
different conditions when the results are known (16). Sometimes
we may not know the distribution function, but we know the
observed data. Therefore, the maximum likelihood estimation
is applied to evaluate model parameters using the observed
data. Traditional generativemodels such as Restricted Boltzmann
Machine (RBM) (17, 18), Gaussian Mixture Model (GMM)
(19), Naive Bayes Model (NBM) (20), Hidden Markov Model
(HMM) (20) and so on, are mostly based onmaximum likelihood
estimate. However, while the explicitly defined probability
density function brings computational tractability, maximum
likelihood estimation may not represent the complexity of
the actual data distribution and cannot learn the high-
dimensional data distributions. The majority of generative
models require the utilization of Markov chains. GAN uses
latent codes to express latent dimensions, control data implicit
relationships, etc. and does not require Markov chains (21).
Adversarial networks can represent very sharp, even degenerate
distributions, while Markov chain-based approaches require
somewhat ambiguous distributions so that the chains can
be mixed between patterns. Various types of loss functions
can be integrated into GAN models. This allows different
types of loss functions to be designed for different tasks,
all of which can be learned and optimized under the GAN
framework. GAN is also a nonparametric modeling method
and does not require an approximate distribution of training

data to be defined in advance. When probability density is not
computable, some traditional generative models that rely on the
statistical interpretation of data cannot be used for learning and
application. But GAN can still be used in such cases.

Specific Principles of GAN
In this section, we will introduce the architecture and specific
principles of GAN. Basic GAN model is composed of an
input vector, a generator, and a discriminator. The generator
and discriminator are implicit function expressions, usually
implemented by deep neural networks (22).

We use abstract mathematical language to explain the basic
principles of the GAN. The fixed distribution Pdata (x) is usually
calculated based on the assumption that the data distribution
for the training sample x is Pdata. However, this distribution is
difficult to be determined. The traditional methods assume that
the distribution Pdata (x) obeys a Gaussian mixture distribution
and uses themaximum likelihood as the solution. However, when
the model is complicated, it is often unable to calculate and the
resulting performance is limited (23). This is due to the limited
expression ability of the Gaussian distribution itself. Thus, neural
networks were proposed to define the distribution Pg(x). The
generator is a neural network with parameter θ

g . It collects the
random variable z from the prior distribution and maps it to the
pseudo-sample distribution through the neural network, that is,
the generated data is recorded as G (z) and the data distribution
is recorded as Pg(z). The input z usually uses Gaussian noise,
which is a random variable or a random variable in the potential
space. According to θg, a simple input distribution can be used to
generate various complex distributions. The Pg(x) generated by
the generator and the real image distribution Pdata (x) should be
as similar as possible (24). So, for the generator, the target is to
find a G∗ as shown below.

G∗ = arg min
G

Div(Pg , Pdata) (1)

Then the next question is how to calculate the difference between
the two distributions. If the form of Pdata (x) and Pg(x) is
known, it can be calculated to make Pdata (x) and Pg(x) get close.
Although we don’t know the specific distribution, we can sample
from it. So, GAN proposed a very magical way, discriminator,
to calculate the difference between the two distributions. The
discriminator was defined by the original GAN as a binary
classifier (25) with θd. During training, when the input is a real
sample x, the output of discriminator should be 1, otherwise, the
output goes to 0. For defining discriminator, Goodfellow et al. (1)
used binary cross entropy function, which is commonly used for
binary classification problems.

Loss = −(y log
(

ŷ
)

+
(

1− y
)

log (1− ŷ)) (2)

Where ŷ is the probability that the model prediction sample is a
positive example, and y is the sample label. If the sample belongs
to a positive example, the value is 1; otherwise, the value is 0.
A specific sample may come either from the real distribution
or the generated distribution. The positive and negative cases
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are substituted into Pdata and Pg , respectively. The whole object
function for discriminator is:

V (G,D) = Ex∼Pdata

[

logD (x)
]

+ Ex∼Pg [log (1− D(x))] (3)

By merging Equation (1) into (3), the objective function of the
basic GAN is defined by Equation (4):

min
G

max
D

V (G,D) = min
G

max
D

Ex∼Pdata

[

logD (x)
]

+Ez∼Pz [log (1− D(G (z ) ))] (4)

By optimizing this objective function, we can get a GAN model.
GAN’s training can be regarded as a min–max optimization
process. The generator wants to deceive the discriminator, so
it tries to maximize discriminator’s output when a fake sample
is presented to the discriminator. Instead, the discriminator
attempts to distinguish the difference between real and false
samples. Consequently, discriminator tries to maximizeV (G, D)
while generator tries to minimize V (G, D), thus forming
the minimax relationship. During the training of GAN, the
parameters of G (θg) and D (θd) are continuously updated.
When the generator is undergoing training, the parameters of
the discriminator are fixed. The data generated by the generator
is marked as fake and input into the discriminator. The error is
calculated between the output of the discriminator D (G(z)) and
the sample label, and the parameters of generator are updated
using the error of BP algorithm. When the discriminator is
undergoing training, the parameters of the generator being fixed.
Discriminator gets positive sample x from the real data set, and
the generator generates a negative sampleG (z). The output of the
discriminator and sample labels are used to calculate the error.
Finally, the parameters of the discriminator are updated by the
error of BP algorithm.

Ideally, the generator and discriminator are in equilibrium
when Pdata (x) = Pg(x). When the generator is fixed, we can
take the derivative of V (D, G) to find the optimal discriminator
D∗(x), as shown in the Equation (5).

D∗ (x) =
Pg(x)

Pg (x) + Pdata (x)
(5)

By substituting the optimal discriminator in the Equation (3).

max
D

V (G,D) =− 2 log 2+ 2JSD(Pdata (x) ‖ Pg (x ) ) (6)

The objective function can be further calculated as optimizing
the JS divergence of Pdata (x) and Pg (x) under the optimal
discriminator (26).

Development History of GAN
GAN is an excellent generative model. However, the original
GAN model has many problems, such as the vanishing gradient,
difficulty in training, and poor diversity (27). Many efforts
have been devoted to obtaining better GANs through different
optimization methods. Therefore, since 2014, theories and
articles related to GAN have emerged in an endless stream, and

many new GANs-based models have been proposed to improve
the stability and quality of the generated results (28).

A number of review articles have summarized and classified
the current GAN-related models (22, 24, 29). Creswell et al.
(22) classified the evolution of GAN models from the aspects of
architectural development and loss function improvement. Hong
et al. (29) summarized the development of GAN models from
the aspects of theoretical analysis, supervised, unsupervised, and
common problems. Guo et al. (24) focused on the improvement
of the model structure, the expansion of the theory, the novel
application and so on. We will introduce several common
improvements of GAN here.

Conditional Generative Adversarial Networks (CGAN)

CGAN is an improved GANmodel proposed byMirza et al. (30).
Unlike the original GAN, CGAN uses a supervised approach
increasing controllability of generated results. CGAN takes the
random noise z and the category label c as inputs of the generator
and the generated sample/real sample and category label as inputs
of the discriminator to learn the correlation between labels and
images. By introducing a conditional variable y into the modeling
and adding conditions to the model with additional information
y, the data generation process can be guided.

Deep Convolutional Generative Adversarial Networks

(DCGAN)

One year after the first GAN paper was published, researchers
found that the GAN model was unstable and required a lot of
training skills. In 2015, Radford et al. (31) proposed an upgraded
version of the GAN architecture, named DCGAN. The authors
of DCGAN improved the architecture of the original GAN with
deep convolutional networks (CNNs). So far, DCGAN’s network
structure is still widely used and is the hottest GAN architecture
and a milestone in the history of GAN. Compared with the
original GAN, DCGAN almost completely uses the convolution
layer instead of the fully connected layer. The discriminator is
almost symmetric with the generator. The entire network does
not have pooling layers and up-sampling layers. DCGAN also
used Batch Normalization algorithm to solve the problem of
vanishing gradient.

f-GAN

The objective function of the original GAN can be seen as
minimizing the JS divergence between two distributions. In
fact, there are many ways to measure the distance between
two distributions, and JS divergence is just one of them.
Defining different distance metrics can result in different
objective functions. Nowozin et al. (32) applied f -divergence
to GAN (f -GAN) for training generative neural samplers. The
f -divergence is a function Df (P ‖ Q) that measures the
difference between two probability distributions P and Q. Under
the framework of f -divergence, f -GAN generalizes various
divergences so that the corresponding GAN target can be derived
for a specific divergence. Many common divergences (33),
such as KL-divergence, Hellinger distance, and total variation
distance, are the special cases of f -divergence, coinciding with
a particular choice of f. Many improvements in GAN training
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TABLE 1 | Literatures for the application of GAN in image processing.

References Model Public dataset

Mirza and Osindero (30) CGAN MNIST

Radford et al. (31) DCGAN LSUN, IMAGENET-1K

Nowozin et al. (32) f-GAN MNIST Digits, LSUN

Zhao et al. (34) EBGAN MNIST digit, LSUN, CelebA,

ImageNet

Arjovsky et al. (26) WGAN LSUN-Bedrooms

Karras et al. (37) proGAN CelebA, LSUN

Ledig et al. (12) SRGAN Set5, Set14, BSD100

Pathak et al. (38) Context

encoder

Paris Street View, ImageNet

stability are achieved by using different distance metrics between
distributions, such as Energy-based GAN (EBGAN) (34), Least
Squares GAN (LSGAN) (35), etc.

Wasserstein Generative Adversarial Networks

(WGAN)

WGAN mainly improved GAN from the perspective of the
loss function. WGAN theoretically explained the reason for
the instability of GAN training, that is, cross entropy (JS
divergence) is not suitable for measuring the distance between
distributions with disjoint parts. Therefore, WGAN proposed
a new distance measurement method, Earth Moving Distance,
also known as Wasserstein distance or optimal transmission
distance, which refers to the minimum transmission quality that
converts the probability distribution q to p (probability density
is called probability quality in discrete cases) (26, 36). The
superiority of Wasserstein distance compared to KL divergence
and JS divergence is that even if two distributions do not
overlap, Wasserstein distance can still reflect their distance. The
theoretical derivation and interpretation of WGAN are quite
complicated. The authors of WGAN (26) pointed out that the
use of Wasserstein distances needs to satisfy a strong continuity
condition, i.e. Lipchitz continuity.

In short, GAN still has many unresolved problems and can be
further improved in various aspects.

APPLICATION OF GAN IN IMAGE
PROCESSING

GAN is widely used in virtual image generation (Table 1).
Whether it is a face image, a room scene image, a real image
(37) such as a flower or an animal, or an artistic creation image
such as an anime character (39), it can be learned using GAN to
generate new similar images (Figure 1). GAN is fully utilizing its
unique advantages and has evolved from the original GAN to the
progressively growing GAN (proGAN). Its imaging generation
capability has been greatly improved from 32 × 32 resolution to
2K true and false HD resolution (37).

Image super-resolution task (SR) is to generate high-
resolution images from low-resolution images. Image
super-resolution algorithms are important in areas such as

video surveillance, medical diagnostics, and remote sensing
applications. Super-resolution problem is actually an ill-posed
problem because the lost high-frequency details are difficult
to recover during the resolution of the image. Traditional
methods are generally interpolated, and interpolation inevitably
creates blurring. However, GAN can learn the distribution of
high-resolution images to a certain extent, so that high-quality
images with better quality can be generated. CNN has also
achieved very good results in single-frame super-resolution
reconstruction and can achieve a higher peak signal-to-noise
ratio (PSNR) (40, 41). However, most of them use MSE as the
objective function. Although a higher peak signal-to-noise ratio
can be achieved using MSE, when the image down-sampling is
higher (four times), the reconstructed picture will be too smooth
and lose details. Thus, in 2016, Super Resolution GAN (SRGAN)
was proposed by Ledig and others of Twitter. SRGAN was the
first to propose the application of GAN to super-resolution
reconstruction (12). The generated model of SRGAN takes
a blurred low-resolution image as input and outputs a clear
image with high resolution. The discriminant model of SRGAN
determines whether the input image is a “true high-resolution
image” or a high-resolution image converted from a low-
resolution image. This greatly simplifies the learning process
of the image super-resolution model. Because traditionally
conducting an image super-resolution needs to model some
high-frequency details, but here the purpose of generating model
training is simplified to the confusing discriminant model.
Compared to previous results based on deep learning models for
image super-resolution such as SRResNet, etc., GAN’s images
can provide more details.

Image inpainting refers to the process of reconstructing
missing or damaged parts of images and videos. It involves in
image editing and image generation and is a process of artificially
filling a region where information on the image is missing
according to certain rules. Conventional image inpainting
methods typically utilize undamaged image information to
estimate missing portions and autofill the missing parts.
Therefore, a structure-based partial differential equation (PDE)
image restoration algorithms were proposed. The repair process
of these models is similar to the diffusion phenomenon of
physics, and the key and the difficulty lies in how to build a
diffusion model. When the image damage area is large, the repair
effect plummets. Texture-based image inpainting algorithms
emerged as the times require, and the effect based on partial
differential equations was improved to some extent. Because the
traditional image inpainting algorithms depend on the structure
or texture information of the image, they cannotmeet basic repair
requirements, and often cannot achieve satisfactory results,
when the image semantic information is missing. Deep learning
has strong learning ability and can learn advanced features
from images, so the inpainting problem can be solved with
such features (42–44). Image inpainting is a problem between
image editing and image generation, so using the GAN model
can solve this problem well. The solution for using GAN is
to input an image with missing part to the generator. The
generator will use this missing input image to generate a new
complete image. The discriminator will learn to judge whether
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FIGURE 1 | Digital image diagram of GAN.

this image is realistic enough and feedback to the generator.
Through continuous training to optimize, the generator can
finally generate a complete image that is sufficiently realistic.
Then the inpainting was finished. Context encoder (38) is a
pioneering work of deep learning in the field of image inpainting.
Pathak et al. (38) trains an encoder-decoder and combines
adversarial network loss to predict the missing portion according
to the context pixel and structural semantics of the missing area.
The network is able to obtain a reasonable image structure and
can quickly and accurately evaluate the repair results (45–47).
Because GAN’s generator and discriminator can be any form of
neural network, different network architectures can be selected
for solving different problems. The autoencoder model was used
as the generator part in our previous work (3). This is because the
autoencoder is also an important generative model. It encodes
the input data and generates new data through the decoding
operation. It can retain the characteristics of the original input
and introduce the newly generated part. Therefore, it can not
only keep the undefected part of the inpainting input, but also
generate some data for filling in the missing area by using
autoencoder. Our discriminator is a simple binary classification
discriminant neural network whose input are the generated
repaired image and the complete image in the original dataset.
By learning to distinguish between the two, the generator is
prompted to generate results that are more in line with the
dataset, thereby completing the inpainting.

APPLICATION OF GAN IN MEDICAL IMAGE
PROCESSING

Multiple factors such as time cost, labor cost, economic cost, etc.
make it more difficult for researchers to acquire labeled medical
images than normal images. However, there is a great demand
for medical images by scholars nowadays. For example, the deep
learning-based model can achieve a better performance in the
fields of medical image segmentation, classification, registration,
etc. than the hand-crafted features when dealing with a large
amount of data (48). Traditional image augmentation methods
can be used for its purpose. However, the generated images by
traditional augmentation methods share a similar distribution

with the original ones (49, 50). Those methods are not suitable
for the need of generating more incidences among different
patients. Accordingly, GAN is used more popular in medical
image analysis, such as data augmentation and multi-modality
image translations.

Recently, with the development of deep learning algorithms
and the growing of labeled image datasets, convolutional neural
networks (CNN)-based models (51) have achieved great success
in many computer vision tasks, such as object detection (52),
semantic segmentation (53), human action recognition (54)
and so on.

Since 2014, many CNN-based medical image analysis works
(55, 56) have shown great learning possibility when enough
images are available for model training. The database like TCGA
(57) supplies a large number of images for some common
diseases. Since image acquisition and annotation is a time-
consuming process, image data for many diseases remains scarce.

There are many deep learning models that are pre-trained on
larger image datasets such as ImageNet (58), COCO (59), and so
on. Transfer learning (60) uses limited labeled data for supervised
training. In the transfer learning tasks, most of the weights of the
model keep fixed and only the weights of the last several layers
are fine-tuned on the new dataset. In this way, a well pre-trained
deep neural network is applied in the medical image analysis.

Transfer learning may still suffer from lack of training
images (61). As mentioned above, traditional data augmentation
methods can only generate data that share a close distribution
with the original ones. If the data set is too small, these methods
almost have no effort on the data augmentation. GAN (26)
supplies a solution to the lack of data in medical image analysis.
In the following section, we will discuss the applications of single
GAN and Cycle-GAN in medical image analysis (Table 2).

GAN Used in Medical Image Analysis
Pandey et al. (64) proposed a two-stage strategy to generate nuclei
cell images and their corresponding masks based on GAN. In
their first stage, a generator is trained to generate the synthesis
masks from noise like conventional GAN model does. On their
second stage, a conditional GAN utilized real mask and random
noises to train a generator for synthesizing images. Finally, they
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TABLE 2 | Literatures for the application of GAN in medical image processing.

References Model Public Dataset

Zhang et al. (62) PAC-GAN VIPeR, CUHK03, Market-1501

Dirvanauskas et al. (63) GAN/medical Miri TL

Pandey et al. (64) Two-stage

GAN/Medical

Kaggle Data Science bowl’s first

stage of competition

Frid-Adar et al. (65) GAN Private

Chen et al. (66, 67) Dense GAN A large publicly accessible brain

structural MRI database

Mahapatra and

Bozorgtabar (68)

Skip-

connection

GAN

http://www.eyepacs.com/

Yi and Babyn (69) SAGAN National Cancer Imaging Archive

Shitrit and Raviv (70) GAN Private

Zhu et al. (5) Cycle GAN Cityscapes, Google Maps, CMP

Facade Database, UT Zappos50K,

ImageNet

Wolterink et al. (71) Cycle GAN Private

Hiasa et al. (4) Cycle GAN Private

Huo et al. (72) Cycle GAN Private

Tanner et al. (73) Cycle GAN Private

Zhang et al. (74) Cycle GAN Private

Zhang et al. (75) Cycle GAN Private

utilized these two generators to generate images and masks from
random noise.

Dirvanauskas et al. (63) generated human embryo cell
images for three stages (one-cell, two-cell, and four-cell) by a
conventional GAN model. All the synthesized images could be
used to facilitate the development, training, and evaluation for
embryo image processing tasks.

Zhang et al. (62) used GAN-based model to solve the data
shortage problems in person re-identification task. Two view
images (cross view images) are generated by a conditional
GAN from existing original images and skeleton images. After
that, these cross-view images are sent into a discriminator for
person re-identification.

Frid-Adar et al. (65) used two variations of GAN models to
generate synthetic liver lesions. The synthetic images contained
the regions of interest (ROI) on abdomen CT images with
a resolution of 64 × 64. Experiment results showed that the
synthetic data augmentation from these two GAN models
improved classification accuracy from 77.5 to 85.0% compared
to the classic data augmentation.

Chen et al. (66) proposed a high-resolution MRI (HR MRI)
image generation architecture. Instead of generating 2D HR
MRIs, the authors generated 3D HR MRIs to learn 3D structures
of MRI volumetric images. However, 3D networks bring more
computing requirements. To solve this problem, the authors
used 3D dense net-based architecture (67) in the generator. By
combining 3D dense net and GAN, synthetic HR MRIs have
more local image textures and details.

Mahapatra and Bozorgtabar (68) used local saliency maps and
GAN for generating high-resolution retinal images. In addition
to the GAN’s lost function, they also added local saliency loss

FIGURE 2 | The architecture of Cycle-GAN.

from the difference between HR images and low-resolution
images in the saliency maps.

Yi and Babyn (69) proposed a deep neural
network-based architecture for low dose CT denoizing.
The generator-synthesized denoized CT image was sent to a
sharpness detection network for comparison with a conventional
CT image. This branch contributes a sharpness lost for the GAN
objective function.

Shitrit and Raviv (70) applied GAN to accelerate the MRI
image generation process. Instead of generating MRI images
from existing MRI images, the authors used GAN to generate
missing k-space samples. Their approach can be used for time-
sensitive or resolution-sensitive MRI scan tasks.

Huo et al. (72) proposed a similar GAN architecture for
splenomegaly segmentation. Instead of generating images from
random noises, the authors used a U-Net (76) based architecture
to get a segmented version and a Dice lost function as the
discriminator. Isola et al. (77) used a Patch-GAN model as the
discriminator for the patches from both the generated images and
the ground truth images.

Cycle-GAN Used in Medical Image Analysis
Cycle-GAN (5) is utilized to learn the mapping from a domain
image set X (or A in Figure 2) to another domain image set Y
(or B in Figure 2) when the pairwise alignments between the two
domains are unavailable. The forward generator is defined as G
and the backward generator as F. The cycle consistency forces
F(G(x))≈x and G(F(y)) ≈y. F◦G or G◦F works similarly to an
auto-encoder (78) for learning the representations of the original
images. A similar method was presented by Yi et al. (79).

It is essential that images from two different sources must
have shared visual content, such as from wild horses to zebras.
Normal image translation may be greatly affected when there
is a significant difference between two domains. However, it
is more suitable for multi-modality medical image synthesis,
such as synthesizing images from Magnetic Resonance Imaging

Frontiers in Public Health | www.frontiersin.org 6 May 2020 | Volume 8 | Article 164

http://www.eyepacs.com/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Lan et al. GAN in Biomedical Informatics

FIGURE 3 | The experiment results from Cycle-GAN, where real B is the real MRI image, fake A is the generated CT image based on the real MRI image, and rec B is

the reconstructed MRI image based on the generated CT image of heart for a patient.

(MRI) to Computed Tomography (CT) (71) for diagnosing some
specific diseases.

Wolterink et al. (71) applied Cycle-GAN to CT and MRI
images of brain tumors in the radiotherapy treatment planning.
Since a limited number of patients had paired CT and MRI
images, unpaired images were generated from the paired images
by first padding the images into a larger resolution and
then cropping them into the same smaller resolution. Their
results showed that Cycle-GAN trained with unpaired images
outperforms a single GAN trained with paired images.

Hiasa et al. (4) improved the Cycle-GAN architecture by
adding the gradient consistency loss with the goal of better
edge alignment between the MRI images and CT images.
Comparing the generated CT/MRI images with the actual ones,
the gradient consistency had improved the synthesis accuracy
and segmentation accuracy.

Huo et al. (80) combined Cycle-GAN and segmentation
network in an end-to-end manner to take advantage of
the complementary information between synthesis and
segmentation. The final lost function of their network consisted
of the Cycle-GAN lost functions and the segmentation
loss function. Compared with the first synthesis and then
segmentation method (81), the method from Huo et al. achieved
better segmentation results on the spleen and other organs.
Their experiments indicate that MRI images with multiple
organ labels can be used to generate corresponding segmented
CT images. Tanner et al. (73) used Cycle-GAN for MRI-CT
deformable image registration of thoracic and abdominal organs.
Jin et al. (82) applied Cycle-GAN for CT-MRI image synthesis.
A discriminator was added for the real paired CT-MRI images
and generated paired CT-MRI images. The combination of
paired images and unpaired images achieved the lowest mean
absolute error.

Yue et al. (74) proposed a task-driven generative model
for X-ray image segmentation. A U-Net-based network (76)

was trained supervised on Digitally Reconstructed Radiographs
(DRRs) for organs segmentation. Thereafter, a Cycle-GAN was
trained for DRRs and X-ray images synthesis. Specifically,
the segmentation loss generated by the previously trained
segmentation network was added to the cycle of real DRRs to
fake X-ray to reconstructed DRRs. In that case, the segmentation
results of X-ray images were greatly improved.

Zhang et al. (75) replaced discriminators with segmenters to
address shape consistency problem. 3D fully convolution layers
were used in the Cycle-GAN network and long-range U-Net
network. Experiment results showed that the Cycle-GAN-based
synthesis network and segmentation network were mutually
beneficial in segmenting cardiovascular volumes.

We applied Cycle-GAN to achieve a good conversion between
the CT and MRI images based on the data from MICCAI
Workshop (Figure 3).

APPLICATION OF GAN IN MEDICAL
INFORMATICS

With the development of health informatization, hospital
information systems, Internet of Things (IoT)-based health
Platform, wearable devices and other platforms have led to the
explosive growth of medical data, such as electronic medical
records (EMR) (83). The growth in the quantity and quality of
medical data has also facilitated the use of scientific research
and algorithms in medicine. However, due to data security,
especially privacy security, although patient’s data can be de-
identified, the medical data after de-identification can still be
re-identified by some combinations. Because there are barriers
between the health information systems, it is very difficult to
correlate medical data collected from different media, resulting in
less medical data available for scientific research. The application
of medical informatics often requires a large number of data
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TABLE 3 | Literatures for the application of GAN in medical informatics.

References Model Public dataset

Choi et al. (84) medGAN PAMF, MIMIC III

Baowaly et al. (85) medGAN,

WGAN-GP, BGAN

MIMIC-III

Yoon et al. (86) RadialGAN MAGGIC

Che et al. (87) ehrGAN Private

Esteban et al. (88) RGAN, RCGAN Philips eICU database

Li et al. (89) GAN IQVIA longitudinal prescription (Rx)

and medical claims (Dx) database

Guan et al. (90) mtGAN Private

Yang et al. (91) GAN UCI medical database, Cerebral

stroke dataset

Tang et al. (92) IRGAN 4705 hyperlipidemia questions from

the internet

Hassouni et al. (93) GAN WISDM

to train parameters. The lack of medical data severely limits
the application of deep learning algorithms, especially artificial
intelligence in the field of medical informatics. Therefore, the
development of medical informatics is behind fields such as
medical images.

GAN has proven to play an important role in generating
images and has shown good performance in generating
continuous data. Since the gradient function is required to be
differentiable, the traditional GAN cannot generate discrete data.
In medical data, the diagnosis of a disease and the severity of the
disease are discrete data. Due to the high cost, less labeled, and
unbalanced classification medical data are available. Therefore,
we explored the application of GAN in generating discrete data
based on real medical data and in solving problems such as fewer
labels and unbalanced classifications (Table 3).

Choi et al. (84) generated synthetic electronic health records
(EHR) by using medical Generative Adversarial Networks
(medGAN) based on the Sutter Palo Alto Medical Foundation
(PAMF) and the Medical Information Mart for Intensive Care
(MIMIC-III) datasets. The original GAN cannot be directly used
to learn the discrete data of patients. medGAN can handle high-
dimensional multi-label discrete variables (binary and count
variables such as diagnoses, medications, and procedure codes)
by leveraging the autoencoder to overcome the limitation from
the original GAN. The autoencoder learned from real patient
records and the same decoder in autoencoder was used to
construct the discrete output after the generator. The authors
obtained impressive results for discrete variables. Baowaly et al.
(85) synthesized more realistic EHR than those generated
by the medGAN using MIMIC-III, extended MIMIC-III, and
Taiwan National Health Insurance Research Database (NHIRD).
Two synthetic data generation models, Wasserstein GAN with
gradient penalty (WGAN-GP) and boundary-seeking GAN
(BGAN), were applied based on the medGAN framework. These
two GAN models were named as medWGAN and medBGAN,
respectively. The count (the frequency of a specific ICD or
procedure of disease) and binary data (presence or absence of
a specific ICD code) were created using medGAN, medWGAN,
and medBGAN. Their results showed that the two improved

FIGURE 4 | The architecture of LSTM-based GAN in medical informatics.

GANmodels outperformed themedGAN.medBGANperformed
best in these three models.

Yoon et al. (86) used the auxiliary datasets, external datasets
from related but different hospitals, as the noise for a GAN
framework based on the fact that the patient distribution from
one hospital will be better matched by the patient distribution
from another hospital than by random noise such as Gaussian,
enlarging the target dataset effectively. They used 14 studies of
MAGGIC to create target datasets and compared the prediction
performance between the proposed radialGAN, target-only GAN
and benchmarks such as conditional-GAN and starGAN, etc.
Integrating datasets from different hospitals by radialGAN can
improve the performance of target-specific predictive models.

Che et al. (87) used two longitudinal real clinical datasets
of heart failure and diabetes to investigate how well ehrGAN
generated EHR as real samples. The structure of the basic
prediction model was adopted in the discriminator. Based
on the variational contrastive divergence, the generator was
altered for semi-supervised learning setting. Data augmentation
was performed by semi-supervised learning utilizing ehrGAN
to boost risk prediction; thus, generalization capacity and
prediction performance were improved.

Esteban et al. (88) presented a recurrent GAN (RGAN)
and a recurrent conditional GAN (RCGAN) to generate
sequences without/with some conditional inputs. Long Short-
Term Memory (LSTM) was selected as the architecture for both
discriminator and generator. They predicted whether or not a
patient will become “critical” in the near future based on the
four most frequently recorded variables measured by bedside
monitors from Philips eICU database using a method named
“Train on Synthetic, Test on Real” (TSTR). The models trained
on the synthetic dataset from LSTM-based GAN (Figure 4)
achieved performance at times comparable to that of the real data
on the eICU dataset.
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FIGURE 5 | Bioinformatics diagram of GAN.

Li et al. (89) used GAN to predict if a patient has a rare disease.
The log probability of unlabeled data as real data was maximized
and added in the objective function of the discriminator based
on the IQVIA longitudinal prescription and medical claims
database. Compared to the baseline techniques, the prediction
accuracy of the semi-supervised learning framework for rare
disease detection (precision-recall curves and area under the
curve) was 5% higher.

Guan et al. (90) used medical text GAN (mtGAN) to reinforce
the electronic medical record texts. mtGAN is a conditional GAN
that takes designated disease features as input and generates
corresponding EMR text to address privacy issues as well as
inadequate and unbalanced and the insufficient and imbalance
samples problem.

Yang et al. (91) presented a semi-supervised method in
association with GAN to support medical decision making. In
their study, GAN generated synthetic data by taking labeled set as
input. Labels of the unlabeled set were predicted by two learners.
By taking the expanded labeled set as input, GAN was used
again to generate the labeled set. Both expanded labeled set and
synthetic set were used as the training set to be classified based on
the cerebral stroke set collected from IoT-based platform.

Tang et al. (92) proposed a GAN-based method to
automatically retrieve patient questions. Supervised deep
learning-based approaches were used to determine the similarity
between patient questions. Their study showed that fine tuning
with GAN can improve performance. Hassouni et al. (93) used
GAN with LSTM to generate realistic simulation environments
based on the WISDM dataset. Their results showed that the
model trained on the data artificially generated by the GAN had
similar performance trained on real data.

APPLICATION OF GAN IN
BIOINFORMATICS

As a branch of the life science, bioinformatics is a new
multidisciplinary field that understands and organizes

information related to biomolecules through a combination
of disciplines such as applied mathematics, biology, computer
science, and statistics (94). It applies conventional statistics,
modern computer science, machine learning, and other
modeling algorithms to explore large volumes of biological
data, including molecular sequences of DNA, RNA, proteins
and metabolites, and other whole genome data. Bioinformatics
research and applications include analysis of molecular sequence
and genomics data; genome annotation; molecular folding,
modeling, and design; building biological networks; analysis
of the cellular organization and computational evolutionary
biology (95, 96).

One of the most important and difficult issues for
bioinformatics researchers is the accessibility and availability
of large datasets. Though the increased throughput and
technological advances have changed the landscape of
metagenomics, the cost of sequencing is still relatively high. In
addition, since the accessibility of data for research purpose
involves many legal and ethical issues, bioinformatics data
is highly sensitive (97). The lacking of available biological
samples could result in imbalanced datasets, which can lead
to over-fitting problems and poor classification performance.
Recently, researches have used GAN to generate data samples to
overcome these problems (Figure 5). Here, we present some of
bioinformatics application cases (Table 4).

Ghahramani et al. (98) successfully simulated realistic
scRNA-seq data using WGAN-GP, covering diverse scRNA-seq
datasets of various cell types, including mouse epidermal, mouse
neural and human hematopoietic single-cell RNA-seq data
spanning from different laboratories and experimental protocols.
The performance was evaluated at different checkpoints using
t-distributed stochastic neighbor embedding (t-SNE) and the
correlation between real cells and generated cells. As the training
steps increased, the generator was capable of producing cells
mapping to multiple clusters in the t-SNE plot, covering different
cell types, cell states, cell origin and experimental batches present
in the combined real dataset (98). By using the generative model,
the researchers were able to obtain a universal representation
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TABLE 4 | Literatures for the application of GAN in bioinformatics.

References Model Public dataset

Ghahramani et al. (98) Wasserstein-GAN (WGAN)

with gradient penalty loss

function

GSE90848, GSE67602,

GSE99989

Marouf et al. (99) Conditional single-cell

GAN

68,579 PBMCs (healthy

donor A)

Xu et al. (6) Generative adversarial

networks for scRNA-seq

imputation

GSE65525

Li et al. (100) GAN Not applicable

Anand and Huang (101) GAN Protein Data Bank

Killoran et al. (102) GAN Not applicable

Gupta and Zou (103) Feedback GAN Uniprot database

Wang et al. (104) GAN GEO, GTEx, 1000G

RNA-Seq expression data

of epidermal differentiation and the representation features can
be used to predict the effect of cell state perturbations on gene
expression at high temporal resolution. The task of the generator
was to produce realistic output data from a random latent
space vectors z. Corresponding latent space vectors of terminally
differentiated and undifferentiated cells (zdifferentiatedand zbasal)
were obtained according to the correlation between the real
expression profiles and those generated, and the difference
between these vectors was calculated as δ = zdifferentiated − zbasal.
Then 1,000 time points were interpolated between the latent
space differentiation vectors δ (98), so the dynamics of time-
series gene expression over cell differentiation could be explored
using the GANmodel, which cannot be detected by experiments.
By doing so, transiently expressed and subsequently down-
regulated genes associated with the process of differentiation can
be identified. They also performed a sensitivity analysis of the
discriminator network to identify biological state-determining
genes. By analyzing those networks, the authors obtained
regulatory relationships for inferred genes.

Marouf et al. (99) built a single cell GAN model for scRNA-
seq data generation using a Peripheral Blood Mononuclear
Cell (PBMC) scRNA-seq dataset with 68,579 cells. A customed
Library Size Normalization (LSN) function and Fully-Connected
Neural Network with Batch Normalization were used in the
scGAN’s generator to improve training speed and stability.
scGAN was able to model the dependency and correlation of
intergenic, which are a hallmark of biological gene-regulatory
networks. scGAN also captured gene count distributions and
correlations well, and the training time was proportional to the
complexity and size of scRNAseq datasets.

Marouf et al. (99) proposed a conditional scGAN model
(cscGAN) for the realistic generation of single-cell RNA-seq
data. The projection discriminator, along with the Conditional
Batch Normalization and LSN function in the generator, is used
to generate specific cell types of interest while learning multi-
cell type complex data. Conditional generation of cell types
could be used to augment the number of sparse specific cell
populations that might represent only a small part of the total
cells sequenced. However, it may help to solve the class imbalance

problem. Similar to the above research, Wang et al. used CGAN
for inferring target gene expression profiles by incorporating
both adversarial and L1-norm loss terms. Comparative analysis
showed that this model outperformed previous linear methods
in gene expression inference (104).

Xu et al. proposed the GAN for scRNA-seq imputation
(scIGANs), which uses generated realistic rather than observed
cells to avoid the limitations, such as many sources of technical
noises and dropouts, and the powerless for rare cells. ScIGANs
converts the expression profiles of individual cells to images and
feeds them to GAN. The trained generative network produces
expression profiles representing the realistic cells of defined types.
The generated cells, rather than the observed cells, are then used
to impute the dropouts of the real cells (6).

Hi-C is commonly used to study three-dimensional genome
organization. Hong et al. (105) developed a GAN, namely
DeepHiC, to predict high-resolution Hi-C contact maps from
low-coverage sequencing data. DeepHiC can reproduce high-
resolution Hi-C data from as few as 1% down sampled reads.
Application of DeepHiC to Hi-C data on mouse embryonic
development can facilitate chromatin loop detection with
higher accuracy.

Killoran et al. (102) developed a WGAN-based deep
generative network for creating newDNA sequences by encoding
the discrete sequences of characters (the nucleotides A, C, G, T)
into a continuous representation using one-hot encodings. The
authors proposed a joint approach that extends an activation
maximization version by incorporating a trained generator
model on a dataset of 4.6M 50-nucleotide-long sequences
encompassing chromosome 1 of the human genome hg38. This
approach is suitable for discrete sequences such as DNA. They
found that the generative model can learn important structures
from DNA sequences, and can be used to explore and design new
DNA sequences with desired properties (102).

Guptaand Zou (103) proposed a novel feedback-loop
architecture, called Feedback GAN (FBGAN) to optimize
synthetic gene sequences for desired properties using an external
function analyzer. The feedback-loop model consists of two
components, including GAN and a differentiable neural network.
GAN was used to generate novel raw gene sequences. The
differentiable neural network named analyzer converted a
gene sequence into a probability that the sequence encoded
an antimicrobial peptide (AMP). The n top-ranked favorable
generated sequences replaced the oldest n genes present in the
discriminator training dataset. This model was able to generate
synthetic genes coding for peptides of up to 50 amino acids
in length, and the peptides can be optimized for the secondary
alpha-helical structure of the resulting peptides (103).

Anand and Huang (101) applied GAN to generate protein
structures by encoding protein structures in terms of pairwise
distances between α-carbons on the protein backbone by
using data from the Protein Data Bank, and used the
Alternating Direction Method of Multipliers (ADMM) and
Rosetta algorithm to transform 2D pairwise distances into
3D Cartesian coordinates. The authors compared their work
with traditional HMMs-based methods. They found that their
generator model could learn to construct meaningful secondary

Frontiers in Public Health | www.frontiersin.org 10 May 2020 | Volume 8 | Article 164

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Lan et al. GAN in Biomedical Informatics

structure elements such as alpha helices and beta sheets. The
generated maps were highly variable and similar but not identical
to the actual data, indicating that the GAN model was not
just memorizing the training data. Finally, the authors verified
that the generative model can reconstruct missing sections of
corrupted protein structures (101).

Similarly, Yeh et al. (106) also proposed a 2D distance
map representation of protein GAN model to predict particular
missing regions in a protein structure using the idea of image
inpainting. The author used this model to learn the distribution
of a particular loop region with the context of the loop region
from the candidate patch pool and successfully predicted the loop
region (100). Compared to the traditional time-consuming and
expensive experimental methods such as X-ray crystallography
or NuclearMagnetic Resonance (NMR), this GANmodel is more
convenient and time-saving.

Accurate identification of prognostic biomarkers is an
important but challenging goal in bioinformatics. Kim et al.
(107) applied GAN model to specify candidate prognostic gene
module by graph learning algorithms and evaluated genes scores
via a PageRank algorithm using multiple-omics data, including
copy number, gene expression, DNA methylation, and somatic
mutation data from five cancer types. Firstly, they reconstructed
functional interaction networks (FIs network) that included
known pathways in human biology. Then the reconstructed FIs
network was learned by GAN to select features via PageRank
with GAN weights, and finally, the prognosis was predicted.
They successfully identified a number of genes involved in
cancer development and analyzed their roles in biological
pathways. Their model showed better predictive accuracy than
existing methods.

There are some other applications in bioinformatics using
GAN to enhance gene expression classification. Huynh et al.
realized new data generation from original training datasets
through the combination of GANwith nonlinear Support Vector
Machines (SVMs). The results of GAN-SVM model displayed
a better performance than the most advanced classification
methods, including k-nearest neighbors (KNN), SVMs, decision
tree (DTs) of C4.5, and random-forest (RFs) (108). Bhat
et al. proposed a deep generative machine learning architecture
(DeepCancer) to test the ability of GAN in classifying breast
cancer and prostate cancer samples via the features learned by
the discriminator. The results showed that the generative model
achieved a high accuracy score (109).

CONCLUSION

In this article, we briefly introduced the origin, working principle,
the development history of GAN, and numerous applications to
the areas of digital image processing, medical imaging analysis,
medical informatics, and bioinformatics.

In digital image processing, GAN can do image generation,
high-resolution images generation from low-resolution images
and image inpainting, which perform well and are widely used.
Considering too many applications in digital image processing,
due to space limitations, we only selected the articles with

the most citations as the lead application to introduce, which
leads to some applications in the directions of image processing
weren’t introduced comprehensively such as Style migration,
image coloring, etc.

From the application of GAN in medical images, we can
see that GAN-based models provide a good solution for data
shortage in medical image analysis. It can be regarded as one of
the important additions to the manual labeling from radiologists.
The models based on a single GAN are more used as data
augmentation methods to increase the variety and quantity of
images in the same modality. On this basis, Cycle-GAN-based
models make translations between multiple modalities possible.
Involving in segmentation networks within the Cycle-GAN
models, cross-modality segmentations can be learned in an end-
to-end manner. This will effectively promote the application
and development of deep learning algorithms in medical image
analysis. However, GAN or Cycle-GAN still have limitations.
For example, the CT images from the head cannot be generated
from the CT images of the abdomen or MRI images from the
legs. Researchers need to carefully design their data flow and
lost functions to avoid problems such as non-convergence or
model collapse. Additionally, some medical image analysis tasks
require detailed 3D information of the organ. Involving 3D
feature learning or 3D segmentation in the GAN-based model
would be a challenge.

Based on EMR or EHR data, although GAN can generate
realistic synthesized discrete data, continuous data, and even
time series data to solve the issues of fewer labels and
unbalanced classifications in medical informatics, there are
still some limitations. How to evaluate these generated data
and how to apply these generated data to solve medical
problems has been controversial, which requires real data
to validate.

So far, the application of GAN models in bioinformatics
is still in a relatively early stage of development. Most
studies applied GAN to generate and/or augment datasets.
The above results have demonstrated the similarity of the
data generated using GAN models to the original data. Most
machine learning algorithms work well when the number of
cases in each class is roughly equal. So, using the generated
data, we can not only perform a lot of downstream analyses,
such as detecting marker genes, dimensionality reduction
and clustering, and reconstructing a particular secondary
structure, but also decrease the number of human and animal
experiments with a concomitant reduction in experimental
costs, addressing important ethical and financial issues. In
addition, GAN framework can work with any type of
neural networks, so its application in bioinformatics will be
more extensive.

In conclusion, more and more applications of GAN in
biomedical research are being proposed. Some of GANs
such as WGAN, Cycle-GAN, CGAN, medGAN are receiving
more and more attention because of their importance in
biomedical research. Although GAN has its advantages in
simulating various problems, there are also some limitations.
For example, when the sample size is small, the accuracy
of the model will be relatively low. As GAN uses deep
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neural networks as generators, poor interpretability is also a
common problem.
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