
Frontiers in Psychology 01 frontiersin.org

sunflower: an R package for
handling multiple response
attempts and conducting error
analysis in aphasia and related
disorders
Ismael Gutiérrez-Cordero 1,2,3* and Javier García-Orza 1,2,4

1 Numerical Cognition Lab, Universidad de Málaga, Málaga, Spain, 2 Department of Basic Psychology,
Universidad de Málaga, Málaga, Spain, 3 Cognitive Neurology and Aphasia Unit, Centro de
Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain, 4 Instituto de
Investigación Biomédica de Málaga (IBIMA), Málaga, Spain

Manual classification of production errors and the allocation of speech/spelling
scores are time-consuming, laborious and error-prone tasks, even when conducted
by clinicians and specialized researchers. Here we present sunflower, an R package
developed to improve the analysis of language production quality for Spanish
data. The package offers various functions, including (1) managing dataframes
containing single responses and multiple-attempt responses, (2) conducting
formal similarity analyses on words as well as positional accuracy data analyses
within words, and (3) the classification of errors by considering lexicality, formal
similarity and semantic similarity indexes, which are obtained by means of different
algorithms and artificial intelligence techniques such as word2vec. The applications
of sunflower, which is the first open-source package of its kind, include assessing
whether production quality improves over the course of multiple attempts, and
identifying which aspects of an individual’s productions are most impacted by
their impairments. Other potential applications include the analysis of whether
improvements arise in a patient’s production quality after a given treatment,
distinguishing between cases of apraxia of speech and conduction aphasia, as
well as simply using the package to improve and speed up the classification of
speech/spelling errors with large datasets through automation.

KEYWORDS

R package, Speech Therapy, language assessment, paraphasia classification, language
production

1 Introduction

The analysis of errors in both spoken and written language is of considerable relevance in
clinical and experimental contexts within the field of Speech Therapy and (Neuro)psychology
of Language, from cross-sectional or experimental assessments (e.g., García-Orza et al., 2020;
Gold and Kertesz, 2001; Goodglass and Wingfield, 1997; Gutiérrez-Cordero and García-Orza,
submitted) to longitudinal, treatment-related ones in subjects with aphasia or related
impairments (e.g., Berthier et al., 2018) and those with other speech-language disorders, such
as stuttering and developmental language disorders (e.g., Einarsdóttir et al., 2024).

These analyses allow for the formulation of specific profiles of patients, rather than simply
positioning them on a unidimensional scale, which is the usual procedure. They permit a more
in-depth understanding of the state of individuals’ psycholinguistic mechanisms, and the study
of errors thus allows us to develop not only better diagnostic or treatment tools, but also to

OPEN ACCESS

EDITED BY

Isabel Fraga,
University of Santiago de Compostela, Spain

REVIEWED BY

Alberto J. González-Villar,
University of Minho, Portugal
David Gallego,
University of Santiago de Compostela, Spain

*CORRESPONDENCE

Ismael Gutiérrez-Cordero
 igtezcordero@uma.es

RECEIVED 02 December 2024
ACCEPTED 14 January 2025
PUBLISHED 14 February 2025

CITATION

 Gutiérrez-Cordero I and García-Orza J (2025)
sunflower: an R package for handling multiple
response attempts and conducting error
analysis in aphasia and related disorders.
Front. Psychol. 16:1538196.
doi: 10.3389/fpsyg.2025.1538196

COPYRIGHT

© 2025 Gutiérrez-Cordero and García-Orza.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Technology and Code
PUBLISHED 14 February 2025
DOI 10.3389/fpsyg.2025.1538196

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1538196&domain=pdf&date_stamp=2025-02-14
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1538196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1538196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1538196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1538196/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1538196/full
mailto:igtezcordero@uma.es
https://doi.org/10.3389/fpsyg.2025.1538196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1538196

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 02 frontiersin.org

contribute to discussions about models of language production (e.g.,
Dell et al., 1997; Dotan and Friedmann, 2015; Levelt et al., 1999).

To analyze errors, researchers and clinicians typically rely on
manual transcriptions and subsequent error classifications (e.g., how
to classify zebra as a response to the presentation of giraffe) or on the
scoring of production performance (e.g., compute the degree to which
draft and giraffe are similar). Such forms of analysis are widely seen as
time-consuming, laborious, and prone to errors, even when carried
out by clinicians (such as speech therapists and expert
neuropsychologists) or specialist researchers (e.g., Themistocleous
et al., 2021).

Furthermore, assessment requires an explicit comparison of the
participant’s response to a target word, usually letter by letter (or
phoneme by phoneme if spoken) (e.g., Caramazza and Miceli, 1990);
to do so, it is also necessary to consider what kind of processes are
being engaged in the case of misproduction (e.g., deletions,
substitutions, simplification of consonant clusters, etc.). When
assessment is manual, there is a great potential for errors to be made
at this point, including oversights, changes in the criteria during the
process, the coder’s assumptions or perception-based biases, and
errors in the computations of metrics (e.g., Kent, 1996).

Formal errors serve as a good example of production errors.
These are commonly produced by patients with lexical
impairments, and are errors in which both the response (a real
word) and the target word share at least 50% of the elements
therein (phonemes or letters depending on the production
modality) or simply share the start (initial phoneme/letter) (e.g.,
Gold and Kertesz, 2001; García-Orza et al., 2020; Goodglass and
Kaplan, 1972). Thus, in the case of producing nonsense for
nuisance the second criteria is met, and this is straightforward,
but in the case of intelligence (as response) and development (as
target) things become more complicated and an explicit test for
the former criterion is needed. Here, one cannot rely on what is
apparent to the naked eye (they are not short words like pale and
cale), essentially because such an analysis is not reliable; instead,
the proportion of shared letters (psl) should be computed,
as follows:

2 6 2100 100 52.17%
11 12

SLpsl
NLt NLr

× × = × = × = + +

where SL is the number of shared letters, NLt is the total number of
letters in the target word, and NLr is the number of letters in the
response. Also, 2 is a fixed value indicating that these letters [(3 times)
e, l, n, t] are present in both words. In this case the computation has
focused on the orthographic transcription, but clearer results would
be returned with phonemic (broad) transcriptions [/dɪˈvɛl.əp.mənt/
(development) and /nˈtɛl.ɪ.dʒəns/ (intelligence)] in addressing the
phonological form of these two strings, for which the proportion of
shared phonemes (psp) would be 63.64% (after removing stress and
syllable separation marks).

The examples just given are relatively simple, but classifying
errors can become a somewhat more complicated task. This is the
case, for example, with semantic errors (e.g., giraffe for hippo)
and even more so with mixed errors [e.g., /ˈraɪnoʊ/ (rhino) for /
ˈhɪpoʊ/ (hippo)]; in the latter, the clinician/researcher might
erroneously categorize the error as semantic, even when it also
“formally” meets the criteria for a formal error (psl = 60% and

psp = 54.55%) by overlooking the target–response formal
similarity (example from Nelson et al., 2020).

Turning to the formal analysis of production quality in research
studies and clinical practice (either by comparing patients’ samples,
tasks or pre−/post-treatment assessments), measures such as the psl
and psp described above would continue to be insufficient in that
they do not offer much information about the productions per se.
In these cases, other indexes, such as the longest common
subsequence (lcs) of two strings [e.g., for mangrove (target) and
mango (response), lcs = mang], the number and proportion of
correct characters in their corresponding position [the hits for
mang(rove) are 11110000, 50%], and edit distances, such as
Damerau–Levenshtein’s [3 (deletion processes in r, v and e) in this
case] (e.g., Smith et al., 2019), might shed more light on the quality
and nature of these productions. Such formal indexes can, however,
be rather difficult, or indeed impossible, to compute by hand, but
they can be obtained automatically. Relying on this kind of metric,
more frequently seen in the area of genetics (e.g., Berger et al.,
2020), makes possible a more exhaustive and reliable assessment of
spoken and written production (Gutiérrez-Cordero and García-
Orza, in preparation; Haley et al., 2023; Smith et al., 2019;
Themistocleous et al., 2021), offering considerable advantages over
standard practices that extend to both experimental and
translational research.

Another facet of studies on production errors is the analysis
of repeated attempts. Sometimes an individual produces more
than a single response when presented with a stimulus. Normally,
the first complete production is the one considered (e.g.,
Laganaro, 2005), but there are occasions in which these verbal
repetitive behaviors are of special interest (e.g., Joanette et al.,
1980). This is the case, for example, with people who stutter,
those with apraxia of speech, and those with conduction aphasia;
such individuals usually offer more than a single response in the
form of repetitive attempts (RA) (e.g., Ramoo et al., 2021;
Gutiérrez-Cordero and García-Orza, in preparation). Focusing
on the latter type of individuals, who show phonological
impairments, it is common to find frequent instances of conduite
d’approche (CdA), a kind of repetitive verbal behavior involving
successive self-corrective attempts as they try to reach a given
word (e.g., “unirve, inuv, imurno, unives, universe” for universe)
(Torres-Prioris et al., 2019). Handling and managing dataframes
in which multiple responses are provided to some stimuli is
potentially difficult, although this is a minor issue, one that can
easily be addressed by being consistent in collecting and
registering responses transcriptions in a dataset. It is worth
noting here that over more than 30 years, the study of repeated
attempts such as CdAs has received very little attention, this
probably due at least in part to the practical difficulties in
addressing the issue (e.g., Joanette et al., 1980; Marshall and
Tompkins, 1982; Valdois et al., 1989).

When it comes to categorizing the kind of response produced
by a participant or patient by deciding whether a given response
entails a real word or a nonword, and also considering both the
formal and semantic similarities of such response regarding the
target word, the task becomes yet more problematic. The best
approach seems to be to automate these lexicality and formal checks
for similarity by means of algorithms and to consider the
relationship of the response with the target words by using AI

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 03 frontiersin.org

models (e.g., Salem et al., 2023a; Schnur and Lei, 2022; see also
Azevedo et al., 2024, for a review), after which—naturally—the
outputs should be supervised. To the best of our knowledge, there
are currently two AI-based studies that focus on the classification
of errors in single word production assessment in aphasia. Le et al.
(2017) used automatic speech recognition technology to
discriminate only between phonemic and neologistic errors,
whereas Fergadiotis et al. (2016) developed a highly accurate tool
that was able to categorize formal, semantic, mixed, neologistic and
unrelated errors.

In the present study we present sunflower, a tool that allows for
the categorization of responses and errors. The development of this
tool in the form of an R package is motivated by the need to
automate and speed up the categorization of verbal/written
responses as much as possible while also enabling further
computations related to the formal analysis of speech/spelling
performance. This is the first work to provide a freely accessible tool
for this purpose, and is designed specifically for the Spanish
language. We hope that this package will help clinicians and
researchers in their work with dataframes, allowing them to manage
and deal with large amounts of data in more time-efficient ways,
computing complex measures, and improving the consistency and
quality of their practices, all with the final goal of conducting finer
and more revealing analyses on the resulting data.

2 Methods

2.1 R implementation and dependencies

The sunflower package was developed in the R programming
language (version 4.2.2—“Innocent and Trusting”; R Core Team,
2022)1 using the RStudio IDE (version 4da58325, 2024-01-28—“Ocean
Storm”; RStudio Team, 2024)2, which was chosen due to its widespread
use in our field, thus ensuring reproducible research.

The dependencies of sunflower are the tidyverse (Wickham,
2023), whose core comprises packages such as dplyr (Wickham
et al., 2022), purrr (Wickham and Henry, 2023), stringr (Wickham,
2022), tibble (Müller and Wickham, 2023), and tidyr (Wickham
et al., 2024a,b), as well as magrittr (Bache and Wickham, 2022),
PTXQC, reshape2 (Wickham, 2007), rlang (Henry and Wickham,
2024), stringdist (van der Loo, 2014), tictoc (Izrailev, 2023) and
word2vec (Wijffels et al., 2023).

2.2 Repository access and availability

The sunflower R package has been made available in an active
repository on GitHub,3 but can also be accessed in an associated OSF
mirror repository.4 In this mirror, we provide some additional files to
be downloaded, such as in the case of the word2vec model allocated in
the dependency-bundle zip file, essentially because these are required

1 http://www.R-project.org/

2 https://posit.co/products/open-source/rstudio/

3 https://github.com/ismaelgutier/sunflower

4 https://osf.io/akuxv/

in order to take full advantage of all the functions we provide with
sunflower, like those in the Step 3: Classify Errors section.

This package is licensed under the GNU General Public License
version 3 (GPLv3), see the LICENSE file in the root directory of the
package for more details.

2.3 Functions provided by the package

The sunflower R package is developed to assist with three main
tasks, working stepwise:

Step 1: Managing and wrangling data provided by any individual
involving multiple items and responses, as well as supporting work
with transcriptions (either orthographic or phonemic) previously
done regarding responses entailing any number of attempts (as occurs
in instances of CdA).

Step 2: Computing various measures of formal similarity and
other related indexes, which are difficult to compute manually, if not
impossible (e.g., Haley et al., 2023; Themistocleous et al., 2021), as well
as providing a fine-grained assessment of the positional accuracy of
assessed material.

Step 3: Conducting a psycholinguistic classification of errors that
relies on an initial check as to whether the responses produced are real
words or not (lexicality check), and sorting responses in terms of both
formal and semantic similarity measures following classical criteria
established in the field (e.g., Dell et al., 1997).

In the following sections, we describe how to install the package
and take advantage of its functionalities, along with code examples to
address the abovementioned tasks and the steps followed to achieve
them. These steps are also represented in the diagram in Figure 1.

3 Installation

The sunflower R package can be installed using the following
command in R: devtools::install_
github(“ismaelgutier/sunflower”). The user should make
sure that they have the devtools package (Wickham et al., 2022)
installed on their machine in order to be able to install sunflower from
the GitHub repository. If devtools is not installed, the user can do so
using install.packages(“devtools”). Once the package is
installed, it can be loaded to work with the command
library(“sunflower”).

4 Working with the package

In this section, we present a working example based on the data
collected by Gutiérrez-Cordero and García-Orza (in preparation) after
administering a series of tasks. Specifically, the dataset we begin
working with in this example is named IGC_sample. For clarity and
ease of use, a subset of these data has been made available as several
datasets, with their properties outlined in Table 1. The datasets labeled
"long" in the table are the direct result of applying the functions
described in Step 1: Manage Repetitive Attempts to IGC_sample.
Additionally, the dataset with "phon" in its name contains the
phonemic (broad) transcriptions of both the items and the responses,

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://www.R-project.org/
https://posit.co/products/open-source/rstudio/
https://github.com/ismaelgutier/sunflower
https://osf.io/akuxv/

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 04 frontiersin.org

TABLE 1 Description of the datasets made available in the package.

Dataframe
name

Rows Columns Column names Further description

IGC_sample 386 7 ID, task, item_ID, item, response, correct,

accessed

A portion of the dataset collected by Gutiérrez-Cordero et al. (in

preparation).

IGC_long_sample 681 8 ID, task, item_ID, item, response,

accessed, RA, attempt

A portion of the dataset collected by Gutiérrez-Cordero et al. (in

preparation) is presented in long format, equivalent to the output

obtained after applying the functions described in Step 1 of the text.

IGC_long_phon_

sample

681 10 ID, task, item_ID, item, response, item_

phon, response_phon, accessed, RA,

attempt

A portion of the dataset collected by Gutiérrez-Cordero et al. (in

preparation), which includes columns containing characters in IPA

notation, was obtained following the process described in Footnote 7.

simulated_sample 75 5 item_ID, item, response, task_name,

assessment_date

these obtained by means of the procedure detailed in footnote 7.
Simulated data (simulated_sample) are also included to allow
users to test the functions presented in subsequent sections.

Users can load any of these datasets using the following lines of
code, the idea being to work with a dataframe similar to the one
shown in Figure 2.

Different datasets may be loaded from a personal Excel file
or other file format. However, it is important that any initial
dataframe must have the following kinds of data: item (e.g.,
peine), response (e.g., pente, peine), and a group of identifiers
such as item ID (e.g., 1), task name (e.g., EPLA), or assessment

date (e.g., 03–11), for example. We will now show how to
apply the functions offered by sunflower to this initial
dataframe.

4.1 Step 1: Manage repetitive attempts

In order to be able to apply the functions presented in what
follows, the data must be structured in a specific way. That is, when
the dataframe contains instances with multiple attempts in the
response column, as occurs in the “response” column in the
dataframe we are using here (IGC_sample) (see Figure 2, where
there is a response with RAs, “talablo, talabro, talabro, taladro,

FIGURE 1

Steps followed to apply the main functions of the sunflower package. Sim., similarity; Acc., accuracy.

(1)

#df with attempts together
 IGC_sample = sunflower::IGC_sample
#df with separated attempts (after Step 1) and phonemic transcriptions
 IGC_long_phon_sample = sunflower::IGC_long_phon_sample

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 05 frontiersin.org

taladro” for the item taladro [drill in Spanish]), this must be submitted
by means of a data wrangling process which allows the user to split
such attempts in the same response in different “instances.” The goal
is to have each response displayed in separate cells across rows (a
different row for each attempt provided for the word taladro). In
other words, for any instance of RAs, each attempt in the response
column must be displayed in a different row rather than within the
same initial cell (we anticipate that they will appear as shown in
Figure 3). The user might find it useful to have raw response

transcriptions in a column, which can later be cleaned—by removing
annotations or interjections, for example—so they can work with a
column containing the clean responses in which only the pure
intended productions are displayed, as occurs in Figure 3. Again, in
those cases with RAs, the user needs to first separate the cleaned
responses into different columns using the functions in the package,
and then convert the data from wide format to long format. This
process allows for the subsequent computation of formal metrics
(Step 2: Compute Formal Similarity Measures), as well as for

FIGURE 2

Initial working dataframe with instances of multiple responses for some items.

FIGURE 3

Long-format transformation of the same items from Figure 2, but with each response on a separate row. In this long-format dataframe it is indicated
whether a RA has occurred, along with the attempt number within that RA.

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 06 frontiersin.org

obtaining positional accuracy data (Step 2.1: Conduct Positional
Accuracy Analysis), and the classification of errors (Step 3: Classify
Errors) that enable both data visualization and statistical analyses.

To do so, we can proceed in a stepwise manner using a tidyverse
style that relies on pipes,5 which makes the application of subsequent
processes easy to understand. In the following code snippet, we first
separate the responses of the initial dataframe into columns (as
exemplified in Figure 2) and then directly convert these columns into
rows, ending up with a long format (as is displayed in Figure 3)
dataframe to work with.

When applying this code to a dataframe, only two parameters need
to be defined in the separate_responses() function: the col_
name parameter, which is the column named “response” in our
dataframe—it is important that the names of columns in our dataframe
are written with quotation marks in the code; and for the separate_
with parameter, which is the marker used to separate each attempt
within the same item response [e.g., in our transcription of “talablo,
talabro, talabro, taladro, taladro” for taladro, we used ”, ” (a comma
followed by an empty space, which again needs to be defined between
quotation marks in the code)].

The get_attempts() function does not need any parameters
to be defined since it works directly with the output columns from the
separate_responses() function; however, we recommend
setting the parameter drop_blank_spaces = TRUE (or T)
to remove any resulting empty rows being generated by the
separate_responses() function, which will help to streamline
the data, making it easier to analyze and report.

The code snippet above will return a new dataframe called df_
long_format_w_attempts with three new columns: (1) a “RA”
column indicating whether a repeated attempt (in our case a CdA) has
been produced or not (repetition [1], single response [0]) for a given
item; (2) another column called “attempt” which indicates how
many instances these CdAs in the RA column entailed; and (3) a final
column called “response” showing each single instance of response
(see Figure 3).6

5 sunflower uses the pipe operator (% > %) from the tidyverse, so it can

be used to enhance any workflow along with other functions integrated into

its framework, such as those from dplyr for data wrangling, readr for data

reading, and ggplot2 for data visualization.

6 To avoid any subsequent problems, we suggest not changing the name of

the resulting columns as the functions work with some columns as internally

defined. If they wish, users can rename these columns after computing all the

metrics and classifying the errors.

4.2 Step 2: Compute formal similarity
measures

The study of the formal quality of productions in people with
aphasia and related impairments has attracted considerable attention
over the last few years. In this section we show how sunflower can
be used to compute not only the indexes used in recent work here,
such as the Damerau-Levenshtein distance (e.g., Themistocleous et al.,
2021) or measures derived from it (Smith et al., 2019; Haley et al.,
2023; Gutiérrez-Cordero and García-Orza, in preparation), but also

some others mentioned above in the Introduction (such as the lcs or
the proportion of phonemes/letters produced in the correct position).

The sunflower package not only allows for the possibility of
working with the orthographic transcriptions of responses, but also—
to a certain degree—with their phonemic (broad) transcriptions.7

At this point, a series of formal quality indexes, described in
Tables 2, 3, can be computed using the responses registered in the
df_long_format_w_attempts dataset, using the following
code snippet:

7 A way to work with phonemic transcriptions is to write them directly using

IPA symbols in an Excel file (or some other file type) or deriving a transcription

from a previous orthographic one with the added support of audio data for

reliability. Given the regularity and shallowness of Spanish, this practice is quite

easy to achieve, but is still rather time consuming. A further alternative is to

automatically obtain these phonemic transcriptions by using a transcriber,

such as the IAR-transcriber library (Arias Rodríguez, 2021; https://pypi.org/

project/iar-transcriber/) in Python (Van Rossum and Drake, 2009), on the

previous orthographic ones, and then supervise the outcome. This procedure

has been demonstrated to be reliable in the case of a Castilian Spanish patient

with phonological impairments as described in another study of ours (Gutiérrez-

Cordero and García-Orza, in preparation). In that study we used some of the

in-development-stage functions of sunflower to work with IPA phonemic

transcriptions after cleaning them of any possible superscripts and diacritics.

Note that these are considered as independent elements in the strings to work

with, and some of them are not recognized by R, so this procedure was

conducted to keep these transcriptions as simple as possible so that R could

successfully handle them. We suggest that interested users conduct automatic

transcriptions of this kind once the dataframe is in long-format (as we did with

the sunflower::IGC_long_sample dataframe to obtain the sunflower::IGC_

long_phon_sample) in case they want to compute the formal metrics of the

phonemic transcriptions to ease the procedure of revising and cleaning them

before computing such metrics. Furthermore, we recommend that users

supervise the outputs of transcriptions to ensure their reliability, and hence

that of subsequent computations.

(2)

df_long_format_w_attempts = IGC_sample %>%
 separate_responses(col_name = "response",
 separate_with = ", ") %>%
 get_attempts(drop_blank_spaces = TRUE)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://pypi.org/project/iar-transcriber/
https://pypi.org/project/iar-transcriber/

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 07 frontiersin.org

Where the item_col and response_col parameters refer to
the columns containing the items and the responses. As previously noted,
we can use columns that contain either orthographic representations (e.g.,
vaca [cow in Spanish]) or phonemic transcriptions (/baka/). In our case,
we used the orthographic transcriptions of both items and responses.
These two columns are essentially the ones to be compared: “item” and
“response,” respectively. We then need to specify two further
parameters that will serve as pivotal identifiers for computing the formal
similarity indexes: (1) the attempt_col parameter, which is set to
NULL by default when repeated attempts (the RAs) are not involved, is

defined as “attempt” in our case. Note that this “attempt” column is
returned by the functions we applied in Step 1: Managing Repetitive
Attempts, and it represents both the order and total count of attempts
within the repeated attempts (RAs) that constitute the CdAs. And (2) the
group_cols parameter, for which a group of columns (or at least one
column) must be defined to serve as identifiers. In our case, we used two
columns, which we refer to as the vector of variables: c(“ID,” “item_
ID”), to ensure the correct organization of the data.

The logic underlying this approach is that we need to arrange the
dataframe in such a way that we can compute the approach_diff

TABLE 2 Description of the formal similarity indexes obtained with the get_formal_similarity() function.

Variable Description

targetL Length of the target word string.

responseL Length of the response string.

p_shared_char
The proportion of characters shared between the target and response strings. This ratio is calculated by dividing the number of shared

characters (multiplied by two to account for their occurrence in both strings) by the total length of the target plus response strings.

p_shared_char_in_pos The proportion of characters shared between the target and response strings in their correct position.

diff_char_num The difference in character counts between the target and response strings.

Ld
The Levenshtein distance (Ld) measures the minimum number of single-character edits, specifically insertions, deletions, or substitutions,

required to transform one word into another (is represented as an integer).

DLd
The Damerau–Levenshtein distance (DLd) is similar to the Levenshtein distance but also accounts for transpositions of adjacent characters, in

addition to insertions, deletions, and substitutions, needed to transform one string into another.

JWd
The Jaro–Winkler distance (JWd) measures the edit distance between two strings based on matching characters and transpositions, producing a

value between 0 (identical strings) and 1 (no similarity) (Winkler, 1990).

pcc
The proportion of correct phonemes (pcc) can be obtained as a measure of direct orthographic or phonemic performance by simply subtracting

the result of dividing the DLd by the total number of phonemes from 1 (Gutiérrez-Cordero et al., in preparation; Haley et al., 2023).

TABLE 3 Description of the formal similarity indexes obtained with the get_formal_similarity() function (cont.)

Variable Description

lcs
The Longest Common Subsequence is the longest subsequence that can be derived from two strings without changing the order of

the characters.

similarity_str Similarity vector between target and response strings, with values indicating: M (match), D (deletion), S (substitution), I (insertion).

shared1char A Boolean value indicating whether the target and response strings start with the same character (TRUE) or not (FALSE).

strict_match_pos
A binary string that represents, for each position, whether the characters in the target and response strings match (where 1 = match

and 0 = unmatch).

adj_strict_match_pos
Represents, like strict_match_pos, the character matches between the target and response strings, but is adjusted to the length of the

target string.

comment_warning Adds a warning if the response contains spaces or commas, which could indicate repeated attempts (RA) responses.

approach_diff

Measures the change (Δ) in the proportion of correct characters (pcc) between consecutive attempts within each group defined by

group_cols. Useful for analyzing changes in performance across multiple attempts. This variable is directly dependent on how the

attempt_col and group_cols parameters are defined.

(3)

df_w_formal_indexes = df_long_format_w_attempts %>%
 get_formal_similarity(
 item_col = "item",
 response_col = "response",
 attempt_col = "attempt",
 group_cols = c("ID", "item_ID"))

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 08 frontiersin.org

index (see Figure 4). We must group by every possible confounding
ID variable that could cause issues. For example, for the item tornillo
in a specific task, we might want to analyze the evolution of the
second attempt in relation to the first, and similarly for the third
attempt in relation to the second. Thus, it is crucial to ensure that
these attempts correspond to the same ID for this specific item
within a particular task or assessment. If we were to overlook this,
we might mistakenly compare the #2 attempt of a CdA produced
during an assessment conducted in November with the #1 attempt
of a CdA produced in an assessment conducted in August, whereas
in fact we clearly want to compare the #2 and #1 attempt of the CdAs
produced in each evaluation independently. If we set every
parameter correctly, we will obtain a new df_w_formal_
indexes with all the indexes described in Tables 2, 3, and shown
in Figures 4, 5. If the parameters attempt_col and group_
cols are omitted, the similarity measures are calculated without
considering the approach_diff index.

Alternatively, we could work using phonemic (broad)
transcriptions, in that sunflower supports working with IPA symbols
(see above). Since the phonemic transcriptions are already stored in a
separate dataframe in long format (i.e., IGC_long_phon_
sample), we will need to load it and specify the relevant columns for
comparison by setting the item_col and response_col
parameters to “item_phon” and “response_phon” respectively.
The remaining parameters (attempt_col and group_cols)
would stay the same. The code snippet would be as follows, and the
output would be named df_w_formal_indexes_phon.

Thus far we have processed the initial dataframe and derived formal
measures for the stimulus–response pairs. At this stage, as shown in
Figure 1, the workflow diverges into two different paths. Users can either
perform a positional analysis of the productions (Step 2.1) or continue with
the steps required for a psycholinguistic classification of errors (Step 3).

4.3 Step 2.1: conduct positional accuracy
analysis

The positional accuracy analysis provides information on the correct
production of elements (either letters or phonemes). Positional accuracy
data can be of great value in the study of speech errors in that it provides
evidence for the underlying nature of the encoding impairments in
syndromes such as apraxia of speech and conduction aphasia (Ramoo
et al., 2021; Gutiérrez-Cordero and García-Orza, in preparation; Romani
et al., 2002, 2011). This is particularly relevant when considering
impairments at the phonemic level related to the phonological encoding
(Dell, 1986; Dell et al., 1997; or more specifically, the phonological output
buffer; García-Orza et al., 2020; Gutiérrez-Cordero and García-Orza,
submitted) or processes which are not in themselves linguistic but are
linked to articulatory processes, such as the phonetic encoding of
articulatory programming (Levelt et al., 1999).

In Step 2: Compute Formal Similarity Measures, we showed
how to obtain two strictly matching position indexes, one raw and
the other adjusted to the target word’s length. We can use these
matching strings to obtain the positional accuracy data of each

FIGURE 4

Long-format dataframe showing the formal indexes computed for orthographic transcriptions (cont.).

(4)

df_w_formal_indexes_phon = sunflower::IGC_long_phon_sample %>%
 get_formal_similarity(
 item_col = "item_phon",
 response_col = "response_phon",
 attempt_col = "attempt",
 group_cols = c("ID", "item_ID"))

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 09 frontiersin.org

response via the positional_accuracy() function, as shown
in the following code lines:

In this code, the item_col parameter specifies the column
containing the items for which we want to assess positional accuracy.
In this case, they were the orthographic transcriptions of target words,
whose column was called “item.” The response_col parameter
refers to the column that contains the responses we are evaluating,
which is the “response” column in our dataset. This same process
could be applied to a dataframe containing phonemic transcriptions
(e.g., df_w_formal_indexes_phon). It would only require
adjusting the columns to item_phon and response_phon, with
everything that follows remaining unchanged. The match_col
parameter reads data from a column that contains the adjusted strict-
matching-position strings, called “adj_strict_match_pos” that
is obtained in the Step 2: Compute Formal Similarity Measures,
specifically designed to reflect the positional accuracy of the responses
relative to the items’ length (see Table 3 for a description).

After applying this function, we obtain a more elongated df_
positional_accuracy, with various new columns related to the
positional accuracy analysis. Specifically, we obtain three new
identifier columns, these called: (1) “position,” which indicates the
position of the element addressed (either letter or phoneme) taking
the item string (not the response) as a reference; (2)

“element_in_item,” which provides the specific element in that
position in the item; and (3) “element_in_response” that does
the same for the element in the response string. However, an
additional fourth column called “correct_pos” will also
be provided, which indicates whether the element addressed in a given
position within the target item is produced correctly or not. Likewise,
other, prior identifiers for each word, such as the “attempt” column
or “item_ID,” are retained. The output of this process is shown in
Figure 6, and in a graphical representation in Figure 7.

4.4 Step 3: Classify errors

In this final section we focus on how to conduct the automatic
classification of errors following the criteria of established typologies
in the field (e.g., Dell et al., 1997; Gold and Kertesz, 2001; García-Orza
et al., 2020). In Table 4 the six different types of errors (plus no
responses) that sunflower is able to capture are presented.

Before proceeding with the error classification, it is essential to
provide sunflower with a set of metrics that enable accurate
classification. This process involves several stages: (1) to verify
whether the responses in the dataframe are real words by means of
a lexicality check; (2) to compute formal similarity metrics between
the target words and the responses (as done in Step 2: Compute

FIGURE 5

Long-format dataframe showing the formal indexes computed for orthographic transcriptions.

(5)

df_positional_accuracy = df_w_formal_indexes %>%
 positional_accuracy(item_col = "item",
 response_col = "response",
 match_col = "adj_strict_match_pos")

(6)

(m_w2v = word2vec::read.word2vec(file = file.choose(), normalize = F)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 10 frontiersin.org

Formal Similarity Measures); and (3) to assess the semantic
similarity between the target words and responses. While this
process is straightforward when executed in a pipeline manner, as
shown in the snippet of code below, some preliminary setup is
required. Specifically, we need to load a word2vec model to enable
the correct operation of the get_semantic_similarity()
function. This can be done using the following line of code before
proceeding to run the larger code snippet below:

This will lead to a pop-up window on the screen so the user can
search for the binary (bin) file containing the model and then load it
into the R environment. The one we use, called sbw_vectors.bin,
can be found in the dependency-bundle zip allocated in the OSF
mirror for sunflower (see text footnote 4). Alternatively, it is possible
to modify the file parameter to read the binary file directly from a
specified route (e.g., file = “models/sbw_vectors.bin”).
At this point, we can proceed to obtain the indexes of interest using

FIGURE 6

Long-format dataframe showing the positional accuracy data (characters produced correctly in their strict position per word and attempt) of a sample
assessed.

FIGURE 7

Graphical representation of the positional accuracy data of words assessed in different tests.

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 11 frontiersin.org

the initial dataframe obtained in the Step 2, in order to have one
response per attempt (df_long_format_w_attempts):

For all the functions in the code above, get_formal_
similarity(), check_lexicality(), and get_semantic_
similarity(), the parameters item_col and response_col
must be used as specified in the previous steps. With regard to the get_
formal_similarity() function, we set the parameters in the same
way as we did in Step 2: Compute Formal Similarity Measures. However,
note that in this case we used the orthographic transcriptions of the items
and responses rather than their phonemic transcriptions (i.e., the
“item” and “response” columns). In this step, we also introduced
two new functions: check_lexicality() and
get_semantic_similarity().

The check_lexicality() function allows us to verify whether
the responses provided by an individual correspond to real Spanish
words or not. This verification process requires a reliable reference source
for comparison. Depending on the specified criterion, we have two
options: (1) the “dictionary” criterion works by checking if a
response is a word present in a pre-loaded wordlist of the Real Academia
de la Lengua Española (RAE) dictionary (the one made available by
Dueñas-Lerín, 2024, version 2024-05-22)8 and thus categorizing the
response as lexical or non-lexical; (2) the “database” criterion works

8 https://github.com/JorgeDuenasLerin/diccionario-espanol-txt

by checking if the response is a word registered in the Spanish linguistic
database BuscaPalabras (BPal; Davis and Perea, 2005), and when it is
available there, comparing its frequency (the LOG10_FRQ from BPal) to
that of the item that is the target word being assessed. Both methods
provide a systematic way of determining the lexicality of responses,
which is crucial for accurate error classification in language production
tasks. The choice between these criteria depends on the specific
requirements of the research or clinical application. In the former case,
a response is considered lexical when it is present in the wordlist. In the
latter case, the lexicality of the response is determined by two factors: it
must be available in the database and have a higher frequency than the
item in question. In any other scenario, it is classified as a non-lexical
production. This function creates a column called lexicality, which
indicates whether the response is lexical (1) or not (0).

The get_semantic_similarity() function makes it possible
to measure the semantic similarity between the target and a response
when the latter is a word. This function relies on a natural language
processing technique, word2vec, a two-layer neural network model
developed by researchers at Google (see Mikolov et al., 2013)9 that takes
a raw text corpus as input and generates word representations
(embeddings) as vectors in a multidimensional space. word2vecthen
learns the semantic and syntactic relations of the words within the corpus;
this approach has been shown to be effective across diverse semantic tasks

9 https://code.google.com/archive/p/word2vec/

TABLE 4 Types of errors that sunflower considers regarding speech production.

Error type Description Example

No response No attempt to produce a response.

Phonemic Nonword phonologically related to the target word. It contains at least 50% of the phonemes of the target word. Tagle for Table

Neologism Nonword phonologically related to the target word. It contains less than 50% of the phonemes of the target word. Timos for Table

Unrelated Real word that is not related semantically or phonologically to the target word. Sneaker for Table

Formal
Real word phonologically related to the target word. It either starts with the same phoneme/letter or contains at least

50% of the phonemes/letters with the target word.
Truck for Table

Semantic Real word that is semantically related to the target word. Chair for Table

Mixed Real word that is both phonologically and semantically related to the target word, meeting the criteria for both errors. Furnace for Furniture

A response is considered phonologically related if it shares at least 50% of the phonemes with the target word (i.e., sunflower’s p_shared_char index ≥ 0.5). A response is deemed semantically
related when the semantic similarity, measured as cosine similarity (i.e., cosine_similarity index), is equal to or greater than the cosine limit value (cosine_limit_value parameter) defined in the
classify_errors() function (see description of Step 3: Classify Errors).

(7)

df_w_all_checks_and_indexes = df_long_format_w_attempts %>%
 get_formal_similarity(item_col = "item",
 response_col = "response",
 attempt_col = "attempt",
 group_cols = c("ID", "item_ID")) %>%
 check_lexicality(item_col = "item",
 response_col = "response",
 criterion = "database") %>%
 get_semantic_similarity(item_col = "item",
 response_col = "response",
 model = m_w2v)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://github.com/JorgeDuenasLerin/diccionario-espanol-txt
https://code.google.com/archive/p/word2vec/

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 12 frontiersin.org

(see Kumar, 2021 for a comprehensive review) and its ability to consider
the semantic similarity of words is helpful for error categorization, as
demonstrated in other studies (Fergadiotis et al., 2016). Models of these
kinds determine the relationship by calculating the cosine similarity
between the representations of the vectors of two given words, and the
more proportional the vectors of the two, the higher cosine similarity and
the more semantically similar they are. Neither we nor users are required
to build one of these models; rather, we can load one of the preexisting
ones available online. This is what we did with the previous line of code
used to run the read.word2vec() function from the word2vec
package. In our case, we used the vectors contained in the Spanish Billion
Word Corpus and Embeddings (see Cardellino, 2016, for further
details),10 which was called by defining the model parameter as m_w2v
with the get_semantic_similarity() function; note that this
model’s name is not written within quotations as it is not the name of a
column, but rather an independent object loaded in R.

With the get_semantic_similarity() function
sunflower generates a cosine_similarity column that contains
the cosine similarity between the vectors of the words in question, in
our case the ones provided in the target_col and response_
col parameters. Cosine similarity measures might be contained
within a [−1,1] interval, but the model we employ uses a [0,1] interval
to represent semantic relationships (as in the model used by Salem
et al., 2023b), where 0 indicates no semantic association and values
near to 1 indicate high semantic similarity values. The user must
be aware of this in case they are using a different word2vec model, as
they would hence need to adjust certain parameters, such as the
cosine_limit_value in the function presented in the following
code snippet.

Once we have loaded the word2vec model and obtained the
pertinent measures by running a check with the check_
lexicality(), get_formal_similarity() and get_
semantic_similarity() functions, we already have a dataframe
such as df_w_all_checks_and_indexes that is optimal in terms
of allowing us to classify the errors.

We note that we have developed two classification functions
tailored to work with datasets containing RAs or individual responses.
The first function, classify_errors(), allows for error

classification while optionally considering RAs, offering greater
flexibility through a larger set of configurable parameters. The second
function, classify_errors_regular(), is specifically

10 https://crscardellino.github.io/SBWCE/

designed for individual responses, disregarding RAs entirely, and
resulting in a simpler setup with fewer parameters. Starting with the
former, classify_errors(), error classification can be achieved
by running the following code snippet:

When the access_col parameter refers to whether the produced
response was annotated as successful or not. This might be done manually
by the user or automatically by adding another line to the code, such as a
conditional statement, returning 1 if the item and response are equal, or
0 if they are not (see the third line in the following code snippet). The
parameter RA_col indicates whether or not the production is a RA such
as a CdA (RA [1], single response [0]); in our case this was the RA column
obtained in the previous steps. The item_col and response_col
are the same as those used in the previous steps. The parameter also_
classify_RAs here is set as TRUE (or T) to allow the function to work
by considering the classification of productions within the RAs (when
value in “RA” is 1) as any of the 6 possible error categories (nonword,
neologism, formal, unrelated, mixed, semantic). However, it can be set as
FALSE (or F) so the function will leave the productions within the RAs
(when value in the “RA” is 0) unclassified.

The classify_errors() function also uses a parameter called
cosine_limit_value. This parameter is used to classify items and
responses as semantically similar or not, based on whether the cosine
similarity value provided by the get_semantic_similarity()
function (i.e., w2v_cos) exceeds a specified threshold. As mentioned
earlier, in our model, the w2v_cos values are bound within the range [0,
1] (although other models may define the bounds within the interval [−1,
1], and in such cases the cosine_limit_value parameter should
be adjusted accordingly.). In our package, this parameter is set to 0.46 by
default, although it can be adjusted to make the classification process more
or less stringent. In their study, for example, Salem et al. (2023b) used the
slightly higher threshold of 0.55. While this value may appear stricter, it
aligns with the classification criteria used in their research. Note that Salem
et al. (2023b) and our study use different stimulus–response pair samples,
different languages (theirs being English, ours Spanish), and the models
were trained on distinct datasets. As a result, the cosine similarity values—
while always bound within [0, 1]—may differ in how they represent word
representations and their relationships. Naturally, this may lead to
differences in determining whether pairs are semantically related.

Although there is no consensus on this matter, setting the threshold to
around 0.50 would be a safe practice toward reliably detecting relationships.
Nonetheless, we remind users that it can and should be adjusted to meet
their specific criteria. Additionally, it is important to note that the get_
semantic_similarity() function returns an NA value for the
cosine similarity, w2v_cos, when either the item or the response to
be considered is NA.

(8)

dataframe_w_classified_errors = df_w_all_checks_and_indexes %>%
 classify_errors(access_col = "accessed",
 RA_col = "RA",
 response_col = "response",
 item_col = "item",
 also_classify_RAs = TRUE,
 cosine_limit_value = 0.46)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://crscardellino.github.io/SBWCE/

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 13 frontiersin.org

Finally, we obtain a final dataframe, which here we have named df_w_
classified_errors, with a series of columns displaying the desired
error classification conducted with sunflower: nonword, neologism, formal,
unrelated, mixed, and semantic, but also no responses. We also obtain a
check_comment column that flags responses as “required” in case
they need to be explicitly addressed manually when no possible classification
can be made (i.e., when the value is zero in all the nonword, neologism,
formal, unrelated, mixed, and semantic columns) or, on the
other hand, when a multiple classification is made (when the response has
been classified as an error in more than one column). Additionally, it
provides the comment “is only considered as RA” for responses

contained in RA instances when the also_classify_RAs parameter
is set as FALSE. Otherwise, being set as TRUE, it remains empty. The
classification obtained here is shown in Figure 8.

As a side note, users can achieve the same result by chaining
multiple functions instead of generating new data frames at each step.

This approach is particularly suited for those with advanced expertise
in R or familiarity with the package. In the following code snippet, the
process begins with the initial data frame (IGC_sample) and uses a
stacked approach to produce the same df_w_classified_errors
(but _stacked in this case).

As mentioned above, we also developed a second version of
this function for cases where the user wishes to classify single
errors (i.e., without RAs) in a more traditionally organized
dataframe. This is the classify_errors_regular() which
allows us to work without considering the RA_col and also_

classify_RAs parameters of the other function. This
simplifies the code by relying on fewer parameters. In the
following code snippet, we provide a hypothetical case in which
we work with no RAs after filtering them out of our dataframe
using the dplyr package:

FIGURE 8

Dataframe displaying the errors classified by using the sunflower package.

(9)

df_w_classified_errors_stacked = IGC_sample %>%
 separate_responses(col_name = "response",
 separate_with = ", ") %>%
 get_attempts(drop_blank_spaces = TRUE) %>%
 get_formal_similarity(item_col = "item",
 response_col = "response",
 attempt_col = "attempt",
 group_cols = c("ID", "item_ID")) %>%
 check_lexicality(item_col = "item",
 response_col = "response",
 criterion = "database") %>%
 get_semantic_similarity(item_col = "item",
 response_col = "response",
 model = m_w2v) %>%
 classify_errors(access_col = "accessed",
 RA_col = "RA",
 response_col = "response",
 item_col = "item",
 also_classify_RAs = TRUE,
 cosine_limit_value = 0.46)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 14 frontiersin.org

Thus far, we have showcased several features of the sunflower
package, from data wrangling of multiple responses to error classification.
Users can find additional example code in the vignettes available on
GitHub at https://github.com/ismaelgutier/sunflower. A detailed guided
tutorial is also accessible and can be downloaded directly from our OSF
repository via the following link: https://osf.io/urz4y.

5 Discussion

In this paper we present sunflower, an R package that allows for
the handling of large dataframes not only to obtain various measures
related to the quality of productions from a patient or participant
transcription, but also to serve as an automatic classifier of the errors
made by them.

The value of this tool lies in the handling of dataframes that
contain RAs, such as the CdAs typically produced by patients with
aphasia, especially conduction aphasia, by children with language
disabilities, and by persons who stutter. It allows for the study of the
formal qualities of these productions by obtaining multiple complex
measures based on algorithms that are more informative than those
that, with significant effort, can be calculated manually by clinicians
or researchers. Additionally, it enables the exploration in depth of the
quality of productions at a fine-grained level—phonemes when
working with phonemic transcriptions or letters when using
orthographic transcriptions.

Likewise, the present software is able to test the lexicality of
productions on the basis of preexisting Spanish wordlists and
databases, and can produce semantic similarity measures by using
pretrained AI models, namely those based on the word2vec technique,
for the subsequent classification of production errors following
established criteria in the field.

Previous studies have shown how tools of this kind can be used
to classify errors and how such procedures are indeed reliable (e.g.,
Fergadiotis et al., 2016; Salem et al., 2023a; Schnur and Lei, 2022).
Unfortunately, they do not publicly share the tools they develop
and use so that others can conduct additional work using them.
Our package is designed not only to provide this, but also to offer
the possibility of conducting a formal analysis of words. It is
developed in Spanish, a language that has not been the focus of a
great deal of work of this kind. It is designed so that both
researchers and clinicians (neuropsychologists and speech
therapists), who often do not have extensive programming
knowledge, can access a comprehensive tool for studying language
production errors. This tool also allows them to perform statistical
analyses based on the outputs obtained.

The limitations are clear: in order to apply some of its functions,
the package relies on databases, dictionaries, and pre-trained models,
which may affect the quality of its performance. However, users are
not limited to using the dependencies we cite in the text or in our
own repositories and can, for example, load their own trained
models. In all cases, the outputs should be supervised by an expert,
especially during the final stage of the process, where the word2vec
model and its ability to represent semantics come into play. While
earlier stages rely primarily on algorithms that work with formal
representations that leave little room for ambiguity, word2vec focuses
on learning the relationships between words within the corpus,
mapping them to multiple internal dimensions of the model.
Although the word2vec technique has proved to be effective in
various semantic tasks (Kumar, 2021), the material on which these
models are trained means that word representations are not always
identical, and variations may arise when comparing them to human
logic and reasoning, particularly when interpreting relationships
between specific word pairs (e.g., stimulus–response). These may not
always perfectly match human classification criteria. Therefore,
careful supervision at this stage is crucial to ensure that results
remain consistent and of high quality. Like any flower, sunflower will
bloom best when provided with quality soil and when it receives
careful attention from a gardener.

In sum, we offer a tool that is accessible to everyone, allowing
it to be used for tasks such as the focused study of production
quality, the effect of treatments on error production, and the better
diagnosis and study of various conditions, including aphasia,
apraxia, stuttering and developmental speech sound disorders.

Future possible directions of this project include extending the
development of the package to other languages. In its present form
the sunflower package is designed to be used with Spanish stimuli,
yet adapting it to any other language would be feasible. Indeed, for
the initial steps related to data wrangling (Step 1) and the
computation of formal quality indexes (Step 2), there is no need to
change anything. Regarding Step 3, which is conceived to include
a lexicality check procedure, as well as the computation of the
abovementioned formal quality indexes and a semantic similarity
index, small changes to the code and dependencies could be made
to allow users to work with data from different languages.
Adaptation work here would involve finding equivalent databases
and corpus- or dictionary-based wordlists, as well as to set use
other word2vec models to allow the lexicality check and the
semantic similarity cosine computation.

We hope that sunflower proves to be a useful resource, and that
it lightens the workload of coding errors for other researchers as it
has for us.

(10)

df_w_classified_errors_noRAs = df_w_all_checks_and_indexes %>%
 dplyr::filter(RA == 0) %>%
 dplyr::mutate(accessed = ifelse(item == response, 1, 0)) %>%
 classify_errors_regular(access_col = "accessed",
 response_col = "response",
 item_col = "item",
 cosine_limit_value = 0.46)

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://github.com/ismaelgutier/sunflower
https://osf.io/urz4y

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 15 frontiersin.org

Software basic requirements

sunflower is freely available at GitHub (https://github.com/
ismaelgutier/sunflower) and its mirror OSF (https://osf.io/akuxv/);
operating system(s): Windows; programming language: R;
dependencies: tidyr, dplyr, tidyverse, reshape2, stringdist, stringr,
PTXQC, tibble, tictoc, magrittr, purrr, rlang, stats, word2vec. The
installation packages for all the required software are available at the
sunflower repositories. A dependency bundle with some “additional”
source files to work (in Step 3: Classify Errors) is provided at
OSF. Users do not need to download the required software
individually. The sunflower home page also provides users with
examples for reference. There are no restrictions on non-academic
use; in fact, such use is encouraged.

Registration

The registration of sunflower was made in OSF (https://osf.io/
bw4az) to clarify its motivation in advance and to assist in preserving
the essence of the project throughout its development and maintenance.

A portion of Gutiérrez-Cordero and García-Orza’s (in
preparation) data was analyzed in this study as an example. Other
sample data made available to test the functions of sunflower are
provided with the package, and other supplementary data can
be accessed through the GitHub repository (https://github.com/
ismaelgutier/sunflower) or directly through the mirror repository at
OSF (https://osf.io/akuxv/).

Data availability statement

The registration of sunflower was made in OSF (https://osf.io/bw4az)
to clarify its motivation in advance and to assist in preserving the essence
of the project throughout its development and maintenance. A portion of
Gutiérrez-Cordero and García-Orza’s (in preparation) data was
analyzed in this study as an example. Other sample data made available
to test the functions of sunflower are provided with the package, and other
supplementary data can be accessed through the GitHub repository
(https://github.com/ismaelgutier/sunflower) or directly through the
mirror repository at OSF (https://osf.io/akuxv/).

Ethics statement

The studies involving humans were approved by the Ethical
Committee of the University of Málaga (number issued by the

Ethical Committee: 129-2022-H). The studies were conducted in
accordance with the local legislation and institutional
requirements. Written informed consent for participation was
not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation
and institutional requirements.

Author contributions

IG-C: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization, Writing –
original draft, Writing – review & editing. JG-O: Funding acquisition,
Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work was
supported by a Ph. D scholarship provided by the Universidad de
Málaga to IGC via the I Plan Propio de Investigación, Transferencia y
Divulgación Científica, and a grant from the Junta de Andalucía
awarded to JGO (ProyExcel_00744).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as potential conflicts of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Arias Rodríguez, I. (2021). iar-transcriber. Python Package. Available at: https://pypi.

org/project/iar-transcriber/
Azevedo, N., Kehayia, E., Jarema, G., Le Dorze, G., Beaujard, C., and Yvon, M. (2024).

How artificial intelligence (AI) is used in aphasia rehabilitation: a scoping review.
Aphasiology 38, 305–336. doi: 10.1080/02687038.2023.2189513

Bache, S., and Wickham, H. (2022). magrittr: a forward-pipe operator for R. [R
package]. Comprehensive R Archive Network (CRAN). Available at: https://CRAN.R-
project.org/package=magrittr

Berger, B., Waterman, M. S., and Yu, Y. W. (2020). Levenshtein distance, sequence
comparison and biological database search. IEEE Trans. Inf. Theory 67, 3287–3294. doi:
10.1109/tit.2020.2996543

Berthier, M. L., Torres-Prioris, M. J., López-Barroso, D., Thurnhofer-Hemsi, K.,
Paredes-Pacheco, J., Roé-Vellvé, N., et al. (2018). Are you a doctor?… Are you a doctor?
I’m not a doctor! A reappraisal of mitigated echolalia in aphasia with evaluation of
neural correlates and treatment approaches. Aphasiology 32, 784–813. doi: 10.1080/
02687038.2016.1274875

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://github.com/ismaelgutier/sunflower
https://github.com/ismaelgutier/sunflower
https://osf.io/akuxv/
https://osf.io/bw4az
https://osf.io/bw4az
https://github.com/ismaelgutier/sunflower
https://github.com/ismaelgutier/sunflower
https://osf.io/akuxv/
https://osf.io/bw4az
https://github.com/ismaelgutier/sunflower
https://osf.io/akuxv/
https://pypi.org/project/iar-transcriber/
https://pypi.org/project/iar-transcriber/
https://doi.org/10.1080/02687038.2023.2189513
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://doi.org/10.1109/tit.2020.2996543
https://doi.org/10.1080/02687038.2016.1274875
https://doi.org/10.1080/02687038.2016.1274875

Gutiérrez-Cordero and García-Orza 10.3389/fpsyg.2025.1538196

Frontiers in Psychology 16 frontiersin.org

Caramazza, A., and Miceli, G. (1990). The structure of graphemic representations.
Cognition 37, 243–297. doi: 10.1016/0010-0277(90)90047-N

Cardellino, C. (2016). Spanish billion words corpus and embeddings (SBWCE)
[Corpus]. Available at: https://crscardellino.github.io/SBWCE/

Davis, C. J., and Perea, M. (2005). BuscaPalabras: a program for deriving orthographic
and phonological neighborhood statistics and other psycholinguistic indices in Spanish.
Behav. Res. Methods 37, 665–671. doi: 10.3758/BF03192738

Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production.
Psychol. Rev. 93, 283–321. doi: 10.1037/0033-295X.93.3.283

Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., and Gagnon, D. A. (1997).
Lexical access in aphasic and nonaphasic speakers. Psychol. Rev. 104, 801–838. doi:
10.1037/0033-295x.104.4.801

Dotan, D., and Friedmann, N. (2015). Steps towards understanding the phonological
output buffer and its role in the production of numbers, morphemes, and function
words. Cortex 63, 317–351. doi: 10.1016/j.cortex.2014.08.014

Dueñas-Lerín, J. (2024). Diccionario Español en formato .txt [GitHub Repository].
Real Academia Española (RAE). Available at: https://github.com/JorgeDuenasLerin/
diccionario-espanol-txt

Einarsdóttir, J. T., Hermannsdóttir, B., and Crowe, K. (2024). A prospective 14-year
follow-up study of the persistence and recovery of stuttering. J. Fluen. Disord. 80:106058.
doi: 10.1016/j.jfludis.2024.106058

Fergadiotis, G., Gorman, K., and Bedrick, S. (2016). Algorithmic classification of five
characteristic types of paraphasias. Am. J. Speech Lang. Pathol. 25, S776–S787. doi:
10.1044/2016_AJSLP-15-0147

García-Orza, J., Gutiérrez-Cordero, I., and Guandalini, M. (2020). Saying thirteen
instead of forty-two but saying lale instead of tale: is number production special? Cortex
128, 281–296. doi: 10.1016/j.cortex.2020.03.020

Gold, B. T., and Kertesz, A. (2001). Phonologically related lexical repetition disorder:
a case study. Brain Lang. 77, 241–265. doi: 10.1006/brln.2000.2441

Goodglass, H., and Kaplan, E. (1972). The assessment of aphasia and related disorders.
London, England, Philadelphia, Boston: Lea & Febiger.

Goodglass, H., and Wingfield, A. (1997). “Word finding deficits in aphasia: brain-
behavior relations and symptomatology” in Anomia. ed. H. Goodglass
(Academic Press).

Gutiérrez-Cordero, I., and García-Orza, J. (in preparation). Understanding the
Conduite d’Approche behavior in conduction aphasia and its modality effects.

Gutiérrez-Cordero, I., and García-Orza, J. (submitted). Disassembling an
experimental artifact in aphasia: why phonemic errors with words and semantic errors
with numbers?

Haley, K. L., Jacks, A., Richardson, J. D., Harmon, T. G., Lacey, E. H., and Turkeltaub, P.
(2023). Do people with apraxia of speech and aphasia improve or worsen across repeated
sequential word trials? J. Speech Lang. Hear. Res. 66, 1240–1251. doi: 10.1044/2022_
JSLHR-22-00438

Henry, L., and Wickham, H. (2024). rlang: functions for base types and Core R
and 'Tidyverse' features. [R package]. Available at: https://cran.r-project.org/
package=rlang

Izrailev, S. (2023). tictoc: Functions for timing R scripts, as well as implementations
of "stack" and "StackList" structures. [R package]. Available at: https://CRAN.R-project.
org/package=tictoc

Joanette, Y., Keller, E., and Lecours, A. (1980). Sequences of phonemic approximations
in aphasia. Brain Lang. 11, 30–44. doi: 10.1016/0093-934X(80)90107-8

Kent, R. D. (1996). Hearing and believing: some limits to the auditory-perceptual
assessment of speech and voice disorders. Am. J. Speech Lang. Pathol. 5, 7–23. doi:
10.1044/1058-0360.0503.07

Kumar, A. A. (2021). Semantic memory: a review of methods, models, and current
challenges. Psychon. Bull. Rev. 28, 40–80. doi: 10.3758/s13423-020-01792-x

Laganaro, M. (2005). Syllable frequency effect in speech production: evidence from
aphasia. J. Neurolinguistics 18, 221–235. doi: 10.1016/j.jneuroling.2004.12.001

Le, D., Licata, K., and Provost, E. M. (2017). “Automatic paraphasia detection from
aphasic speech: a preliminary study,” in Proceedings of Interspeech International Speech
Communication Association (ISCA), 2017, 294–298.

Levelt, W. J., Roelofs, A., and Meyer, A. S. (1999). A theory of lexical access in speech
production. Behav. Brain Sci. 22, 1–38. doi: 10.1017/s0140525x99001776

Marshall, R. C., and Tompkins, C. A. (1982). Verbal self-correction behaviors of fluent
and nonfluent aphasic subjects. Brain Lang. 15, 292–306. doi: 10.1016/0093-
934X(82)90061-X

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv [Preprint]. doi: 10.48550/arXiv.1301.3781

Müller, K., and Wickham, H. (2023). tibble: Simple data frames. [R package].
Comprehensive R Archive Network (CRAN). Available at: https://CRAN.R-project.org/
package=tibble

Nelson, M. J., Moeller, S., Basu, A., Christopher, L., Rogalski, E. J., Greicius, M.,
et al. (2020). Taxonomic interference associated with phonemic paraphasias in
agrammatic primary progressive aphasia. Cereb. Cortex 30, 2529–2541. doi: 10.1093/
cercor/bhz258

R Core Team (2022). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. Available at: https://www.R-project.org

Ramoo, D., Olson, A., and Romani, C. (2021). Repeated attempts, phonetic errors,
and syllabifications in a case study: evidence of impaired transfer from phonology
to articulatory planning. Aphasiology 35, 485–517. doi: 10.1080/02687038.2021.
1881349

Romani, C., Galluzzi, C., and Olson, A. (2011). Phonological–lexical activation: a
lexical component or an output buffer? Evidence from aphasic errors. Cortex 47,
217–235. doi: 10.1016/j.cortex.2009.11.004

Romani, C., Olson, A., Semenza, C., and Granà, A. (2002). Patterns of phonological
errors as a function of a phonological versus an articulatory locus of impairment. Cortex
38, 541–567. doi: 10.1016/S0010-9452(08)70022-4

RStudio Team (2024). RStudio: integrated development for R. RStudio, PBC. Available
at: http://www.rstudio.com/

Salem, A. C., Gale, R., Casilio, M., Fleegle, M., Fergadiotis, G., and Bedrick, S. (2023b).
Refining semantic similarity of paraphasias using a contextual language model. J. Speech
Lang. Hear. Res. 66, 206–220. doi: 10.1044/2022_jslhr-22-00277

Salem, A. C., Gale, R. C., Fleegle, M., Fergadiotis, G., and Bedrick, S. (2023a).
Automating intended target identification for paraphasias in discourse using a large
language model. J. Speech Lang. Hear. Res. 66, 4949–4966. doi: 10.1044/2023_
JSLHR-23-00121

Schnur, T. T., and Lei, C. M. (2022). Assessing naming errors using an automated
machine learning approach. Neuropsychology 36, 709–718. doi: 10.1037/neu0000860

Smith, M., Cunningham, K. T., and Haley, K. L. (2019). Automating error frequency
analysis via the phonemic edit distance ratio. J. Speech Lang. Hear. Res. 62, 1719–1723.
doi: 10.1044/2019_JSLHR-S-18-0423

Themistocleous, C., Ficek, B., Webster, K., den Ouden, D. B., Hillis, A. E., and
Tsapkini, K. (2021). Automatic subtyping of individuals with primary progressive
aphasia. J. Alzheimers Dis. 79, 1185–1194. doi: 10.3233/jad-201101

Torres-Prioris, M. J., López-Barroso, D., Roé-Vellvé, N., Paredes-Pacheco, J.,
Dávila, G., and Berthier, M. L. (2019). Repetitive verbal behaviors are not always
harmful signs: compensatory plasticity within the language network in aphasia. Brain
Lang. 190, 16–30. doi: 10.1016/j.bandl.2018.12.004

Valdois, S., Joanette, Y., and Nespoulous, J.-L. (1989). Intrinsic organization of
sequences of phonemic approximations: a preliminary study. Aphasiology 3, 55–73. doi:
10.1080/02687038908248976

van der Loo, M. (2014). The stringdist package for approximate string matching. R J.
6, 111–122. doi: 10.32614/RJ-2014-011

Van Rossum, G., and Drake, F. L. (2009). Python 3 reference manual. Scotts Valley,
CA: CreateSpace.

Wickham, H. (2007). Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20.
doi: 10.18637/jss.v021.i12

Wickham, H. (2022). Stringr: simple, consistent wrappers for common string
operations. [R package]. Available at: https://CRAN.R-project.org/package=stringr

Wickham, H. (2023). Tidyverse: easily install and load the 'tidyverse'. [R package].
Available at: https://CRAN.R-project.org/package=tidyverse

Wickham, H., François, R., Henry, L., Müller, K., and Vaughan, D. (2024a). Dplyr: a
grammar of data manipulation. [R package]. Available at: https://CRAN.R-project.org/
package=dplyr

Wickham, H., and Henry, L. (2023). Purrr: functional programming tools. [R
package]. Available at: https://github.com/tidyverse/purrr

Wickham, H., Hester, J., Chang, W., and Bryan, J. (2022). Devtools: tools to make
developing R packages easier. [R package]. Available at: https://cran.r-project.org/
package=devtools

Wickham, H., Vaughan, D., and Girlich, M. (2024b). Tidyr: tidy messy data. [R
package]. Available at: https://CRAN.R-project.org/package=tidyr

Wijffels, J., Watanabe, K., and Fomichev, M. (2023). word2vec: tools for word
embeddings. [R package]. Available at: https://CRAN.R-project.org/package=word2vec

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. Proceedings of the Section on Survey Research
Methods, American Statistical Association. 354–359.

https://doi.org/10.3389/fpsyg.2025.1538196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1016/0010-0277(90)90047-N
https://crscardellino.github.io/SBWCE/
https://doi.org/10.3758/BF03192738
https://doi.org/10.1037/0033-295X.93.3.283
https://doi.org/10.1037/0033-295x.104.4.801
https://doi.org/10.1016/j.cortex.2014.08.014
https://github.com/JorgeDuenasLerin/diccionario-espanol-txt
https://github.com/JorgeDuenasLerin/diccionario-espanol-txt
https://doi.org/10.1016/j.jfludis.2024.106058
https://doi.org/10.1044/2016_AJSLP-15-0147
https://doi.org/10.1016/j.cortex.2020.03.020
https://doi.org/10.1006/brln.2000.2441
https://doi.org/10.1044/2022_JSLHR-22-00438
https://doi.org/10.1044/2022_JSLHR-22-00438
https://cran.r-project.org/package=rlang
https://cran.r-project.org/package=rlang
https://CRAN.R-project.org/package=tictoc
https://CRAN.R-project.org/package=tictoc
https://doi.org/10.1016/0093-934X(80)90107-8
https://doi.org/10.1044/1058-0360.0503.07
https://doi.org/10.3758/s13423-020-01792-x
https://doi.org/10.1016/j.jneuroling.2004.12.001
https://doi.org/10.1017/s0140525x99001776
https://doi.org/10.1016/0093-934X(82)90061-X
https://doi.org/10.1016/0093-934X(82)90061-X
https://doi.org/10.48550/arXiv.1301.3781
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://doi.org/10.1093/cercor/bhz258
https://doi.org/10.1093/cercor/bhz258
https://www.R-project.org
https://doi.org/10.1080/02687038.2021.1881349
https://doi.org/10.1080/02687038.2021.1881349
https://doi.org/10.1016/j.cortex.2009.11.004
https://doi.org/10.1016/S0010-9452(08)70022-4
http://www.rstudio.com/
https://doi.org/10.1044/2022_jslhr-22-00277
https://doi.org/10.1044/2023_JSLHR-23-00121
https://doi.org/10.1044/2023_JSLHR-23-00121
https://doi.org/10.1037/neu0000860
https://doi.org/10.1044/2019_JSLHR-S-18-0423
https://doi.org/10.3233/jad-201101
https://doi.org/10.1016/j.bandl.2018.12.004
https://doi.org/10.1080/02687038908248976
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.18637/jss.v021.i12
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://github.com/tidyverse/purrr
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=devtools
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=word2vec

	sunflower: an R package for handling multiple response attempts and conducting error analysis in aphasia and related disorders
	1 Introduction
	2 Methods
	2.1 R implementation and dependencies
	2.2 Repository access and availability
	2.3 Functions provided by the package

	3 Installation
	4 Working with the package
	4.1 Step 1: Manage repetitive attempts
	4.2 Step 2: Compute formal similarity measures
	4.3 Step 2.1: conduct positional accuracy analysis
	4.4 Step 3: Classify errors

	5 Discussion
	Software basic requirements
	Registration

	References

