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We present an exploratory method for discovering likely misconceptions from

multiple-choice concept test data, as well as preliminary evidence that this

method recovers known misconceptions from real student responses. Our

procedure is based on a Bayesian implementation of the Multidimensional

Nominal Categories IRT model (MNCM) combined with standard factor-analytic

rotation methods; by analyzing student responses at the level of individual

distractors rather than at the level of entire questions, this approach is able to

highlight multiple likely misconceptions for subsequent investigation without

requiring any manual labeling of test content. We explore the performance

of the Bayesian MNCM on synthetic data and find that it is able to recover

multidimensional item parameters consistently at achievable sample sizes. These

studies demonstrate themethod’s robustness to overfitting and ability to perform

automatic dimensionality assessment and selection. The method also compares

favorably to existing IRT software implementing marginal maximum likelihood

estimation which we use as a validation benchmark. We then apply our method

to approximately 10,000 students’ responses to a research-designed concept

test: the Force Concept Inventory. In addition to a broad first dimension strongly

correlated with overall test score, we discover thirteen additional dimensions

which load on smaller sets of distractors; we discuss two as examples, showing

that these are consistent with already-known misconceptions in Newtonian

mechanics. While work remains to validate our findings, our hope is that

future applications of this method could aid in the refinement of existing

concept inventories or the development of new ones, enable the discovery

of previously-unknown student misconceptions across a variety of disciplines,

and—by leveraging the method’s ability to quantify the prevalence of particular

misconceptions—provide opportunities for targeted instruction at both the

individual and classroom level.
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1 Introduction

Research-designed multiple-choice concept tests commonly
have wrong answer choices (“distractors”) that reflect typical
incorrect student responses; these are often discerned from
research or by first administering items in open-response format
and identifying commonalities in the answers. Earlier work
with Pérez-Lemonche et al. (2019) showed that even students
whose raw score was below chance strongly favored particular
incorrect responses on such tests, implying that systematic mental
processes rather than random guessing underlie the selection
of distractors. Various theories of these mental processes have
been proposed, including knowledge in fragments (diSessa,
1993), ontological categories (Chi and Slotta, 1993), mixed
ontological categories or models (Adair, 2013), dual process
theories (Gette et al., 2018), misconceptions (a better definition is
“an alternative hypothesis [to the current paradigm]”), and specific
misunderstandings (e.g., “cannot interpret graphs” or inconsistent
errors in applying Newton’s 3rd law). The present work is
based on the misconception/misunderstanding viewpoint, wherein
common wrong answers—and the resulting research-determined
distractors—often result from and thus encode common student
misconceptions or misunderstandings.

When a research-designed test is administered, student
misconceptions (whether already known to the researchers or not)
manifest as an increased likelihood of a student co-selecting sets
of distractors consistent with their (mis)understandings of the
domain. The misconceptions may present in differing degrees for
different students, with stronger misconceptions leading students
to endorse a higher fraction of those distractors consistent with
their incorrect belief. Notably, distractors in any one item may
reflect distinct misconceptions, either alone or in combination—in
a physics question involving a skydiver for example, one distractor
might reflect a common misunderstanding about acceleration,
another might encode an incorrect mental model of air resistance,
and a thirdmight combine elements of both. That is,misconceptions

are encoded at the level of individual response categories, and less at

the level of whole items. Thus discovering them requires an analysis
capable of capturing multidimensionality within categories, not
only within items.

In this work, we present an exploratory analysis procedure
for discovering the types of misconceptions discussed above. Our
methods are most appropriate for research-designed concept tests
with distractors based on common wrong answers, but they may
also prove suitable for examining multiple-choice assessments
developed using other research-based approaches (such as think-
aloud protocols). Longitudinal studies using such instruments may
yield insights about how student reasoning manifests and develops
over time in situ, providing clues about how various mental models
emerge (Brown, 2014) and ultimately about how people transition
from novices to experts (Burkholder et al., 2020).

We base our approach on a flexible multidimensional IRT
model for multiple-choice data known as the Multidimensional
Nominal Categories Model (MNCM, discussed in more detail in
Section 3). In contrast with unidimensional IRT—which ranks
testees on a single monotonic scale corresponding to ability
or some other psychological trait of interest—multidimensional

models such as the MNCM rank testees along several distinct
dimensions, each capturing different aspects of the interaction
between the latent mindsets of the testees and the constructs of the
test. A combination of parameter constraints and standard factor-
analytic rotation methods then aids in finding a representation
of these dimensions that allows insightful interpretation. This
approach is, in essence, a form of item factor analysis (Bock
et al., 1988), though it is perhaps better understood as “category
factor analysis” given the flexibility of the MNCM to capture
within-category multidimensionality.

While our methodological choices were made with an eye to
identifying student misconceptions from concept-test data, we note
that the method itself is agnostic to the meaning of any traits it
discovers. Some of these may indeed be misconceptions—and we
have seen preliminary evidence that many are—but others might
represent misunderstandings of the questions themselves or even
factors outside the intended scope of the test (such as graphical
literacy on a test of Newtonian physics). Ultimately, any discovered
traits will require interpretation and eventually validation, and in
this sense we view the method as exploratory and complementary
to other modes of research (on misconceptions or otherwise).

This paper begins with a brief introduction to a classic IRT
model for multiple-choice questions—the Nominal Categories
Model (Bock, 1972)—followed by the MNCM which can be
understood as one of its most general multidimensional extensions.
We then present a Bayesian implementation of the MNCM
based on a variational inference approach with hierarchical priors,
which we find to be robust to small sample sizes while not
requiring careful tuning of item prior widths to match the
dataset. Using simulated data, we validate this implementation
in its unidimensional limit against existing open-source software
implementing the marginal maximum likelihood method for
nominal responses. We also study how the number and quality
of recoverable dimensions depends on the sample size and the
strengths of the item-testee interactions in each dimension, and
discuss an emergent dimensionality self-selection property of
the method.

We then present some preliminary results from the application
of this procedure to ∼10,000 students’ responses to the Force
Concept Inventory (FCI), the original research-designed multiple-
choice concept test in STEM (Hestenes et al., 1992). The Bayesian
MNCM method extracts 14 dimensions from these data, and we
choose an exploratory bi-factor rotation method (which promotes
sparse loadings in all but one dimension) to yield interpretable
results. In addition to identifying a prominent general dimension
highly correlated with the raw test score, we find that some of
the sparse dimensions are identifiable misconceptions familiar
from the literature on student misconceptions in introductory
Newtonian mechanics. Two illustrative examples are discussed
in this work, with a more comprehensive analysis reserved for
a forthcoming paper (in preparation). While additional research
is needed to establish the broader validity of these findings,
they nevertheless serve as a promising indicator of the value of
our method.

We conclude by stressing the usefulness of methods such as
ours for both formative assessment and research. Although the
techniques of our approach are solidly within the purview of IRT,
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our application of these to study details of not-knowing within
a domain is relatively novel in a discipline traditionally devoted
to measuring or certifying knowing within a domain. Future
iterations of these methods could provide guidance to teachers
(by informing them of the particularly severe misconceptions
of their students) or help researchers design and improve other
assessments, especially where student misconceptions are not so
well studied as in mechanics. Our work invites further exploration
of the similarities of misconceptions across different universities
or skill levels of the students and application to pre- and post-test
data to reveal the effects of instruction and the changes in student
thinking it might catalyze.

2 The nominal categories model

On a multiple-choice test, each question (“item” in IRT
parlance) contains a limited set of possible response alternatives
(“categories”), of which testees may choose only one. In some
cases, these categories have an inherent ordering; an assessment
of anxiety symptoms may use categories ranging from “never
describes me” to “always describes me,” with various gradations
in between. However, many multiple-choice tests contain items
in which categories are qualitative with no inherent ordering, or
in which an ordering may not be known a priori. Responses to
such items only encode which category was selected—without any
associated ranking or quantitative value—and are referred to as
nominal (in contrast to ordinal) responses.

While nominal multiple-choice questions are sometimes
graded as simply “correct” or “incorrect” in an educational
context, doing so discards information about the items and testees
conveyed by the specific distractors selected. This is true even in a
unidimensional case where our concern is ranking students along
a single ability scale: even here, some distractors may be “more
wrong” than others.

An attractive alternative to dichotomous grading is to use a
model specifically intended for nominal data. Perhaps the best
known of these is the Nominal Categories Model (NCM; Bock,
1972), also often called the Nominal Response Model in IRT
literature and software. The NCM assigns each student a “response
tendency” for each category in an item, with the probability
of selecting a particular response category related to these by
the multinomial logistic function (the exponent of the tendency
divided by the sum of the exponents of the tendencies of all
categories in the item). Mathematically, the probability that student
s will select category c as their response r(i)s to item i is

p
(
r(i)s =c | t(i)s

)
=

exp t(i,c)s

C∑
c′=1

exp t(i,c
′)

s

, (1)

where t(i)s = [t(i,1)s , t(i,2)s , . . . , t(i,C)s ] is a vector of the aforementioned
response tendencies for the student and item and C is the number
of categories. For the NCM, these tendencies are given by a linear
functions of some latent student ability θs,

t(i,c)s = θsa
(i,c) + b(i,c), (2)

where a(i,c) is a slope parameter for category c of item i, and b(i,c) is
an intercept parameter for the same.1

In addition to being substantially more flexible than a
dichotomous model, the NCM also has a plausible psychological
interpretation which makes it well suited to our use case: it may
be understood as approximating a comparative choice process in
which each student assigns some (unobserved) preferences to all
response categories in an item, then chooses the category for which
their preference is greatest.2 An excellent exposition of this topic
is presented by Thissen et al. (2010, p. 49–50 & 66–70). This
understanding forms the basis for the theoretical explainability of
the model parameters in Equation 2.

The latent ability parameter θs has a straightforward meaning
which matches that of dichotomous IRT: it measures a student’s
overall skill level in the test domain relative to that of other
students. The slope parameters, a(i,c), require more care to
explain due to the non-linear nature of Equation 1, especially
since the tendencies for all categories in an item are present
in the denominator of the response probability (a form of
normalization which is necessary to ensure that the probabilities
sum to one across all possible responses). Despite the apparent
similarity to a dichotomous two-parameter logistic (2PL) model in
slope-intercept form, the coupling between category probabilities
introduced by normalization means that the a(i,c) terms in the
NCM cannot be thought of as discriminations. Rather, they provide
a relative measure of the association between latent ability and
each of the response categories, and as such serve to indicate the
empirical ordering of the categories in an item.

The intercept parameters, b(i,c), may be understood as a
measure of how inherently attractive each category is to a student
with ability θs = 0; this corresponds to an “average student”
under the typical (albeit arbitrary) IRT convention of fixing the
population mean of the abilities to zero. Even if this convention is
assumed, though, we must stress that ‘attractiveness to the average
student’ is not the same as ‘average attractiveness to students,’ and
that these two are not even guaranteed to be monotonically related.
Consequently, we view these terms as somewhat less suited to direct
interpretation compared to θs and a(i,c).

Nevertheless, the intercept parameters contribute essential
flexibility to the model. For items with three or more categories,
the combination of the normalization step in Equation 1 and
the per-category intercepts in Equation 2 permits the NCM to
model category response curves with intermediate maxima—that
is, those having a response probability which peaks at some finite
θ and decays to zero in both limits as θ → ±∞. Such curves
frequently occur in real test data (Pérez-Lemonche et al., 2019;

1 Note, this use of b should not be conflated with the di�culty parameter

in the two-parameter logistic IRTmodel; despite sharing a variable name, the

twohave distinctly di�erentmeanings.Many IRT sources avoid this conflict by

instead using c for intercepts, though the use of b is not without precedent (cf.

Takane and de Leeuw, 1987, e.q. 19). We argue that reserving “c” as an index

variable for categories improves overall readability since the latter appears in

formulas far more often than the former.

2 In the context of an educational assessment, one would assume these

“preference values” are derived from a student’s perceived likelihood of each

option being the correct response.
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Stewart et al., 2021), and are produced by the NCM whenever a(i,c)

for some category c lies between a(i,c
′) and a(i,c

′′), where c′ and c′′

are other categories in the same item. This is clearly not possible
with dichotomous models such as the 2PL, in which all incorrect
responses are lumped together and have a response probability
which decreases monotonically with increasing ability.

3 The multidimensional nominal
categories model

Since different distractors on research-validated instruments
typically reflect different misconceptions, and since we want to
interpret the different dimensions of the latent ability space
in correspondence with different (mis)conceptions, we need a
multidimensional model where different dimensions indicate
different sets of wrong responses. Such an extension of IRT to D

dimensions would allow each response category in an item to have
a unique slope and intercept term for each dimension, thus allowing
categories to have distinct directions in D-dimensional space. The
tendencies in such a model would then become:

t(i,c)s =
D∑

d=1

[
a
(i,c)
d

θ (d)s + b
(i,c)
d

]
. (3)

Having unique intercepts for each dimension is redundant
however as these combine into a single constant in the tendency
expression. Denoting this as b(i,c) (with no subscript) yields the
typical form of the Multidimensional Nominal Categories Model
(MNCM) first introduced by Takane and de Leeuw (1987) in which
the tendency for student s to give response c to question i is

t(i,c)s =
D∑

d=1

θ (d)s a
(i,c)
d

+ b(i,c). (4)

Alternative parameterizations of the MNCM have also been
proposed in more recent literature, most notably by Thissen et al.
(2010). In place of the slope parameters, they use a product of a D-
dimensional “overall discrimination” vector (which is shared across
all categories in an item) with a set of C scalar “scoring function
values” (shared across all dimensions) which dictate the relative
ordering of the categories. Subsequent presentations also permit
these scoring function values to be multidimensional (Thissen
and Cai, 2016). Such parameterizations have the advantage of
providing an intuitive measure of overall item discrimination
and direction, much like a multidimensional 2PL model. As our
approach to identifying misconceptions relies on examining the
relationships between individual distractors and each latent ability
dimension, we will use the more traditional parameterization in
Equation 4 which provides more directly interpretable parameters
for this application.

In summary, the MNCM has several important properties that
make it well suited to the task of misconception analysis:

• It has a plausible psychological basis, providing a
theoretical foundation for its use in understanding student
though processes.

• It is designed for nominal multiple-choice data. No inherent
ordering is imposed on the response categories a-priori, and
the predicted probabilities across possible responses to an item
always sum to one, reflecting the constraint that students can
select only one of the available choices.

• It is multidimensional at the level of individual categories.
Each distractor can have its own direction (vector) in the
multi-dimensional ability space, such that different distractors
in the same item may reflect different misconceptions.

4 The MNCM-Bayes method

Fitting the MNCM to real data is challenging due to the large
number of freemodel parameters and the small fraction of response
patterns that are ever observed (e.g., a 30-item multiple choice test
like the FCI with five categories per item has approximately 1021

distinct ways in which the questions can be answered). This can
lead to large errors when using maximum-likelihood-based fitting
methods as some parameters may have little data informing their
estimates, especially with smaller sample sizes.

In order to better recover model parameters at small sample
sizes, we take a Bayesian approach to fitting the MNCM as
suggested by Revuelta and Ximénez (2017). This section describes
the details of our resulting method, which we will refer to in this
paper as MNCM-Bayes, as well as providing relevant background
about various elements of our approach. We will begin with a
discussion of the invariances present in the MNCM and our
procedure for imposing identification constraints; while this is the
final step in our method procedurally, it is helpful to introduce it
first as it aids in understanding some aspects of the earlier steps.

4.1 A note on notation

Throughout this section we will make use of matrices (i.e., two
dimensional arrays of parameters) to simplify our explanations.
We will denote such matrices by bold, italicized capital letters—
for example, A for a matrix containing all slope parameters—and
denote their individual elements by italicized lower case letters as
we have done thus far, with row indices indicated by subscripts and
column indices indicated by parenthesized superscripts. Bold lower
case letters will indicate row or column vectors.

In the case of matrices with dimensions of size IC

(corresponding to the set of all response categories on all
items), we use the index pair (i, c) as a shorthand for the index
corresponding to category c of item i. The definitions and shapes
of several key matrices are provided in Table 1 for reference.

4.2 Identifying the MNCM

Specifying a procedure to uniquely identify the MNCM is
required because the model has a number of symmetries that
result in invariances—mathematical transformations to the model
parameters that leave the predicted probabilities unchanged.
Consequently, varying a set of free parameters to find the best fit
to a data set does not uniquely determine those parameters, which
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TABLE 1 Symbols and dimensions for key matrix-valued quantities.

Symbol Description Dimensions

R Responses (observed) S× I

Θ Student abilities/latent traits S× D

A Category slopes D× IC

b Category intercepts 1× IC

are arbitrary within variations that honor the invariances. In order
to compare results from different data sets—or even from different
subsets of the same data—we must impose additional constraints
on the parameters in order to identify (uniquely specify) the model.
A familiar example from dichotomous 2PL IRT is that shifting
item difficulties and student abilities by the same amount does not
change the predicted probability for student s to answer item i

correctly; typically, the corresponding identification constraint for
this invariance is to set the mean ability to zero.

The greater mathematical complexity of the MNCM results
in a greater number of symmetries, and hence a larger number
of identification constraints are necessary to specify reproducible
results. Additionally, for a multidimensional model in which the
probabilities depend on a scalar product (like the MNCM; see
Equation 4), rotations of the vector space leave the probabilities
unchanged; we exploit several affordances of this when fitting data
(both synthetic data and actual student data).

Our identification procedure below is a specification of certain
constraints on model parameters (or on properties of sets of
parameters such as means or standard deviations), and the
parameter transformations we use to effect these constraints. Since
by definition the identification procedures do not change the
probabilities (and often do not even change the tendencies), they
can be applied either while fitting the model to data as an integral
part of that process, or afterward as a separate post-processing step
on the estimated parameters.

Note that in order to leave the predicted probabilities
unchanged, enforcing identification constraints on some
parameters often requires making corresponding changes to
other parameters linked by the model invariances.

4.2.1 Identification procedure
We center Θ at zero over the sample (standard practice in IRT)

for every dimension by subtracting the mean ability 〈θ (d)〉s from
each θ

(d)
s ; in order to keep the tendencies (Equation 4) and thus also

the probabilities (Equation 1) unchanged, this requires that we also
shift each b(i,c) by an amount

1b(i,c) =
D∑

d=1

a
(i,c)
d

〈θ (d)〉s. (5)

We then shift the item parameters A and b in one of two
ways depending on the nature of the data being analyzed. For
data derived from multiple-choice assessments with a “correct
answer” category, we set both a

(i,correct)
d

and b(i,correct) to zero for
each item (by means of a suitable opposite shift of all a(i,c) and
b(i,c)); identifying in this way highlights the distractors that are

most different from the correct answer, which is desirable for
misconception analysis. When no obvious reference category exists
(such as in our synthetic data studies), we set the means 〈a(i,c)

d
〉c

and 〈b(i,c)〉c to zero instead. These two approaches are sometimes
known as simple constraints and deviation constraints, respectively
(see Revuelta and Ximénez, 2017, p. 2). In either case, these changes
shift the tendencies (Equation 4) by the same amount across all
categories in an item, which multiplies all terms in Equation 1 by
the same factor and hence leaves the probabilities unchanged.

Additional invariances occur because the tendencies given by
Equation 4 contain a scalar product of A and Θ , the slope matrix
and the student abilities respectively. In consequence, A and Θ

can be transformed by any invertible linear mapping: this includes
any combination of scaling (e.g., increasing ad and decreasing θd),
rotation, shearing, reflection (sign reversal of both ad and θd), or
permutation of dimensions.

The scaling invariance allows us to constrain the variance of the
Θ-distribution to be unity in each dimension, as frequently done in
IRT. We initially identify rotation and shearing by specifying that
Θ and A have diagonal covariance matrices—the data therefore
determines the scale of the estimated ad vectors, which we rank
in order of decreasing variance by default to identify permutation.
These last identification constraints are often short-lived, though,
as when analyzing real data it is common to further transform
model parameters to maximize interpretability (e.g., by applying
factor-analytic rotation methods as we discuss in Section 6.1).

4.3 Bayesian modeling of the MNCM

As mentioned earlier, we take a Bayesian approach to fitting
the MNCM. In the Bayesian paradigm, the probability of a
student selecting a particular response category is still modeled by
Equations 1, 4; however, every model parameter [each individual
a
(i,c)
d

, b(i,c), and θ
(d)
s ] is treated as having an entire probability

distribution over possible values rather than a single “optimal”
value. This provides a principled way of modeling the effects of
parameter uncertainty. In addition, Bayesian methods allow us
to incorporate reasonable prior beliefs about how parameters will
be distributed. For example, it is typical to assume a priori that
population values will be more-or-less normally distributed. These
two qualities make Bayesian modeling well suited to the challenges
of fitting the real data described earlier.

Our choice of prior probability distribution is based on the
work of Natesan et al. (2016), who recommended the use of
hierarchical models for Bayesian IRT:

αd,β ∼ HalfCauchy(5)

a
(i,c)
d

∼ Normal(0,αd)

b(i,c) ∼ Normal(0,β)

θ (d)s ∼ Normal(0, 1)

(6)

In a hierarchical model, some of the prior probability distributions
are not fully specified but are instead parameterized by additional
“higher level” random variables [here, αd and β , which serve as
scale parameters for the priors of a

(i,c)
d

and b(i,c) respectively].
These variables are then learned from the data. Such an approach
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allows item parameters with high-confidence estimates to inform
the scale of the priors, which in turn better stabilizes estimates for
the parameters which have less supporting data.

Note that all prior means for both ability and item parameters
are fixed at zero. Due to the invariances of the model, this
does not result in any loss of generality. Instead, it serves as a
“soft” identification constraint which stabilizes the location of the
parameters during the fitting process. Similarly, the scale of Θ

(and therefore of A) is identified by the fixed variance of the
θ
(d)
s prior, and the rotation and shearing of the model are partly
identified by the use of independent priors for each dimension
(which implicitly results in diagonal covariance matrices for both A
andΘ , again without any loss of generality). The signs and ordering
of dimensions are left unidentified until after the fitting process,
though this does not seem to adversely affect convergence due to
our choice of fitting method discussed below.

4.4 Approximate Bayesian inference

The process of fitting a Bayesian model to data is called
inference, and its output is an updated joint probability distribution
over all model parameters called the posterior. Given a set
of observed responses R, a prior probability distribution p(Z)
over parameters Z ≡ {Θ ,A, b,α,β }, and a response model
p(R | Z) describing the probabilities of the observations given the
parameters (Equations 1, 3 for the MNCM), then the posterior
p(Z | R) may be found by applying Bayes’ rule:

p(Z | R) =
p(R | Z) p(Z)

p(R)
(7)

This equation, however, is deceptive in its simplicity; except
in special cases, it is not possible to find a closed-form
analytical expression for the posterior, and it must be
approximated numerically.

Our work uses a variational inference (VI) approach in order
to approximately solve Equation 7. VI methods work by re-
framing Bayesian inference as an optimization problem: given an
approximate (but analytically tractable) parameterized probability
distribution, a numerical optimizer searches for the parameters
which bring this approximant closest to the true posterior.
Surprisingly, it is possible to do this without ever computing the
true posterior by instead maximizing a surrogate objective function
known as the Evidence Lower Bound (ELBO); further details are
widely available in the academic literature (e.g. Blei et al., 2017).
In addition to being considerably faster than the more typical
Markov Chain Monte Carlo methods used for Bayesian inference,
this optimization-based approach allows VI to converge to just one
of the many (arbitrary) permutation of dimensions and signs in an
under-identified model.

While the form of the approximate posterior distribution in
VI may be arbitrarily complex, a popular and quite effective
simplification is to treat each random variable in the model as
having its own independent univariate posterior distribution. This
is known as the mean-field approximation. For all real-valued
model variables (θ (d)s , a(i,c)

d
, and b(i,c)), we choose as the approximate

posterior a normal distribution parameterized by a mean and

a standard deviation, both of which may be freely varied by
the optimizer.

The approximate posterior for the higher-level random
variables αd and β require additional care since they cannot take
negative values. This constraint is handled by introducing surrogate
real-valued variables—with posteriors modeled by unconstrained
normal distributions as above—and mapping these to positive
numbers using an appropriate bijection (e.g., the softplus function
x 7→ log

[
1+ exp(x)

]
).

4.5 Dimensionality assessment

When selecting the dimensionality of a multidimensional IRT
model, it is important to balance improvements in predictive
ability from additional dimensions against the added degrees of
freedom thereby introduced. Not doing so inevitably leads one
to select a model which performs well only on the specific data
used to estimate its parameters, but fails to explain new data
generated from the same underlying statistic process or yields
psychologically meaningless parameter estimates. This problem is
known as overfactoring—a type of overfitting—and is often dealt
with in a classical maximum-likelihood context by using likelihood-
ratio tests or information criteria to compare models with different
dimensionalities (van der Linden, 2016, chs. 17 & 18).

Bayesian methods are not entirely immune to overfactoring,
though their principled inclusion of parameter uncertainty does
provide some built-in protection against it. Several approaches
to Bayesian dimensionality assessment were recently compared
by Revuelta and Ximénez (2017) for non-hierarchical MNCM
models with up to three dimensions estimated using Markov
Chain Monte Carlo methods. The authors recommended the
use of a standardized generalized dimensionality discrepancy
measure (SGDDM) in this context, noting that alternatives based
on discrepancy measures struggled to correctly identifying the
dimensionality of synthetic data.

In our work, we find that using a hierarchical model in
combination with variational inference performs simultaneous
parameter estimation and dimensionality selection: even when aD-
dimensional model is specified, some of those may be “turned off”
during inference (by setting the corresponding αd and ad to ∼0)
when the observed data provide insufficient evidence to confidently
estimate their slopes. This results in considerable robustness to
overfactoring as illustrated by our simulation study in Section 5.

4.6 Implementation details

The method described above was implemented in the Python
programming language (version 3.11). We leveraged the NumPyro
probabilistic programming framework (Phan et al., 2019) to define
the probabilistic model, automatically generate a corresponding
mean-field normal approximating posterior (including surrogate
variables and bijections for αd and β), and perform approximate
inference usingNumPyro’s built-in Stochastic Variational Inference
(SVI) algorithm.

As the name might suggest, SVI relies in part on random
sampling to evaluate and optimize the variational objective
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function, and must therefore be paired with a noise-tolerant
optimization routine.We use the Adam optimizer (Kingma and Ba,
2014) configured with a variable “learning rate” parameter which
is programmed to decrease from 0.05 to zero on a predetermined
30,000-step schedule.3

While SVI will often converge even if the posterior means
of all variables are randomly initialized, we attempt to provide
a more reasonable starting point for optimization by computing
initial guesses of these using a fast IRT approximation (Zhang et al.,
2020),4 resorting to random initialization only when this approach
does not yield a solution. The posterior standard deviations of all
variables are initialized to a fixed value of 0.1, which is the default
value for mean-field normal posteriors in NumPyro.

The raw, post-optimization outputs of the SVI algorithm
consist of an estimated mean and standard deviation for each
variable in the approximate mean-field posterior—that is, for
each individual a(i,c)

d
, b(i,c), θ

(d)
s , αd, and β . However, these raw

outputs are only weakly identified by the Bayesian prior during
inference, and require post-processing to exactly impose the
identification constraints described in Section 4.2. We perform
this step analytically, using the posterior standard deviations to
account for uncertainty when finding the covariance matrices
of A and Θ (which are needed to fully identify the scale and
rotation of the model) and the variance of b (which is included
for completeness). The standard deviations are not used further in
this work; we examine only the means of the identified parameters,
which correspond to an expected a posteriori (EAP) solution.

Lastly, any dimensions inactivated during inference
(Section 4.5) are omitted from the final estimates. These
dimensions may be easily detected by computing the magnitudes
of the estimated slope vectors and applying a simple threshold
criterion; we use ||ad|| ≤ 0.005.

The final identified outputs of our method therefore include:

• D̂, the total number of retained dimensions (with D̂ ≤ D);
• Â, the matrix of EAP category slope estimates;
• b̂, the vector of EAP category intercept estimates;
• Θ̂ , the matrix of EAP ability estimates;
• Ĉov[A], the estimated D̂× D̂ posterior covariance matrix of all

the slopes; and
• V̂ar[b], the estimated posterior variance of all the intercepts.

3 The “learning rate” is the Adam analog of a step size in other gradient

descent optimization methods.

4 Specifically, we adapt “Algorithm 1” Zhang et al., (2020, p. 359–360)

to work with nominal data by setting their inverse link function “f ” to our

Equation 1 and their input response matrix “Y” to an S × IC indicator matrix

with components derived from our (nominal) matrix R according to

y(i,c)s =




1 if r(i)s = c,

0 otherwise.

The number of factors “K” and truncation parameter “ǫ” in Algorithm 1 are

set to D and 10−4, respectively. The outputs of the algorithm serve as initial

guesses for the posterior means of Θ , A, and b, with the corresponding

initial guesses for α and β computed by taking the standard deviations of

A (separately for each dimension) and b.

5 Tests with synthetic data

In this section we apply the MNCM-Bayes method to synthetic
response data (generated using the MNCM as the true underlying
model) and study its ability to recover the multidimensional
slope parameters used in the synthesis. We explore how this
parameter recovery performance varies across a range of sample
sizes and ad-vector scales, and also compare the method’s results
to those obtained with established IRT software in a limiting
unidimensional case.

5.1 The synthesized data

Our synthesized datasets each comprised a set of synthetic
student and item parameters Θ , A, and b (all identified according
to the constraints in Section 4.2) and a corresponding synthetic
response matrix R. All datasets used I = 30 items and C = 5
categories per item, matching the structure of the real data we will
analyze in Section 6. The standard deviation of the b vector was
fixed at 1.5, which is also consistent with that found later for the
real dataset; this yielded synthetic data with a range of observed
responses fractions across the categories in each item.

For the multidimensional simulation study, datasets were
generated with D = 9 synthesized dimensions. Six sample size
levels S ∈ {50, 100, 200, 600, 2, 000, 10, 000} and two A-matrix
covariance structures (described below) were explored according
to a fully-crossed design. For each condition, 100 replications were
generated with different pseudo-random parameter values for each
replication, yielding a total of 1,200 datasets.

The invariances of theMNCMafford us substantial flexibility in
choosing a covariance structure for the synthesized A matrices. Of
note, all possible covariancematrices forΘ andA—even those with
arbitrary structure and multiple highly-correlated dimensions—
are expressible as diagonal matrices in some choice of reference
frame due to these invariances,5 which allows us to synthesize A

to have uncorrelated dimensions without any loss of generality.
The standard deviations of these dimensions were selected to span
a fairly wide gamut in order to explore the limits of parameter
recovery using our method; we fix the standard deviation of the
first dimension to 1.0 and specify that each subsequent dimension
is smaller than the previous one by a factor γ ∈ {0.8, 0.512}:

StdDev[ad] = 1.0× γ (d−1). (8)

The first condition, γ = 0.8, yields data in which the smallest
dimension accounts for approximately 1% of the overall variance in
the synthesized tendencies. The second condition yields data with
a much more rapid decrease in variance (as might be expected in a

5 This may be seen by factoring the inner product of Θ and A via compact

singular value decomposition followed by some algebraic manipulation,

ΘA = UΣV⊺ =
(
U
√
S
) (

ΣV⊺
/√

S
)
= Θ

⋆A⋆ ,

where U ∈ R
S×D and V⊺ ∈ R

D×IC are both semi-orthogonal and Σ ∈ R
D×D is

diagonal. The transformed variables Θ
⋆ ≡ U

√
S and A⋆ ≡ ΣV⊺/

√
S then have

diagonal covariance matrices Cov[Θ⋆] = I and Cov[A⋆] = Σ
2/(SIC), with the

entries of the latter conventionally arranged in descending order.
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real dataset with fewer significant factors), with the specific choice
of γ = 0.83 = 0.512 intended to facilitate comparison across the
two conditions: the standard deviations of dimensions 1–3 in the
γ = 0.512 data exactly match those of dimensions 1, 4, and 7 in the
γ = 0.8 data.

For the unidimensional simulation study comparing
the Bayesian method to an established software package
implementing Marginal Maximum Likelihood Estimation
(MMLE), datasets were generated with D = 1, sample sizes
S ∈ {50, 100, 200, 600, 2, 000, 10, 000}, and a standard deviation
of 1.0 for the sole slope vector a1. Again, 100 replications were
generated per condition, yielding an additional 600 datasets for
this second study.

5.1.1 Student parameter synthesis
TheΘ matrices were synthesized by drawing samples from aD-

dimensional standard normal distribution and then standardizing
this set of samples to have zero mean in all dimensions and
an identity covariance matrix. This added standardization step
(and those applied to the item parameters below) served two
goals: imposing exact identification constraints to facilitate later
comparison with the recovered parameters, and reducing the
sample-to-sample variation in the scale of themodel due to random
sampling variation at smaller sample sizes.

Within each replication, a “nested” structure was used for the
student parameters, such that the matrix for each sample size
included those of all smaller sample sizes as subsets. That is,
Θ|S=100 consisted of Θ|S=50 concatenated with an additional (and
separately standardized) 50 rows, Θ|S=200 included Θ|S=100 plus
100 new rows, and so on. This was done both to reduce variance
across conditions and to permit direct comparisons between
parameter estimates if desired.

5.1.2 Item parameter synthesis
The A matrices and b vectors were generated using a similar

procedure to Θ . In order to allow the covariance between slopes
and attractivenesses to be exactly specified, these two variables
were initially treated as a single column-wise concatenated matrix
[A⊺|b⊺] having dimensions IC × (D + 1), with rows drawn from
a (D+ 1)-dimensional standard normal distribution. As in Section
4.2, the combined parameters were identified such that each group
of rows corresponding to a given item had zero mean in all D + 1
columns. The entire matrix was then standardized to have an
identity covariance matrix, scaled to achieve the desired standard
deviations for each column, and finally split and transposed into
the individual variables A and b.

5.1.3 Response synthesis
The response matrices R were generated by sampling each

element from a categorical distribution with probabilities given by
Equations 1, 4. As with the student parameters, a nested sampling
approach was used, such that the response matrix for each sample
size in a given replication included as subsets the response matrices
of all smaller sample sizes.

5.2 Aligning recovered and synthesized
parameters

Our interest in finding misconceptions means that, when
studying real data, we will need to rotate the coordinate system
of our results to associate each dimension with an interpretable
concept (common practice in exploratory analysis methods; see
Section 6.1). We are therefore interested in evaluating how well
the method recovers the basis-independent information present
in our synthesized parameters and especially in the A matrix,
rather than the particular coordinate system in which it initially
extracts this information (which is arbitrary and does not affect the
response probabilities due to the rotational invariance property of
the MNCM). We achieving this by aligning the coordinate systems
of the synthesized and recovered parameters prior to computing
any evaluation metrics.

Note that using the same identification criteria for both
sets of parameters does somewhat succeed in aligning their
coordinate systems. Even so, the identified coordinate directions
may themselves be sensitive to small errors in the parameters;
this procedure may therefore lead to inflated errors which are due
more to (arbitrary) differences in rotation than to differences which
actually affect the response probabilities.

In this work, we use an orthogonal Procrustes procedure
(Schönemann, 1966) to align the recovered and synthesized
parameters while respecting the invariances of the model. We first
find an orthogonal matrix Q which best maps Θ to Θ̂ in the
least-squares sense, i.e., which minimizes

||ΘQ− Θ̂||2F s.t. QQ⊺ = I (9)

where || · ||2F is the squared Frobenius norm (equal to the sum
of squares of all matrix elements). This matrix is then used to
rotate the synthesized parameters to allow direct comparisons with
the estimates:

Θ
⋆ = ΘQ

A⋆ = Q⊺A
(10)

Note that such rotations do not alter the predicted probabilities in
Equations 1, 4.

The choice to align parameters to the reference frame of the
estimates—as opposed to that of the synthesized parameters—is
a deliberate one. Because of the self-limiting dimensionality of
the MNCM-Bayes method, the number of dimensions extracted
may be smaller than the number of dimensions synthesized.
Remaining in the reference frame of the estimates allows us to
limit our analysis to only these D̂ ≤ D extracted dimensions,
and also allows us to examine parameter recovery metrics for
each extracted dimension individually. In the reference frame of
the synthesized parameters however, there is no longer a one-
to-one correspondence between these extracted dimensions and
individual coordinate directions, and limiting the analysis to the
D̂-dimensional subspace of extracted dimensions becomes difficult
or impossible.
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5.3 Results and discussion

For this paper, we focus exclusively on the recovery of the
slope parameters a(i,c)

d
as these provide the most information about

the structure and content of an assessment instrument (which is
our current research focus). We leave exploration of Θ and b for
future work.

We evaluate parameter recovery separately for each dimension.
Our metric of choice is the squared Pearson correlation
coefficient—also known as the coefficient of determination—
computed between the synthesized, Procrustes-aligned a⋆(i,c)

d
values

and their estimated counterparts â(i,c)
d

:

r2
[
a⋆
d, âd

]
≡

[∑
i,c

(
a
⋆(i,c)
d

− 〈a⋆
d
〉i,c

)(
â
(i,c)
d

− 〈̂ad〉i,c
)]2

∑
i,c

(
a
⋆(i,c)
d

− 〈a⋆
d
〉i,c

)2∑
i,c

(
â
(i,c)
d

− 〈̂ad〉i,c
)2 . (11)

We intentionally use a correlation-based metric instead of the more
common root mean squared error (RMSE) in order to forgive
differences in overall scale, which do not affect the subjective
interpretation of the recovered parameters.

The r2 metric ranges from 0 to 1 and may be understood
as the fraction of variation in the slope estimates attributable
to variation in the (rotated) ground-truth values. This definition
implies that values of r2 are analogous to reliability coefficients,
except that these apply to recovered slope rather than test scores.
We therefore suggest similar norms be used when evaluating r2:
values greater than 0.9 suggest sufficient accuracy for interpreting
individual slopes, while those as low as 0.7 may still provide value
when interpreting multiple slopes in aggregate.

5.3.1 Multidimensional slope recovery
The r2 coefficients for the recovered slopes in the nine-

dimensional simulation study are summarized in Figure 1.
Recovery ranged from excellent (r2 > 0.9 for most dimensions at
S = 10, 000) to poor (only marginally-acceptable performance in
the first dimension for S = 50, with questionable results beyond
this), though this was largely expected given the span of sample
sizes tested.

Perhaps the most conspicuous feature of the results is the
self-limiting dimensionality of the MNCM-Bayes method. At the
largest sample size tested (S = 10, 000), the method was able to
recover coefficients of all synthesized dimensions in the γ = 0.8
data across the majority of experimental replications. As sample
size decreases, however, the effects of smaller dimensions become
increasingly difficult to distinguish from those of random noise in
the data, increasing the risk that extracted parameters will differ
from those of the true underlying model. Rather than yielding
meaningless results for these dimensions, we find that method
settles on solutions in which only a subset of the D = 9
estimated dimensions are used, with the remainder having EAP
estimates set close to zero—effectively pruning them from the final
model.6 This behavior provides considerable robustness to both
overfactoring and overfitting: in general, the method appears to

6 These “unused” dimensions did still seem to contribute a small but

consistent amount of noise to the computed tendencies, despite the fact

include dimensions only when it is confident that the resulting
estimates contain real information about the underlying slopes, not
simply when doing so would increase the likelihood of the observed
responses on a particular dataset.

At the same time, we recognize that merely containing
information is too low a bar when it comes to meaningful
interpretation of model parameters. In this sense, our results
underscore the critical role that large sample sizes play in allowing
us to draw conclusions about the slope coefficients in lower-
variance dimensions, especially if we wish to interpret these
individually rather than in aggregate.

Comparing the results across the two levels of γ , we find that
recovery performance is quite similar for dimensions with similar
overall standard deviations (indicated by matching superscripts on
the dimension numbers in the two subplots). For example, the
results for S = 2, 000 show similar performance (r2 ≈ 0.8) in
dimension 7 of the γ = 0.8 data and dimension 3 of the γ = 0.512
data—both of which were synthesized with standard deviations
of 0.262. This is true despite there being a greater number of
dimensions having at least this standard deviation in the γ = 0.8
data, suggesting that the dimensionality of the data plays a relatively
minor role in determining parameter-recovery accuracy in any
given dimension compared to the scale of the underlying ad vector
(and of course the sample size).

The number of dimensions retained by the method also seems
to depend primarily on the scales of the ad vectors at any given
sample size. At S = 600 for example, the method yielded models
with up to seven dimensions in the γ = 0.8 data and only
three dimensions in the γ = 0.512 data, but in either case the
smallest recovered dimension had StdDev[ad] ≈ 0.26. This result
also implies that sample size should not be seen as limiting the
number of dimensions that can be recovered by the method, but
rather the smallest dimension that can be reliably extracted given
the limited information about the model parameters provided by
each response.

5.3.2 Agreement with established IRT software
We also compared the slope recovery of our method to those

obtained with the widely adopted “mirt” package for the R language
(Chalmers, 2012; R Core Team, 2021) using default settings, which
corresponded to MMLE with a standard-normal ability prior and
no item parameter priors. This comparison was limited to a
unidimensional model since, as of the date of submission, “mirt”
only supports the more restricted (Thissen et al., 2010) form of
the MNCM in which all categories slopes for a given item are
assumed to share the same direction in the latent ability space. In
the unidimensional case, the general and restricted models become
equivalent, with both simply reducing to the NRM and differing
only in their parameterization.

As shown in Figure 2, the MNCM-Bayes procedure performs
quite favorably in this comparison, especially at smaller sample

that an additive noise term should not be necessary in a logistic model like

the MNCM. We have not yet determined whether this behavior reflects the

“true” posterior distribution of the model parameters or is merely an artifact

arising from our use of approximate inference techniques.
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FIGURE 1

Per-dimension coe�cients of determination for recovered vs. synthesized slopes, after Procrustes alignment, for all multidimensional synthesized

datasets. Points show results from individual replications, with jitter and horizontal o�setting used to reduce overplotting. Solid lines and shaded

bands show median and interquartile ranges, respectively, whenever five or more replications are present for a given γ , S, and d. To facilitate

comparison between the two γ conditions, the superscripts ∗, † and ‡ are used to indicate dimensions with equal standard deviations.

FIGURE 2

Coe�cients of determination for recovered vs. synthesized slopes

using unidimensional synthetic data, comparing MNCM-Bayes (blue,

o�set left) to established IRT software implementing MMLE (orange,

o�set right) with default settings. Points show results from individual

replications, with jitter used to reduce overplotting.

sizes, with some improvements to robustness visible up to sample
sizes of S = 2, 000. These results are somewhat expected given the
lack of item-parameter priors in the benchmark method, but still
provide additional confirmation of the correctness and utility of
our implementation.

Nevertheless, these results do help underscore a key advantage
of hierarchical priors: improved performance for novice users. Even
when IRT packages do support the use of item priors, it is typically
up to the user to manually configure the distributions and widths
of these priors, and later evaluate the results to determine whether
their choices were adequate. If too wide a prior distribution is
used, some of the benefits of increased robustness will be lost. Too
narrow a prior, on the other hand, may excessively bias parameter
estimates by allowing insufficient flexibility to fit the observed data.
Understandably, this requires more experience than simply fitting
a model to data with the default options. In contrast, a hierarchical
Bayesian model requires little or no manual tuning to achieve
substantially-improved results, as the prior widths are themselves
learned from the data.

Finally, an astute observer may note that MNCM-Bayes
exhibits slightly better performance in Figure 2 compared to the
results for d = 1 in Figure 1, especially at lower sample sizes.
This is likely attributable to the model being better specified here:
i.e., we are fitting a unidimensional model to a unidimensional
dataset. In contrast, any synthesized dimensions left unextracted
when fitting the multidimensional datasets serve as a source of
unmodeled noise, which may reduce the method’s accuracy when
recovering the slopes in the remaining dimensions.

6 Real data example: the force
concept inventory

To demonstrate the promise of our method in a more realistic
application, we present some preliminary results from applying
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FIGURE 3

Examples of principal and sparse distractor vectors (̂ad coe�cients) for FCI post-test data. Dots are colored red when negative (blue if positive) with

size and intensity showing magnitude relative to the largest coe�cient in a given panel; correct answer choices are marked with a “+” and always

have zero slope due to model identification constraints. The top two vectors are from the first dimension—labeled “P1” for principal and “Bf1” for

bi-factor rotated. They are correlated with each other (Pearson uncentered) at 0.998 and appear so visually similar that we carefully checked for

accidental duplication. The second principal vector, “P2,” is obviously much denser than the second dimension of the rotated vector, “Bf2,” which has

just a few large components that all deviate from zero in the negative (anti-Newtonian) direction.

the MNCM-Bayes to data obtained from administrations of the
Force Concept Inventory. While these results do not yet meet
the standard of rigor required to serve as standalone research
findings (which we hope to provide in a followup paper), they
do show that the method can identify real misconceptions in real
concept-test data.

The FCI, which grew out of work by David Hestenes’ group
in the mid-1980s, was first published by Hestenes et al. (1992)
and later revised by Halloun et al. (1995). This popular assessment
asked straightforward questions about simple physical situations
that were covered in the introductory weeks of typical college-
level Newtonian mechanics courses, but that were known from
research to reveal student misconceptions (e.g., “what forces
act on a ball that is thrown vertically upwards?”). College
teachers predicted that their students would score very highly
on this instrument and were doubly shocked. Not only did
their students score a mere 55% post-instruction, but they had
already scored just over 40% on the pretest: thus the teachers
taught their students less than a quarter of the important
mechanics concepts that they didn’t already know on day one of
the course.

Our FCI dataset comprises post-instruction responses from
S = 10, 039 students at a state university in the Southwestern part

of the United States. All administrations used the “v95” revised
version of the instrument (Halloun et al., 1995). We restricted our
analysis to students responding to all 30 questions on the test in
the expectation that these students were more likely to respond
thoughtfully, which excluded 433 students from the sample. The
MNCM-Bayes method was configured to allow a maximum of 16
dimensions, and returned a 14-dimensional fit for this dataset.

6.1 Rotating results for interpretability

A key challenge that arises in applying multi-dimensional IRT
models like the MNCM to real data is that of ascribing meaning to
the dimensions thereby discovered. As with principal component
analysis, the dimensions extracted by MNCM-Bayes are initially
identified in a principal basis. Such solutions are generally not easy
to interpret, as each dimension loads on many categories across
many items.

The standard approach for increasing the interpretability of
such results (both in multidimensional IRT and in classical factor
analysis techniques) is to find a transformation which increases
some measure of “simplicity” while not changing the modeled
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probabilities. Many such measures exist, as do standard methods
for transforming solutions to maximize them given a matrix of
slopes or factor loadings. For the sake of brevity, we will forgo
a principled evaluation of these methods for now and present
only one as an example: a bi-factor rotation method proposed by
Jennrich and Bentler (2011) and implemented in the GPArotation
R package (Bernaards and Jennrich, 2005).

Bi-factor rotation methods such as the one above transform the
coordinate system of Θ and A such that each distractor has non-
negligible slopes along only a small number of dimensions (ideally
just two). The first of these dimensions is always a ‘general’ factor
on which all distractors load—we have found the ability in this
dimension to be strongly associated with students’ overall test score
(Spearman rank correlation coefficient ρs = 0.98). The remainder
are “group” factors associated with only a small set of distractors.
We call the slope vectors for each of these sparse distractor vectors,
and define their positive directions as those which yield a positive
Spearman correlation between the corresponding rows of Θ and
the test scores. (This sign determination method is sometimes
marginal as some dimensions do not correlate strongly with score;
for those that do, however, this causes the slope components which
most characterize the non-Newtonian nature of each distractor to
have negative signs).

To demonstrate the results of this transformation, we plot in
Figure 3 the first two principal and sparse distractor vectors found
for the large post-instruction data set described above. We display
the components of each vector as a pattern of dots on an I × C

grid, each dot having a size and intensity proportional to the
magnitude of that component and being colored red when negative
(blue if positive).

6.2 Some dimensions represent
misconceptions

Each sparse distractor vector loads heavily on just a few
distractors. To determine whether a particular vector represents a
misconception, we examine the most heavily weighted distractors
(typically the largest ∼half-dozen assuming these stand out
prominently from the background when plotted as in Figure 3)
and see if selecting them would indicate consistent application of
some alternate hypothesis to Newtonian mechanics. This process is
admittedly quite subjective and could likely be improved upon in
future work (e.g., by using outlier analysis to differentiate between
prominent and background values), but nevertheless identifies
several clear examples of misconceptions in our present results.

6.2.1 Impetus force along curved path
As an example, consider the distractor vector labeled “Bf2” in

Figure 3. Its six largest distractor components are on items 5 and 18,
whose corresponding text is shown in Table 2. All six highly loaded
distractors involve “force in the direction of motion.” Importantly,
we note that the path is curved in both of these items, so we call this
dimension Impetus Force Along Curved Path.

Impetus is best described as the Arabic and medieval physics
concept that the force from the thrower imparts not only immediate

TABLE 2 Most heavily loaded response categories for second dimension

of bi-factor rotated FCI post-test results (shown as “Bf2” in Figure 3).

These choices are consistent with a student belief that an impetus force

exists along curved paths.

Item Choice Text Slope â

Forces on a ball traveling in a circular track

5 C A force in the direction of
motion

−1.19

D . . . and a centripetal force −1.62

E . . . and a centrifugal force −1.93

Forces on a boy swinging on a swing

18 C A force in the direction of
the boy’s motion

−1.18

D . . . and a centripetal force −1.96

E . . . and a centrifugal force −2.34

TABLE 3 Most heavily loaded response categories for fourth dimension of

bi-factor rotated FCI post-test results (shown in Figure 4).

Item Choice Text Slope â

Puck moving along x is kicked by foot moving along y

8 A Puck goes in
direction of
kick

−1.46

Rocket moving along x pointing along y starts firing

21 B Rocket goes
straight along
y axis

−2.44

Rocket engine is now turned o�

23 A Rocket goes
straight along
x axis

−1.51

C Rocket goes
straight along
y axis

−1.97

motion to the projectile (as Aristotle said) but also a kind of
“internalized force” that continues pushing it forward after it is no
longer in contact with the thrower. We stress that this dimension
applies impetus force to circular motion but less so to rectilinear
motion as shown by the lesser loading on distractors 11B & C and
13B & C, which involve impetus force in linear motion.

6.2.2 Last force determines motion
Another example is distractor vector “Bf4” (i.e., the fourth

dimension of the bi-factor rotated slopes), which is shown in
Figure 4. The dominant components of this vector are described
in Table 3.

This dimension is mostly aligned with the (known)
misconception that when a new force is applied to a moving
object, the direction of motion immediately aligns with that
new force, ignoring inertia and motion from previously applied
forces—described as the “last force to act determines motion”
view by Hestenes and Jackson (2010) who identify categories 8A,
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FIGURE 4

Fourth sparse distractor vector (“Bf4”) from bi-factor rotated FCI post-test results, encoding a Latest Force Determines Motion misconception. Dots

are colored red when negative (blue if positive) with size and intensity showing relative magnitude; correct answer choices are marked with a “+.”

Table 3 summarizes the dominant response choices.

9B, 21B, and 23C as exemplars. This misconception is usually
understood to include an expectation that the new motion persists
at least initially after a force has ceased to act. Thus the inclusion
in this misconception of 23A, where a rocket reverts to its original
motion once its engine is turned off, is surprising and suggests
further confusion about motion when forces stop being applied (a
topic well outside the scope of this paper).

6.3 Summary of results

The limited results we just discussed are clear-cut examples
showing that the combination of the MNCM-Bayes method
followed by rotations to find sparse distractor vectors can
discover known misconceptions—indeed, the two just discussed
are among the top three found by Wheatley et al. (2022) using
modified module analysis (Wells et al., 2019). Our results also
illustrate potential improvements to our understanding of existing
misconceptions, for example by showing that the impetus concept
applies more strongly for motion in a curved path than in a straight
path, or that the belief that only the last force applied determines
an object’s motion is also associated with a peculiar view of what
happens when such forces stop acting.

The remainder of our results in this example application are
included in the supplemental materials for this paper (both as
figures and as tabulated slope coefficients). While several additional
dimensions in these results seem to have precedents in prior
misconceptions research, we postpone further discussion to a later
application-focused paper with a more thorough analysis of our full
FCI dataset (∼34,000 exams, including pre- and post-instruction
data from eight colleges and universities).

7 Concluding remarks

This work makes two primary contributions to the fields of
psychometrics and education research:

1. We present a Bayesian approach to fitting the very general
Multidimensional Nominal Categories Model which combines
several recommendations in recent IRT literature—including
the use of variational inference, hierarchical priors, and a fast
approximate parameter initialization method. Using synthetic
data, we explore the parameter recovery performance of our
procedure, compare it to established IRT software in a limiting

one-dimensional case, and demonstrate its robustness and self-
limiting dimensionality behavior.

2. We present a fully-exploratory method aimed at discovering
student misconceptions from multiple-choice concept test data.
This method combines our general MNCM implementation
with subsequent dimensional transformations to create sparse
loadings which are usefully interpretable. Our findings suggest
that this method is most likely to provide useful insights at
large sample sizes (10,000+), and a real-data example provides
preliminary evidence that this method can recover known
misconceptions from student responses to the Force Concept
Inventory, a pioneering research-developed concept test for
Newtonian mechanics.

Overall, this synthesis of modern Bayesian methods with classical
IRT and factor analysis techniques shows great promise for
discovering student misconceptions from large sets of concept-test
response data. While further work is needed to refine and validate
our approach, we expect methods such as the one presented here
to find broad applications in education, whether for conducting
research on misconceptions, developing and refining concept
inventories, or improving learning through targeted instruction.

7.1 Future work

Many opportunities exist for improving the MNCM-Bayes
method or extending its capabilities. One that we are already
investigating is the choice of factor rotation method, which
must ideally balance ease of interpretation with consistency of
the discovered misconceptions. By comparing results obtained
using different rotations across data from several colleges, we
hope to better inform this choice in future version of our
method. Another modification would be to allow partially-specified
patterns of loadings. This would allow us to manually associate
some dimensions with particular known misconceptions (by
constraining any irrelevant slopes to zero) and could aid in steering
any unconstrained dimensions toward novel misconceptions
instead of existing ones.

On the applications side, a compelling first question for future
study is whether the various misconceptions that we found for the
FCI are consistent across different colleges, and whether similar
misconceptions are as robustly found in pre-instruction data rather
than post-instruction data; we plan to address both topics in a
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forthcoming paper (in preparation). One could also study how
student ability scores for each misconception depends on factors
such as gender, preparation, or background. And, by comparing
results from pre- and post-instruction data, one might determine
which instructional approaches are most effective in reducing the
persistence of various misconceptions.

As our methods are applied to other research-designed
instruments, it seems likely that new misconceptions—or re-
contextualized versions of existing ones—will be discovered,
especially in subject areas where few studies of student
misconceptions exist. Finally, we need not limit ourselves to
data from traditional concept tests: modified versions of this
method could be applied to entire online courses where frequently-
given wrong answers have already been mined from student data
(as is done by e.g., MasteringPhysics.com and ExpertTA.com) and
could be treated as distractors. Further applications await.
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