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Manual classification of production errors and the allocation of speech/spelling 
scores are time-consuming, laborious and error-prone tasks, even when conducted 
by clinicians and specialized researchers. Here we present sunflower, an R package 
developed to improve the analysis of language production quality for Spanish 
data. The package offers various functions, including (1) managing dataframes 
containing single responses and multiple-attempt responses, (2) conducting 
formal similarity analyses on words as well as positional accuracy data analyses 
within words, and (3) the classification of errors by considering lexicality, formal 
similarity and semantic similarity indexes, which are obtained by means of different 
algorithms and artificial intelligence techniques such as word2vec. The applications 
of sunflower, which is the first open-source package of its kind, include assessing 
whether production quality improves over the course of multiple attempts, and 
identifying which aspects of an individual’s productions are most impacted by 
their impairments. Other potential applications include the analysis of whether 
improvements arise in a patient’s production quality after a given treatment, 
distinguishing between cases of apraxia of speech and conduction aphasia, as 
well as simply using the package to improve and speed up the classification of 
speech/spelling errors with large datasets through automation.

KEYWORDS

R package, Speech Therapy, language assessment, paraphasia classification, language 
production

1 Introduction

The analysis of errors in both spoken and written language is of considerable relevance in 
clinical and experimental contexts within the field of Speech Therapy and (Neuro)psychology 
of Language, from cross-sectional or experimental assessments (e.g., García-Orza et al., 2020; 
Gold and Kertesz, 2001; Goodglass and Wingfield, 1997; Gutiérrez-Cordero and García-Orza, 
submitted) to longitudinal, treatment-related ones in subjects with aphasia or related 
impairments (e.g., Berthier et al., 2018) and those with other speech-language disorders, such 
as stuttering and developmental language disorders (e.g., Einarsdóttir et al., 2024).

These analyses allow for the formulation of specific profiles of patients, rather than simply 
positioning them on a unidimensional scale, which is the usual procedure. They permit a more 
in-depth understanding of the state of individuals’ psycholinguistic mechanisms, and the study 
of errors thus allows us to develop not only better diagnostic or treatment tools, but also to 
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contribute to discussions about models of language production (e.g., 
Dell et al., 1997; Dotan and Friedmann, 2015; Levelt et al., 1999).

To analyze errors, researchers and clinicians typically rely on 
manual transcriptions and subsequent error classifications (e.g., how 
to classify zebra as a response to the presentation of giraffe) or on the 
scoring of production performance (e.g., compute the degree to which 
draft and giraffe are similar). Such forms of analysis are widely seen as 
time-consuming, laborious, and prone to errors, even when carried 
out by clinicians (such as speech therapists and expert 
neuropsychologists) or specialist researchers (e.g., Themistocleous 
et al., 2021).

Furthermore, assessment requires an explicit comparison of the 
participant’s response to a target word, usually letter by letter (or 
phoneme by phoneme if spoken) (e.g., Caramazza and Miceli, 1990); 
to do so, it is also necessary to consider what kind of processes are 
being engaged in the case of misproduction (e.g., deletions, 
substitutions, simplification of consonant clusters, etc.). When 
assessment is manual, there is a great potential for errors to be made 
at this point, including oversights, changes in the criteria during the 
process, the coder’s assumptions or perception-based biases, and 
errors in the computations of metrics (e.g., Kent, 1996).

Formal errors serve as a good example of production errors. 
These are commonly produced by patients with lexical 
impairments, and are errors in which both the response (a real 
word) and the target word share at least 50% of the elements 
therein (phonemes or letters depending on the production 
modality) or simply share the start (initial phoneme/letter) (e.g., 
Gold and Kertesz, 2001; García-Orza et al., 2020; Goodglass and 
Kaplan, 1972). Thus, in the case of producing nonsense for 
nuisance the second criteria is met, and this is straightforward, 
but in the case of intelligence (as response) and development (as 
target) things become more complicated and an explicit test for 
the former criterion is needed. Here, one cannot rely on what is 
apparent to the naked eye (they are not short words like pale and 
cale), essentially because such an analysis is not reliable; instead, 
the proportion of shared letters (psl) should be  computed, 
as follows:

 

2 6 2100 100 52.17%
11 12

SLpsl
NLt NLr

× ×   = × = × =   + +   

where SL is the number of shared letters, NLt is the total number of 
letters in the target word, and NLr is the number of letters in the 
response. Also, 2 is a fixed value indicating that these letters [(3 times) 
e, l, n, t] are present in both words. In this case the computation has 
focused on the orthographic transcription, but clearer results would 
be returned with phonemic (broad) transcriptions [/dɪˈvɛl.əp.mənt/ 
(development) and /nˈtɛl.ɪ.dʒəns/ (intelligence)] in addressing the 
phonological form of these two strings, for which the proportion of 
shared phonemes (psp) would be 63.64% (after removing stress and 
syllable separation marks).

The examples just given are relatively simple, but classifying 
errors can become a somewhat more complicated task. This is the 
case, for example, with semantic errors (e.g., giraffe for hippo) 
and even more so with mixed errors [e.g., /ˈraɪnoʊ/ (rhino) for /
ˈhɪpoʊ/ (hippo)]; in the latter, the clinician/researcher might 
erroneously categorize the error as semantic, even when it also 
“formally” meets the criteria for a formal error (psl = 60% and 

psp = 54.55%) by overlooking the target–response formal 
similarity (example from Nelson et al., 2020).

Turning to the formal analysis of production quality in research 
studies and clinical practice (either by comparing patients’ samples, 
tasks or pre−/post-treatment assessments), measures such as the psl 
and psp described above would continue to be insufficient in that 
they do not offer much information about the productions per se. 
In these cases, other indexes, such as the longest common 
subsequence (lcs) of two strings [e.g., for mangrove (target) and 
mango (response), lcs = mang], the number and proportion of 
correct characters in their corresponding position [the hits for 
mang(rove) are 11110000, 50%], and edit distances, such as 
Damerau–Levenshtein’s [3 (deletion processes in r, v and e) in this 
case] (e.g., Smith et al., 2019), might shed more light on the quality 
and nature of these productions. Such formal indexes can, however, 
be rather difficult, or indeed impossible, to compute by hand, but 
they can be obtained automatically. Relying on this kind of metric, 
more frequently seen in the area of genetics (e.g., Berger et  al., 
2020), makes possible a more exhaustive and reliable assessment of 
spoken and written production (Gutiérrez-Cordero and García-
Orza, in preparation; Haley et  al., 2023; Smith et  al., 2019; 
Themistocleous et al., 2021), offering considerable advantages over 
standard practices that extend to both experimental and 
translational research.

Another facet of studies on production errors is the analysis 
of repeated attempts. Sometimes an individual produces more 
than a single response when presented with a stimulus. Normally, 
the first complete production is the one considered (e.g., 
Laganaro, 2005), but there are occasions in which these verbal 
repetitive behaviors are of special interest (e.g., Joanette et al., 
1980). This is the case, for example, with people who stutter, 
those with apraxia of speech, and those with conduction aphasia; 
such individuals usually offer more than a single response in the 
form of repetitive attempts (RA) (e.g., Ramoo et  al., 2021; 
Gutiérrez-Cordero and García-Orza, in preparation). Focusing 
on the latter type of individuals, who show phonological 
impairments, it is common to find frequent instances of conduite 
d’approche (CdA), a kind of repetitive verbal behavior involving 
successive self-corrective attempts as they try to reach a given 
word (e.g., “unirve, inuv, imurno, unives, universe” for universe) 
(Torres-Prioris et al., 2019). Handling and managing dataframes 
in which multiple responses are provided to some stimuli is 
potentially difficult, although this is a minor issue, one that can 
easily be  addressed by being consistent in collecting and 
registering responses transcriptions in a dataset. It is worth 
noting here that over more than 30 years, the study of repeated 
attempts such as CdAs has received very little attention, this 
probably due at least in part to the practical difficulties in 
addressing the issue (e.g., Joanette et  al., 1980; Marshall and 
Tompkins, 1982; Valdois et al., 1989).

When it comes to categorizing the kind of response produced 
by a participant or patient by deciding whether a given response 
entails a real word or a nonword, and also considering both the 
formal and semantic similarities of such response regarding the 
target word, the task becomes yet more problematic. The best 
approach seems to be to automate these lexicality and formal checks 
for similarity by means of algorithms and to consider the 
relationship of the response with the target words by using AI 
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models (e.g., Salem et al., 2023a; Schnur and Lei, 2022; see also 
Azevedo et  al., 2024, for a review), after which—naturally—the 
outputs should be supervised. To the best of our knowledge, there 
are currently two AI-based studies that focus on the classification 
of errors in single word production assessment in aphasia. Le et al. 
(2017) used automatic speech recognition technology to 
discriminate only between phonemic and neologistic errors, 
whereas Fergadiotis et al. (2016) developed a highly accurate tool 
that was able to categorize formal, semantic, mixed, neologistic and 
unrelated errors.

In the present study we present sunflower, a tool that allows for 
the categorization of responses and errors. The development of this 
tool in the form of an R package is motivated by the need to 
automate and speed up the categorization of verbal/written 
responses as much as possible while also enabling further 
computations related to the formal analysis of speech/spelling 
performance. This is the first work to provide a freely accessible tool 
for this purpose, and is designed specifically for the Spanish 
language. We  hope that this package will help clinicians and 
researchers in their work with dataframes, allowing them to manage 
and deal with large amounts of data in more time-efficient ways, 
computing complex measures, and improving the consistency and 
quality of their practices, all with the final goal of conducting finer 
and more revealing analyses on the resulting data.

2 Methods

2.1 R implementation and dependencies

The sunflower package was developed in the R programming 
language (version 4.2.2—“Innocent and Trusting”; R Core Team, 
2022)1 using the RStudio IDE (version 4da58325, 2024-01-28—“Ocean 
Storm”; RStudio Team, 2024)2, which was chosen due to its widespread 
use in our field, thus ensuring reproducible research.

The dependencies of sunflower are the tidyverse (Wickham, 
2023), whose core comprises packages such as dplyr (Wickham 
et al., 2022), purrr (Wickham and Henry, 2023), stringr (Wickham, 
2022), tibble (Müller and Wickham, 2023), and tidyr (Wickham 
et al., 2024a,b), as well as magrittr (Bache and Wickham, 2022), 
PTXQC, reshape2 (Wickham, 2007), rlang (Henry and Wickham, 
2024), stringdist (van der Loo, 2014), tictoc (Izrailev, 2023) and 
word2vec (Wijffels et al., 2023).

2.2 Repository access and availability

The sunflower R package has been made available in an active 
repository on GitHub,3 but can also be accessed in an associated OSF 
mirror repository.4 In this mirror, we provide some additional files to 
be downloaded, such as in the case of the word2vec model allocated in 
the dependency-bundle zip file, essentially because these are required 

1 http://www.R-project.org/

2 https://posit.co/products/open-source/rstudio/

3 https://github.com/ismaelgutier/sunflower

4 https://osf.io/akuxv/

in order to take full advantage of all the functions we provide with 
sunflower, like those in the Step 3: Classify Errors section.

This package is licensed under the GNU General Public License 
version 3 (GPLv3), see the LICENSE file in the root directory of the 
package for more details.

2.3 Functions provided by the package

The sunflower R package is developed to assist with three main 
tasks, working stepwise:

Step 1: Managing and wrangling data provided by any individual 
involving multiple items and responses, as well as supporting work 
with transcriptions (either orthographic or phonemic) previously 
done regarding responses entailing any number of attempts (as occurs 
in instances of CdA).

Step 2: Computing various measures of formal similarity and 
other related indexes, which are difficult to compute manually, if not 
impossible (e.g., Haley et al., 2023; Themistocleous et al., 2021), as well 
as providing a fine-grained assessment of the positional accuracy of 
assessed material.

Step 3: Conducting a psycholinguistic classification of errors that 
relies on an initial check as to whether the responses produced are real 
words or not (lexicality check), and sorting responses in terms of both 
formal and semantic similarity measures following classical criteria 
established in the field (e.g., Dell et al., 1997).

In the following sections, we describe how to install the package 
and take advantage of its functionalities, along with code examples to 
address the abovementioned tasks and the steps followed to achieve 
them. These steps are also represented in the diagram in Figure 1.

3 Installation

The sunflower R package can be  installed using the following 
command in R: devtools::install_
github(“ismaelgutier/sunflower”). The user should make 
sure that they have the devtools package (Wickham et  al., 2022) 
installed on their machine in order to be able to install sunflower from 
the GitHub repository. If devtools is not installed, the user can do so 
using install.packages(“devtools”). Once the package is 
installed, it can be  loaded to work with the command 
library(“sunflower”).

4 Working with the package

In this section, we present a working example based on the data 
collected by Gutiérrez-Cordero and García-Orza (in preparation) after 
administering a series of tasks. Specifically, the dataset we  begin 
working with in this example is named IGC_sample. For clarity and 
ease of use, a subset of these data has been made available as several 
datasets, with their properties outlined in Table 1. The datasets labeled 
"long" in the table are the direct result of applying the functions 
described in Step 1: Manage Repetitive Attempts to IGC_sample. 
Additionally, the dataset with "phon" in its name contains the 
phonemic (broad) transcriptions of both the items and the responses, 
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TABLE 1 Description of the datasets made available in the package.

Dataframe 
name

Rows Columns Column names Further description

IGC_sample 386 7 ID, task, item_ID, item, response, correct, 

accessed

A portion of the dataset collected by Gutiérrez-Cordero et al. (in 

preparation).

IGC_long_sample 681 8 ID, task, item_ID, item, response, 

accessed, RA, attempt

A portion of the dataset collected by Gutiérrez-Cordero et al. (in 

preparation) is presented in long format, equivalent to the output 

obtained after applying the functions described in Step 1 of the text.

IGC_long_phon_

sample

681 10 ID, task, item_ID, item, response, item_

phon, response_phon, accessed, RA, 

attempt

A portion of the dataset collected by Gutiérrez-Cordero et al. (in 

preparation), which includes columns containing characters in IPA 

notation, was obtained following the process described in Footnote 7.

simulated_sample 75 5 item_ID, item, response, task_name, 

assessment_date

these obtained by means of the procedure detailed in footnote 7. 
Simulated data (simulated_sample) are also included to allow 
users to test the functions presented in subsequent sections.

Users can load any of these datasets using the following lines of 
code, the idea being to work with a dataframe similar to the one 
shown in Figure 2.

Different datasets may be loaded from a personal Excel file 
or other file format. However, it is important that any initial 
dataframe must have the following kinds of data: item (e.g., 
peine), response (e.g., pente, peine), and a group of identifiers 
such as item ID (e.g., 1), task name (e.g., EPLA), or assessment 

date (e.g., 03–11), for example. We  will now show how to  
apply the functions offered by sunflower to this initial  
dataframe.

4.1 Step 1: Manage repetitive attempts

In order to be  able to apply the functions presented in what 
follows, the data must be structured in a specific way. That is, when 
the dataframe contains instances with multiple attempts in the 
response column, as occurs in the “response” column in the 
dataframe we are using here (IGC_sample) (see Figure 2, where 
there is a response with RAs, “talablo, talabro, talabro, taladro, 

FIGURE 1

Steps followed to apply the main functions of the sunflower package. Sim., similarity; Acc., accuracy.

(1)

#df with attempts together
     IGC_sample = sunflower::IGC_sample
#df with separated attempts (after Step 1) and phonemic transcriptions
     IGC_long_phon_sample = sunflower::IGC_long_phon_sample

https://doi.org/10.3389/fpsyg.2025.1538196
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taladro” for the item taladro [drill in Spanish]), this must be submitted 
by means of a data wrangling process which allows the user to split 
such attempts in the same response in different “instances.” The goal 
is to have each response displayed in separate cells across rows (a 
different row for each attempt provided for the word taladro). In 
other words, for any instance of RAs, each attempt in the response 
column must be displayed in a different row rather than within the 
same initial cell (we anticipate that they will appear as shown in 
Figure  3). The user might find it useful to have raw response 

transcriptions in a column, which can later be cleaned—by removing 
annotations or interjections, for example—so they can work with a 
column containing the clean responses in which only the pure 
intended productions are displayed, as occurs in Figure 3. Again, in 
those cases with RAs, the user needs to first separate the cleaned 
responses into different columns using the functions in the package, 
and then convert the data from wide format to long format. This 
process allows for the subsequent computation of formal metrics 
(Step  2: Compute Formal Similarity Measures), as well as for 

FIGURE 2

Initial working dataframe with instances of multiple responses for some items.

FIGURE 3

Long-format transformation of the same items from Figure 2, but with each response on a separate row. In this long-format dataframe it is indicated 
whether a RA has occurred, along with the attempt number within that RA.
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obtaining positional accuracy data (Step  2.1: Conduct Positional 
Accuracy Analysis), and the classification of errors (Step 3: Classify 
Errors) that enable both data visualization and statistical analyses.

To do so, we can proceed in a stepwise manner using a tidyverse 
style that relies on pipes,5 which makes the application of subsequent 
processes easy to understand. In the following code snippet, we first 
separate the responses of the initial dataframe into columns (as 
exemplified in Figure 2) and then directly convert these columns into 
rows, ending up with a long format (as is displayed in Figure  3) 
dataframe to work with.

When applying this code to a dataframe, only two parameters need 
to be defined in the separate_responses() function: the col_
name parameter, which is the column named “response” in our 
dataframe—it is important that the names of columns in our dataframe 
are written with quotation marks in the code; and for the separate_
with parameter, which is the marker used to separate each attempt 
within the same item response [e.g., in our transcription of “talablo, 
talabro, talabro, taladro, taladro” for taladro, we used ”, ” (a comma 
followed by an empty space, which again needs to be defined between 
quotation marks in the code)].

The get_attempts() function does not need any parameters 
to be defined since it works directly with the output columns from the 
separate_responses() function; however, we  recommend 
setting the parameter drop_blank_spaces = TRUE (or T) 
to remove any resulting empty rows being generated by the 
separate_responses() function, which will help to streamline 
the data, making it easier to analyze and report.

The code snippet above will return a new dataframe called df_
long_format_w_attempts with three new columns: (1) a “RA” 
column indicating whether a repeated attempt (in our case a CdA) has 
been produced or not (repetition [1], single response [0]) for a given 
item; (2) another column called “attempt” which indicates how 
many instances these CdAs in the RA column entailed; and (3) a final 
column called “response” showing each single instance of response 
(see Figure 3).6

5 sunflower uses the pipe operator (% > %) from the tidyverse, so it can 

be used to enhance any workflow along with other functions integrated into 

its framework, such as those from dplyr for data wrangling, readr for data 

reading, and ggplot2 for data visualization.

6 To avoid any subsequent problems, we suggest not changing the name of 

the resulting columns as the functions work with some columns as internally 

defined. If they wish, users can rename these columns after computing all the 

metrics and classifying the errors.

4.2 Step 2: Compute formal similarity 
measures

The study of the formal quality of productions in people with 
aphasia and related impairments has attracted considerable attention 
over the last few years. In this section we show how sunflower can 
be used to compute not only the indexes used in recent work here, 
such as the Damerau-Levenshtein distance (e.g., Themistocleous et al., 
2021) or measures derived from it (Smith et al., 2019; Haley et al., 
2023; Gutiérrez-Cordero and García-Orza, in preparation), but also 

some others mentioned above in the Introduction (such as the lcs or 
the proportion of phonemes/letters produced in the correct position).

The sunflower package not only allows for the possibility of 
working with the orthographic transcriptions of responses, but also—
to a certain degree—with their phonemic (broad) transcriptions.7

At this point, a series of formal quality indexes, described in 
Tables 2, 3, can be computed using the responses registered in the 
df_long_format_w_attempts dataset, using the following 
code snippet:

7 A way to work with phonemic transcriptions is to write them directly using 

IPA symbols in an Excel file (or some other file type) or deriving a transcription 

from a previous orthographic one with the added support of audio data for 

reliability. Given the regularity and shallowness of Spanish, this practice is quite 

easy to achieve, but is still rather time consuming. A further alternative is to 

automatically obtain these phonemic transcriptions by using a transcriber, 

such as the IAR-transcriber library (Arias Rodríguez, 2021; https://pypi.org/

project/iar-transcriber/) in Python (Van Rossum and Drake, 2009), on the 

previous orthographic ones, and then supervise the outcome. This procedure 

has been demonstrated to be reliable in the case of a Castilian Spanish patient 

with phonological impairments as described in another study of ours (Gutiérrez-

Cordero and García-Orza, in preparation). In that study we used some of the 

in-development-stage functions of sunflower to work with IPA phonemic 

transcriptions after cleaning them of any possible superscripts and diacritics. 

Note that these are considered as independent elements in the strings to work 

with, and some of them are not recognized by R, so this procedure was 

conducted to keep these transcriptions as simple as possible so that R could 

successfully handle them. We suggest that interested users conduct automatic 

transcriptions of this kind once the dataframe is in long-format (as we did with 

the sunflower::IGC_long_sample dataframe to obtain the sunflower::IGC_

long_phon_sample) in case they want to compute the formal metrics of the 

phonemic transcriptions to ease the procedure of revising and cleaning them 

before computing such metrics. Furthermore, we  recommend that users 

supervise the outputs of transcriptions to ensure their reliability, and hence 

that of subsequent computations.

(2)

df_long_format_w_attempts = IGC_sample %>%
               separate_responses(col_name = "response",
                    separate_with = ", ") %>%
               get_attempts(drop_blank_spaces = TRUE)

https://doi.org/10.3389/fpsyg.2025.1538196
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Where the item_col and response_col parameters refer to 
the columns containing the items and the responses. As previously noted, 
we can use columns that contain either orthographic representations (e.g., 
vaca [cow in Spanish]) or phonemic transcriptions (/baka/). In our case, 
we used the orthographic transcriptions of both items and responses. 
These two columns are essentially the ones to be compared: “item” and 
“response,” respectively. We  then need to specify two further 
parameters that will serve as pivotal identifiers for computing the formal 
similarity indexes: (1) the attempt_col parameter, which is set to 
NULL by default when repeated attempts (the RAs) are not involved, is 

defined as “attempt” in our case. Note that this “attempt” column is 
returned by the functions we applied in Step 1: Managing Repetitive 
Attempts, and it represents both the order and total count of attempts 
within the repeated attempts (RAs) that constitute the CdAs. And (2) the 
group_cols parameter, for which a group of columns (or at least one 
column) must be defined to serve as identifiers. In our case, we used two 
columns, which we refer to as the vector of variables: c(“ID,” “item_
ID”), to ensure the correct organization of the data.

The logic underlying this approach is that we need to arrange the 
dataframe in such a way that we can compute the approach_diff 

TABLE 2 Description of the formal similarity indexes obtained with the get_formal_similarity() function.

Variable Description

targetL Length of the target word string.

responseL Length of the response string.

p_shared_char
The proportion of characters shared between the target and response strings. This ratio is calculated by dividing the number of shared 

characters (multiplied by two to account for their occurrence in both strings) by the total length of the target plus response strings.

p_shared_char_in_pos The proportion of characters shared between the target and response strings in their correct position.

diff_char_num The difference in character counts between the target and response strings.

Ld
The Levenshtein distance (Ld) measures the minimum number of single-character edits, specifically insertions, deletions, or substitutions, 

required to transform one word into another (is represented as an integer).

DLd
The Damerau–Levenshtein distance (DLd) is similar to the Levenshtein distance but also accounts for transpositions of adjacent characters, in 

addition to insertions, deletions, and substitutions, needed to transform one string into another.

JWd
The Jaro–Winkler distance (JWd) measures the edit distance between two strings based on matching characters and transpositions, producing a 

value between 0 (identical strings) and 1 (no similarity) (Winkler, 1990).

pcc
The proportion of correct phonemes (pcc) can be obtained as a measure of direct orthographic or phonemic performance by simply subtracting 

the result of dividing the DLd by the total number of phonemes from 1 (Gutiérrez-Cordero et al., in preparation; Haley et al., 2023).

TABLE 3 Description of the formal similarity indexes obtained with the get_formal_similarity() function (cont.)

Variable Description

lcs
The Longest Common Subsequence is the longest subsequence that can be derived from two strings without changing the order of 

the characters.

similarity_str Similarity vector between target and response strings, with values indicating: M (match), D (deletion), S (substitution), I (insertion).

shared1char A Boolean value indicating whether the target and response strings start with the same character (TRUE) or not (FALSE).

strict_match_pos
A binary string that represents, for each position, whether the characters in the target and response strings match (where 1 = match 

and 0 = unmatch).

adj_strict_match_pos
Represents, like strict_match_pos, the character matches between the target and response strings, but is adjusted to the length of the 

target string.

comment_warning Adds a warning if the response contains spaces or commas, which could indicate repeated attempts (RA) responses.

approach_diff

Measures the change (Δ) in the proportion of correct characters (pcc) between consecutive attempts within each group defined by 

group_cols. Useful for analyzing changes in performance across multiple attempts. This variable is directly dependent on how the 

attempt_col and group_cols parameters are defined.

(3)

df_w_formal_indexes = df_long_format_w_attempts %>%
     get_formal_similarity(
          item_col = "item",
          response_col = "response",
          attempt_col = "attempt",
          group_cols = c("ID", "item_ID"))
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index (see Figure 4). We must group by every possible confounding 
ID variable that could cause issues. For example, for the item tornillo 
in a specific task, we might want to analyze the evolution of the 
second attempt in relation to the first, and similarly for the third 
attempt in relation to the second. Thus, it is crucial to ensure that 
these attempts correspond to the same ID for this specific item 
within a particular task or assessment. If we were to overlook this, 
we might mistakenly compare the #2 attempt of a CdA produced 
during an assessment conducted in November with the #1 attempt 
of a CdA produced in an assessment conducted in August, whereas 
in fact we clearly want to compare the #2 and #1 attempt of the CdAs 
produced in each evaluation independently. If we  set every 
parameter correctly, we  will obtain a new df_w_formal_
indexes with all the indexes described in Tables 2, 3, and shown 
in Figures 4, 5. If the parameters attempt_col and group_
cols are omitted, the similarity measures are calculated without 
considering the approach_diff index.

Alternatively, we  could work using phonemic (broad) 
transcriptions, in that sunflower supports working with IPA symbols 
(see above). Since the phonemic transcriptions are already stored in a 
separate dataframe in long format (i.e., IGC_long_phon_
sample), we will need to load it and specify the relevant columns for 
comparison by setting the item_col and response_col 
parameters to “item_phon” and “response_phon” respectively. 
The remaining parameters (attempt_col and group_cols) 
would stay the same. The code snippet would be as follows, and the 
output would be named df_w_formal_indexes_phon.

Thus far we have processed the initial dataframe and derived formal 
measures for the stimulus–response pairs. At this stage, as shown in 
Figure 1, the workflow diverges into two different paths. Users can either 
perform a positional analysis of the productions (Step 2.1) or continue with 
the steps required for a psycholinguistic classification of errors (Step 3).

4.3 Step 2.1: conduct positional accuracy 
analysis

The positional accuracy analysis provides information on the correct 
production of elements (either letters or phonemes). Positional accuracy 
data can be of great value in the study of speech errors in that it provides 
evidence for the underlying nature of the encoding impairments in 
syndromes such as apraxia of speech and conduction aphasia (Ramoo 
et al., 2021; Gutiérrez-Cordero and García-Orza, in preparation; Romani 
et  al., 2002, 2011). This is particularly relevant when considering 
impairments at the phonemic level related to the phonological encoding 
(Dell, 1986; Dell et al., 1997; or more specifically, the phonological output 
buffer; García-Orza et al., 2020; Gutiérrez-Cordero and García-Orza, 
submitted) or processes which are not in themselves linguistic but are 
linked to articulatory processes, such as the phonetic encoding of 
articulatory programming (Levelt et al., 1999).

In Step 2: Compute Formal Similarity Measures, we showed 
how to obtain two strictly matching position indexes, one raw and 
the other adjusted to the target word’s length. We can use these 
matching strings to obtain the positional accuracy data of each 

FIGURE 4

Long-format dataframe showing the formal indexes computed for orthographic transcriptions (cont.).

(4)

df_w_formal_indexes_phon = sunflower::IGC_long_phon_sample %>%
     get_formal_similarity(
          item_col = "item_phon",
          response_col = "response_phon",
          attempt_col = "attempt",
          group_cols = c("ID", "item_ID"))
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response via the positional_accuracy() function, as shown 
in the following code lines:

In this code, the item_col parameter specifies the column 
containing the items for which we want to assess positional accuracy. 
In this case, they were the orthographic transcriptions of target words, 
whose column was called “item.” The response_col parameter 
refers to the column that contains the responses we are evaluating, 
which is the “response” column in our dataset. This same process 
could be applied to a dataframe containing phonemic transcriptions 
(e.g., df_w_formal_indexes_phon). It would only require 
adjusting the columns to item_phon and response_phon, with 
everything that follows remaining unchanged. The match_col 
parameter reads data from a column that contains the adjusted strict-
matching-position strings, called “adj_strict_match_pos” that 
is obtained in the Step  2: Compute Formal Similarity Measures, 
specifically designed to reflect the positional accuracy of the responses 
relative to the items’ length (see Table 3 for a description).

After applying this function, we obtain a more elongated df_
positional_accuracy, with various new columns related to the 
positional accuracy analysis. Specifically, we  obtain three new 
identifier columns, these called: (1) “position,” which indicates the 
position of the element addressed (either letter or phoneme) taking 
the item string (not the response) as a reference; (2) 

“element_in_item,” which provides the specific element in that 
position in the item; and (3) “element_in_response” that does 
the same for the element in the response string. However, an 
additional fourth column called “correct_pos” will also 
be provided, which indicates whether the element addressed in a given 
position within the target item is produced correctly or not. Likewise, 
other, prior identifiers for each word, such as the “attempt” column 
or “item_ID,” are retained. The output of this process is shown in 
Figure 6, and in a graphical representation in Figure 7.

4.4 Step 3: Classify errors

In this final section we focus on how to conduct the automatic 
classification of errors following the criteria of established typologies 
in the field (e.g., Dell et al., 1997; Gold and Kertesz, 2001; García-Orza 
et  al., 2020). In Table  4 the six different types of errors (plus no 
responses) that sunflower is able to capture are presented.

Before proceeding with the error classification, it is essential to 
provide sunflower with a set of metrics that enable accurate 
classification. This process involves several stages: (1) to verify 
whether the responses in the dataframe are real words by means of 
a lexicality check; (2) to compute formal similarity metrics between 
the target words and the responses (as done in Step 2: Compute 

FIGURE 5

Long-format dataframe showing the formal indexes computed for orthographic transcriptions.

(5)

df_positional_accuracy = df_w_formal_indexes %>%
     positional_accuracy(item_col = "item",
          response_col = "response",
     match_col = "adj_strict_match_pos")

(6)

(m_w2v = word2vec::read.word2vec(file = file.choose(), normalize = F)
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Formal Similarity Measures); and (3) to assess the semantic 
similarity between the target words and responses. While this 
process is straightforward when executed in a pipeline manner, as 
shown in the snippet of code below, some preliminary setup is 
required. Specifically, we need to load a word2vec model to enable 
the correct operation of the get_semantic_similarity() 
function. This can be done using the following line of code before 
proceeding to run the larger code snippet below:

This will lead to a pop-up window on the screen so the user can 
search for the binary (bin) file containing the model and then load it 
into the R environment. The one we use, called sbw_vectors.bin, 
can be found in the dependency-bundle zip allocated in the OSF 
mirror for sunflower (see text footnote 4). Alternatively, it is possible 
to modify the file parameter to read the binary file directly from a 
specified route (e.g., file = “models/sbw_vectors.bin”). 
At this point, we can proceed to obtain the indexes of interest using 

FIGURE 6

Long-format dataframe showing the positional accuracy data (characters produced correctly in their strict position per word and attempt) of a sample 
assessed.

FIGURE 7

Graphical representation of the positional accuracy data of words assessed in different tests.
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the initial dataframe obtained in the Step 2, in order to have one 
response per attempt (df_long_format_w_attempts):

For all the functions in the code above, get_formal_
similarity(), check_lexicality(), and get_semantic_
similarity(), the parameters item_col and response_col 
must be used as specified in the previous steps. With regard to the get_
formal_similarity() function, we set the parameters in the same 
way as we did in Step 2: Compute Formal Similarity Measures. However, 
note that in this case we used the orthographic transcriptions of the items 
and responses rather than their phonemic transcriptions (i.e., the 
“item” and “response” columns). In this step, we also introduced 
two new functions: check_lexicality() and 
get_semantic_similarity().

The check_lexicality() function allows us to verify whether 
the responses provided by an individual correspond to real Spanish 
words or not. This verification process requires a reliable reference source 
for comparison. Depending on the specified criterion, we have two 
options: (1) the “dictionary” criterion works by checking if a 
response is a word present in a pre-loaded wordlist of the Real Academia 
de la Lengua Española (RAE) dictionary (the one made available by 
Dueñas-Lerín, 2024, version 2024-05-22)8 and thus categorizing the 
response as lexical or non-lexical; (2) the “database” criterion works 

8 https://github.com/JorgeDuenasLerin/diccionario-espanol-txt

by checking if the response is a word registered in the Spanish linguistic 
database BuscaPalabras (BPal; Davis and Perea, 2005), and when it is 
available there, comparing its frequency (the LOG10_FRQ from BPal) to 
that of the item that is the target word being assessed. Both methods 
provide a systematic way of determining the lexicality of responses, 
which is crucial for accurate error classification in language production 
tasks. The choice between these criteria depends on the specific 
requirements of the research or clinical application. In the former case, 
a response is considered lexical when it is present in the wordlist. In the 
latter case, the lexicality of the response is determined by two factors: it 
must be available in the database and have a higher frequency than the 
item in question. In any other scenario, it is classified as a non-lexical 
production. This function creates a column called lexicality, which 
indicates whether the response is lexical (1) or not (0).

The get_semantic_similarity() function makes it possible 
to measure the semantic similarity between the target and a response 
when the latter is a word. This function relies on a natural language 
processing technique, word2vec, a two-layer neural network model 
developed by researchers at Google (see Mikolov et al., 2013)9 that takes 
a raw text corpus as input and generates word representations 
(embeddings) as vectors in a multidimensional space. word2vecthen 
learns the semantic and syntactic relations of the words within the corpus; 
this approach has been shown to be effective across diverse semantic tasks 

9 https://code.google.com/archive/p/word2vec/

TABLE 4 Types of errors that sunflower considers regarding speech production.

Error type Description Example

No response No attempt to produce a response.

Phonemic Nonword phonologically related to the target word. It contains at least 50% of the phonemes of the target word. Tagle for Table

Neologism Nonword phonologically related to the target word. It contains less than 50% of the phonemes of the target word. Timos for Table

Unrelated Real word that is not related semantically or phonologically to the target word. Sneaker for Table

Formal
Real word phonologically related to the target word. It either starts with the same phoneme/letter or contains at least 

50% of the phonemes/letters with the target word.
Truck for Table

Semantic Real word that is semantically related to the target word. Chair for Table

Mixed Real word that is both phonologically and semantically related to the target word, meeting the criteria for both errors. Furnace for Furniture

A response is considered phonologically related if it shares at least 50% of the phonemes with the target word (i.e., sunflower’s p_shared_char index ≥ 0.5). A response is deemed semantically 
related when the semantic similarity, measured as cosine similarity (i.e., cosine_similarity index), is equal to or greater than the cosine limit value (cosine_limit_value parameter) defined in the 
classify_errors() function (see description of Step 3: Classify Errors).

(7)

df_w_all_checks_and_indexes = df_long_format_w_attempts %>%
          get_formal_similarity(item_col = "item",
               response_col = "response",
               attempt_col = "attempt",
               group_cols = c("ID", "item_ID")) %>%
          check_lexicality(item_col = "item",
               response_col = "response",
               criterion = "database") %>%
          get_semantic_similarity(item_col = "item",
               response_col = "response",
               model = m_w2v)
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(see Kumar, 2021 for a comprehensive review) and its ability to consider 
the semantic similarity of words is helpful for error categorization, as 
demonstrated in other studies (Fergadiotis et al., 2016). Models of these 
kinds determine the relationship by calculating the cosine similarity 
between the representations of the vectors of two given words, and the 
more proportional the vectors of the two, the higher cosine similarity and 
the more semantically similar they are. Neither we nor users are required 
to build one of these models; rather, we can load one of the preexisting 
ones available online. This is what we did with the previous line of code 
used to run the read.word2vec() function from the word2vec 
package. In our case, we used the vectors contained in the Spanish Billion 
Word Corpus and Embeddings (see Cardellino, 2016, for further 
details),10 which was called by defining the model parameter as m_w2v 
with the get_semantic_similarity() function; note that this 
model’s name is not written within quotations as it is not the name of a 
column, but rather an independent object loaded in R.

With the get_semantic_similarity() function 
sunflower generates a cosine_similarity column that contains 
the cosine similarity between the vectors of the words in question, in 
our case the ones provided in the target_col and response_
col parameters. Cosine similarity measures might be  contained 
within a [−1,1] interval, but the model we employ uses a [0,1] interval 
to represent semantic relationships (as in the model used by Salem 
et al., 2023b), where 0 indicates no semantic association and values 
near to 1 indicate high semantic similarity values. The user must 
be aware of this in case they are using a different word2vec model, as 
they would hence need to adjust certain parameters, such as the 
cosine_limit_value in the function presented in the following 
code snippet.

Once we  have loaded the word2vec model and obtained the 
pertinent measures by running a check with the check_
lexicality(), get_formal_similarity() and get_
semantic_similarity() functions, we already have a dataframe 
such as df_w_all_checks_and_indexes that is optimal in terms 
of allowing us to classify the errors.

We note that we  have developed two classification functions 
tailored to work with datasets containing RAs or individual responses. 
The first function, classify_errors(), allows for error 

classification while optionally considering RAs, offering greater 
flexibility through a larger set of configurable parameters. The second 
function, classify_errors_regular(), is specifically 

10 https://crscardellino.github.io/SBWCE/

designed for individual responses, disregarding RAs entirely, and 
resulting in a simpler setup with fewer parameters. Starting with the 
former, classify_errors(), error classification can be achieved 
by running the following code snippet:

When the access_col parameter refers to whether the produced 
response was annotated as successful or not. This might be done manually 
by the user or automatically by adding another line to the code, such as a 
conditional statement, returning 1 if the item and response are equal, or 
0 if they are not (see the third line in the following code snippet). The 
parameter RA_col indicates whether or not the production is a RA such 
as a CdA (RA [1], single response [0]); in our case this was the RA column 
obtained in the previous steps. The item_col and response_col 
are the same as those used in the previous steps. The parameter also_
classify_RAs here is set as TRUE (or T) to allow the function to work 
by considering the classification of productions within the RAs (when 
value in “RA” is 1) as any of the 6 possible error categories (nonword, 
neologism, formal, unrelated, mixed, semantic). However, it can be set as 
FALSE (or F) so the function will leave the productions within the RAs 
(when value in the “RA” is 0) unclassified.

The classify_errors() function also uses a parameter called 
cosine_limit_value. This parameter is used to classify items and 
responses as semantically similar or not, based on whether the cosine 
similarity value provided by the get_semantic_similarity() 
function (i.e., w2v_cos) exceeds a specified threshold. As mentioned 
earlier, in our model, the w2v_cos values are bound within the range [0, 
1] (although other models may define the bounds within the interval [−1, 
1], and in such cases the cosine_limit_value parameter should 
be adjusted accordingly.). In our package, this parameter is set to 0.46 by 
default, although it can be adjusted to make the classification process more 
or less stringent. In their study, for example, Salem et al. (2023b) used the 
slightly higher threshold of 0.55. While this value may appear stricter, it 
aligns with the classification criteria used in their research. Note that Salem 
et al. (2023b) and our study use different stimulus–response pair samples, 
different languages (theirs being English, ours Spanish), and the models 
were trained on distinct datasets. As a result, the cosine similarity values—
while always bound within [0, 1]—may differ in how they represent word 
representations and their relationships. Naturally, this may lead to 
differences in determining whether pairs are semantically related. 

Although there is no consensus on this matter, setting the threshold to 
around 0.50 would be a safe practice toward reliably detecting relationships. 
Nonetheless, we remind users that it can and should be adjusted to meet 
their specific criteria. Additionally, it is important to note that the get_
semantic_similarity() function returns an NA value for the 
cosine similarity, w2v_cos, when either the item or the response to 
be considered is NA.

(8)

dataframe_w_classified_errors = df_w_all_checks_and_indexes %>%
     classify_errors(access_col = "accessed",
          RA_col = "RA",
          response_col = "response",
          item_col = "item",
          also_classify_RAs = TRUE,
          cosine_limit_value = 0.46)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://crscardellino.github.io/SBWCE/


Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 13 frontiersin.org

Finally, we obtain a final dataframe, which here we have named df_w_
classified_errors, with a series of columns displaying the desired 
error classification conducted with sunflower: nonword, neologism, formal, 
unrelated, mixed, and semantic, but also no responses. We also obtain a 
check_comment column that flags responses as “required” in case 
they need to be explicitly addressed manually when no possible classification 
can be made (i.e., when the value is zero in all the nonword, neologism, 
formal, unrelated, mixed, and semantic columns) or, on the 
other hand, when a multiple classification is made (when the response has 
been classified as an error in more than one column). Additionally, it 
provides the comment “is only considered as RA” for responses 

contained in RA instances when the also_classify_RAs parameter 
is set as FALSE. Otherwise, being set as TRUE, it remains empty. The 
classification obtained here is shown in Figure 8.

As a side note, users can achieve the same result by chaining 
multiple functions instead of generating new data frames at each step. 

This approach is particularly suited for those with advanced expertise 
in R or familiarity with the package. In the following code snippet, the 
process begins with the initial data frame (IGC_sample) and uses a 
stacked approach to produce the same df_w_classified_errors 
(but _stacked in this case).

As mentioned above, we also developed a second version of 
this function for cases where the user wishes to classify single 
errors (i.e., without RAs) in a more traditionally organized 
dataframe. This is the classify_errors_regular() which 
allows us to work without considering the RA_col and also_

classify_RAs parameters of the other function. This 
simplifies the code by relying on fewer parameters. In the 
following code snippet, we provide a hypothetical case in which 
we work with no RAs after filtering them out of our dataframe 
using the dplyr package:

FIGURE 8

Dataframe displaying the errors classified by using the sunflower package.

(9)

df_w_classified_errors_stacked = IGC_sample %>%
     separate_responses(col_name = "response",
          separate_with = ", ") %>%
     get_attempts(drop_blank_spaces = TRUE) %>%
     get_formal_similarity(item_col = "item",
          response_col = "response",
          attempt_col = "attempt",
          group_cols = c("ID", "item_ID")) %>%
     check_lexicality(item_col = "item",
          response_col = "response",
          criterion = "database") %>%
     get_semantic_similarity(item_col = "item",
          response_col = "response",
          model = m_w2v) %>%
     classify_errors(access_col = "accessed",
          RA_col = "RA",
          response_col = "response",
          item_col = "item",
          also_classify_RAs = TRUE,
          cosine_limit_value = 0.46)
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Thus far, we  have showcased several features of the sunflower 
package, from data wrangling of multiple responses to error classification. 
Users can find additional example code in the vignettes available on 
GitHub at https://github.com/ismaelgutier/sunflower. A detailed guided 
tutorial is also accessible and can be downloaded directly from our OSF 
repository via the following link: https://osf.io/urz4y.

5 Discussion

In this paper we present sunflower, an R package that allows for 
the handling of large dataframes not only to obtain various measures 
related to the quality of productions from a patient or participant 
transcription, but also to serve as an automatic classifier of the errors 
made by them.

The value of this tool lies in the handling of dataframes that 
contain RAs, such as the CdAs typically produced by patients with 
aphasia, especially conduction aphasia, by children with language 
disabilities, and by persons who stutter. It allows for the study of the 
formal qualities of these productions by obtaining multiple complex 
measures based on algorithms that are more informative than those 
that, with significant effort, can be calculated manually by clinicians 
or researchers. Additionally, it enables the exploration in depth of the 
quality of productions at a fine-grained level—phonemes when 
working with phonemic transcriptions or letters when using 
orthographic transcriptions.

Likewise, the present software is able to test the lexicality of 
productions on the basis of preexisting Spanish wordlists and 
databases, and can produce semantic similarity measures by using 
pretrained AI models, namely those based on the word2vec technique, 
for the subsequent classification of production errors following 
established criteria in the field.

Previous studies have shown how tools of this kind can be used 
to classify errors and how such procedures are indeed reliable (e.g., 
Fergadiotis et al., 2016; Salem et al., 2023a; Schnur and Lei, 2022). 
Unfortunately, they do not publicly share the tools they develop 
and use so that others can conduct additional work using them. 
Our package is designed not only to provide this, but also to offer 
the possibility of conducting a formal analysis of words. It is 
developed in Spanish, a language that has not been the focus of a 
great deal of work of this kind. It is designed so that both 
researchers and clinicians (neuropsychologists and speech 
therapists), who often do not have extensive programming 
knowledge, can access a comprehensive tool for studying language 
production errors. This tool also allows them to perform statistical 
analyses based on the outputs obtained.

The limitations are clear: in order to apply some of its functions, 
the package relies on databases, dictionaries, and pre-trained models, 
which may affect the quality of its performance. However, users are 
not limited to using the dependencies we cite in the text or in our 
own repositories and can, for example, load their own trained 
models. In all cases, the outputs should be supervised by an expert, 
especially during the final stage of the process, where the word2vec 
model and its ability to represent semantics come into play. While 
earlier stages rely primarily on algorithms that work with formal 
representations that leave little room for ambiguity, word2vec focuses 
on learning the relationships between words within the corpus, 
mapping them to multiple internal dimensions of the model. 
Although the word2vec technique has proved to be  effective in 
various semantic tasks (Kumar, 2021), the material on which these 
models are trained means that word representations are not always 
identical, and variations may arise when comparing them to human 
logic and reasoning, particularly when interpreting relationships 
between specific word pairs (e.g., stimulus–response). These may not 
always perfectly match human classification criteria. Therefore, 
careful supervision at this stage is crucial to ensure that results 
remain consistent and of high quality. Like any flower, sunflower will 
bloom best when provided with quality soil and when it receives 
careful attention from a gardener.

In sum, we offer a tool that is accessible to everyone, allowing 
it to be used for tasks such as the focused study of production 
quality, the effect of treatments on error production, and the better 
diagnosis and study of various conditions, including aphasia, 
apraxia, stuttering and developmental speech sound disorders.

Future possible directions of this project include extending the 
development of the package to other languages. In its present form 
the sunflower package is designed to be used with Spanish stimuli, 
yet adapting it to any other language would be feasible. Indeed, for 
the initial steps related to data wrangling (Step  1) and the 
computation of formal quality indexes (Step 2), there is no need to 
change anything. Regarding Step 3, which is conceived to include 
a lexicality check procedure, as well as the computation of the 
abovementioned formal quality indexes and a semantic similarity 
index, small changes to the code and dependencies could be made 
to allow users to work with data from different languages. 
Adaptation work here would involve finding equivalent databases 
and corpus- or dictionary-based wordlists, as well as to set use 
other word2vec models to allow the lexicality check and the 
semantic similarity cosine computation.

We hope that sunflower proves to be a useful resource, and that 
it lightens the workload of coding errors for other researchers as it 
has for us.

(10)

df_w_classified_errors_noRAs = df_w_all_checks_and_indexes %>%
     dplyr::filter(RA == 0) %>%
     dplyr::mutate(accessed = ifelse(item == response, 1, 0)) %>%
     classify_errors_regular(access_col = "accessed",
          response_col = "response",
          item_col = "item",
          cosine_limit_value = 0.46)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://github.com/ismaelgutier/sunflower
https://osf.io/urz4y
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Software basic requirements

sunflower is freely available at GitHub (https://github.com/
ismaelgutier/sunflower) and its mirror OSF (https://osf.io/akuxv/); 
operating system(s): Windows; programming language: R; 
dependencies: tidyr, dplyr, tidyverse, reshape2, stringdist, stringr, 
PTXQC, tibble, tictoc, magrittr, purrr, rlang, stats, word2vec. The 
installation packages for all the required software are available at the 
sunflower repositories. A dependency bundle with some “additional” 
source files to work (in Step  3: Classify Errors) is provided at 
OSF. Users do not need to download the required software 
individually. The sunflower home page also provides users with 
examples for reference. There are no restrictions on non-academic 
use; in fact, such use is encouraged.

Registration

The registration of sunflower was made in OSF (https://osf.io/
bw4az) to clarify its motivation in advance and to assist in preserving 
the essence of the project throughout its development and maintenance.

A portion of Gutiérrez-Cordero and García-Orza’s (in 
preparation) data was analyzed in this study as an example. Other 
sample data made available to test the functions of sunflower are 
provided with the package, and other supplementary data can 
be  accessed through the GitHub repository (https://github.com/
ismaelgutier/sunflower) or directly through the mirror repository at 
OSF (https://osf.io/akuxv/).

Data availability statement

The registration of sunflower was made in OSF (https://osf.io/bw4az) 
to clarify its motivation in advance and to assist in preserving the essence 
of the project throughout its development and maintenance. A portion of 
Gutiérrez-Cordero and García-Orza’s (in preparation) data was 
analyzed in this study as an example. Other sample data made available 
to test the functions of sunflower are provided with the package, and other 
supplementary data can be accessed through the GitHub repository 
(https://github.com/ismaelgutier/sunflower) or directly through the 
mirror repository at OSF (https://osf.io/akuxv/).
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