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Decision-making and 
performance in the Iowa 
Gambling Task: recent ERP 
findings and clinical implications
Ashley Latibeaudiere , Santo Butler  and Max Owens *

TROPICS Lab, Department of Psychology, University of South Florida, St. Petersburg, FL, United States

The Iowa Gambling Task (IGT) is a widely used tool for assessing decision-
making in clinical populations. In each trial of the task, participants freely select 
from different playing card decks that vary in the magnitude and frequency of 
rewards and punishments. Good decks offer relatively smaller rewards on each 
trial yielding greater overall winnings while bad decks result in a net loss over 
time as high penalties negate any rewards earned. Comparing participants’ rate 
of selecting good to bad decks can provide insight into learning in uncertain 
conditions across time. However, inconsistent patterns of deficits and learning 
within clinical and control populations are often observed in the task (eg., in 
depression). Thus, a clearer mechanistic understanding of the IGT is needed to 
fully understand the decision-making process. The goal of the current review 
is to synthesize the predominant empirical and theoretical literature of the IGT 
using event-related potentials (ERPs) derived from electroencephalogram (EEG). 
The review then explores how modifications of the IGT allow for event-related 
potentials to be captured at each stage of decision-making. Lastly, the review 
discusses how the modified version with ERPs can be further applied to directly 
assess the impact of emotion processing on decision-making, using findings 
from depression research as an example.
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1 Introduction

The Iowa Gambling Task (IGT) is a popular, clinically validated tool to assess the nature 
of the human decision-making process (Steingroever et al., 2013). In the IGT, participants 
attempt to maximize their earnings on a loan of money (Bechara et al., 1994). They are 
presented with four decks, of which two are advantageous. Participants are told that some 
cards are more beneficial than others. With each selection, participants win or lose a set 
amount of money. Advantageous decks (C and D) begin with small gains but end with even 
smaller losses, resulting in a net gain over time. The disadvantageous decks (A and B) result 
in a net loss as large gains are negated by larger future losses. The frequency of losses and gains 
also vary across decks as Decks B and D result in less frequent but high-magnitude losses, 
while decks A and C result in smaller but more frequent losses (see Table  1). Typically, 
participants show learning in the task by decreasing selections of disadvantageous decks and 
increasing the selection of advantageous decks across several blocks of trials (Bechara et al., 
1994; Dong et al., 2016). As such, it is argued that the task relies on constructing long-term 
probabilistic associations of four options across time, a process that has been proposed to 
mimic real-life decision-making (Bechara et al., 2000a).

OPEN ACCESS

EDITED BY

Michael F. Salvatore,  
University of North Texas Health Science 
Center, United States

REVIEWED BY

Eldad Yechiam,  
Technion Israel Institute of Technology, Israel
Gilly Koritzky,  
The Chicago School of Professional 
Psychology, United States

*CORRESPONDENCE

Max Owens  
 mjowens@usf.edu

RECEIVED 07 September 2024
ACCEPTED 26 February 2025
PUBLISHED 19 March 2025

CITATION

Latibeaudiere A, Butler S and Owens M (2025) 
Decision-making and performance in the 
Iowa Gambling Task: recent ERP findings and 
clinical implications.
Front. Psychol. 16:1492471.
doi: 10.3389/fpsyg.2025.1492471

COPYRIGHT

© 2025 Latibeaudiere, Butler and Owens. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 19 March 2025
DOI 10.3389/fpsyg.2025.1492471

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1492471&domain=pdf&date_stamp=2025-03-19
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1492471/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1492471/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1492471/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1492471/full
mailto:mjowens@usf.edu
https://doi.org/10.3389/fpsyg.2025.1492471
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1492471


Latibeaudiere et al. 10.3389/fpsyg.2025.1492471

Frontiers in Psychology 02 frontiersin.org

There are several behavioral measures often used to characterize 
performance on the IGT. Generally, performance is calculated based 
on the difference between the number of choices from advantageous(C, 
D) and disadvantageous decks (A, B; Bechara et al., 1994; Ernst et al., 
2002). Positive scores indicate good performance as individuals make 
a greater selection of choices from advantageous decks while negative 
scores indicate poor performance because of a greater reliance on 
disadvantageous decks. Typically, the change in net score across blocks 
of 20 trials is computed, where an increase in net score is interpreted 
to reflect learning in the task (Bechara et al., 2000b; Bowman et al., 
2005; DeDonno and Demaree, 2008).

Since its introduction, the IGT has been widely used to 
characterize decision making in clinical populations. Bechara et al. 
(2000b) found that while the control group increased their net score 
by selecting more advantageous decks across time, those with 
ventromedial prefrontal cortex (vmPFC) damage continued in 
selecting from disadvantageous decks, resulting in a negative net 
score. Research has shown that several other clinical groups have 
difficulty learning on the IGT, including those with amygdala damage 
(Bechara et al., 1999), substance abuse disorder (Balconi et al., 2014), 
gambling disorder (Kovács et  al., 2017), schizophrenia (Shurman 
et al., 2005), obsessive compulsive disorder (Cavallaro et al., 2003), 
and others (for a full review see Buelow and Suhr, 2009).

1.1 Factors underlying IGT performance—
the somatic marker and cognitive 
hypotheses

1.1.1 The somatic marker hypothesis
Learning on the IGT has been argued to be driven in part by 

emotion or hunches, developed through prior exposure to rewards 
and losses (Bechara et al., 2000a). In this view, repeated exposure to 
stimuli elicits somatic signals tied to emotional states, which in turn 
biases one’s decision. This theory, known as the somatic marker 
hypothesis, was developed based on the physiological responses 
observed in those with vmPFC damage while playing the IGT 
(Bechara and Damasio, 2005). Using skin conductance 
responses(SCR), Bechara et al. (1999) showed that those with vmPFC 
damage responded to instances of wins and losses, but failed to 
develop anticipatory SCR necessary to distinguish between good and 
bad decks. The vmPFC is thought to be  critical in integrating 
associations from different brain regions including the amygdala to 
generate somatic markers (Bechara et al., 1999; Bechara and Damasio, 
2005). Therefore, damage to this region is argued to result in an 
inability to generate the appropriate skin conductance response 

necessary to guide the avoidance of bad decks. Importantly, the 
somatic marker hypothesis does not infer that cognition has no role 
in decision-making but that emotion precedes and therefore 
contributes to the development of explicit knowledge (Buelow and 
Suhr, 2009).

1.1.2 Cognitive hypothesis
A key tenet of the somatic marker hypothesis is that learning on 

the IGT relies on the development of somatic markers (Bechara et al., 
1997). However, when sampling verbal reports during game play it has 
been found that generally participants have conscious knowledge of 
the deck outcomes that is not entirely reflected in their behavior (Maia 
and McClelland, 2004). Therefore, the authors proposed that 
conscious knowledge and behavior may result from partially separate 
mechanisms (Maia and McClelland, 2004). Although, it may 
be expected that conscious knowledge, somatic markers and behavior 
interact. In this regard, there is evidence that high and low conceptual 
knowledge of the deck outcomes are associated with different patterns 
of neural reactivity in the task using ERPs (Marino and Mantini, 2024; 
Dong et al., 2016). As a result, cognition might have a greater role 
guiding behavior on the IGT than initially thought (Table 2).

Despite this support, there is less clarity on the exact cognitive 
processes underlying decision-making on the IGT. Some studies 
demonstrate that working memory, attention and cognitive flexibility 
(i.e., abstraction and set-shifting) predicts performance (Cui et al., 
2015; Bechara and Martin, 2004; Tamburin et al., 2014; Brand et al., 
2007; Lehto and Elorinne, 2003; Dong et al., 2016), while others find 
no impact of these processes on the IGT (Overman et al., 2004; Toplak 
et al., 2010). Typically, positive correlations between performance on 
the IGT and another task are used to draw inferences about its 
underlying cognitive processes. However, a drawback of this approach 
is that performance on these cognitive tasks might require a mixture 
of cognitive processes. For instance, although the Wisconsin Card 
Sorting task (WCST) has often been used as a measure of cognitive 
flexibility, it involves a complex interplay of other processes such as 
working memory, inhibition, and attention (Miles et  al., 2021; 
Buchsbaum et  al., 2005). To identify the specific processes that 
underlie individual behavior and learning in the task, some theorists 
have argued for a cognitive modelling approach (Busemeyer and 
Stout, 2002).

1.1.2.1 Computational modelling of the IGT
Generally, computational modelling is the decomposition of trial-

level choices into separate processes using theory grounded 
mathematical functions. For instance, according to the Expectancy 
Valence Learning Model (EVL), deck choices are tested for errors and 
updated across trials to align with an individual’s evolving valence 
expectations (Busemeyer and Stout, 2002). By tracking how an 
individual’s decision-making in the IGT responds to errors or success 
across the entire gameplay, the EVL attempts to explain underlying 
processes by fitting participants’ choices into the model parameters 
thought to reflect decision-making components of their cognition, 
such as: motivation, recency, and choice sensitivity (Busemeyer and 
Stout, 2002; Koritzky et al., 2014). In this view, motivation describes 
an individual’s sensitivity towards gains and losses in response to the 
feedback resulting from their choice. Recency captures the tendency 
to prioritize recent experience over its entire history. Lastly, choice 
sensitivity explains the consistency an individual has with their 

TABLE 1 Table showing the characteristics of each deck in the standard 
IGT.

A B C D

% Wins 50% 90% 50% 90%

Magnitude of wins 100 100 50 50

Magnitude of losses −150 to −350 −1,250 −25 to −75 −250

Expected profit for 

10 cards

−250 −250 250 250

Adapted from Bechara et al. (1994).
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TABLE 2 Table showing the event-related potentials (ERPs) investigated in studies using the modified Iowa Gambling Task (IGT) and standard IGT.

Task Author Population and factor 
investigated

Participant characteristics Stage ERP Major finding

Modified IGT Guo et al. (2019) Control group, Social distance n = 57

(right-handed; 36 female);

M = 20.263, SD = 1.987.

Choice evaluation

Response

Feedback

P300

DPN

FRN

P300

Disadvantageous (Disadv.) > Advantageous (Adv.) decks

Adv: High social dist > low social dist.

Disadv: Low social > high social dist.

Disadv.: High social distance > low social dist.

Playing for oneself > stranger

Win > Loss

Playing for oneself > stranger

Dong et al. (2016) Control group,  

Cognitive flexibility (cf)

n = 34

(right-handed; 22 female);

M = 21.62, SD = 2.5; range = 19–26

Choice evaluation

Response

Feedback

P300

DPN

FRN

High cf. group:

Disadv deck: Parietal & central > frontal

Adv deck: parietal > central > frontal.

Low cf. group: no diff between decks & regions.

High cf. group:

Greater -ve peak/higher DPN for passing > playing

Low cf. group:

Higher DPN for playing > passing

High cf. group: Loss > Win

Low cf. group: Win > Loss

Cui et al. (2013) Control group, Disadvantageous 

vs. advantageous decks

n = 26

(14 male);

M = 22.35, SD = 1.74; range = 19 to 25

Choice Evaluation

Response selection

Feedback

P300

DPN

FRN

P300

Adv: P300 in left > P300 in right hemisphere.

Disadv: P300 in left < P300 right hemisphere.

Higher DPN for pass > play, specifically for disadvantageous decks

Loss > Win

Loss > Win

(Continued)
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TABLE 2 (Continued)

Task Author Population and factor 
investigated

Participant characteristics Stage ERP Major finding

Standard IGT Zhang et al. (2024) Mild cognitive Impairment (MCI) n = 49

MCI = 24,

Control = 25

Feedback FRN

P300

Win > Loss

Smaller FRN in MCI < Control

Smaller P300 in MCI < Control

Azcárraga-Guirola 

et al. (2017)

Multiple Sclerosis (MS) n = 25;

MS = 16

(M = 39.4, SD = 12.6, 6 male)

Control =19

(M = 38.3, SD = 10.3, 6 male)

Response selection

Feedback

P300

FRN

P300

no diff between Multiple sclerosis (MS) and control groups

Control: Nothing > Loss > Win

MS: no diff.

Control: Loss < Nothing

MS: no diff.

Balconi et al. (2015) Control group, Behavioral 

Activating System (BAS)

n = 22 (10 female);

M = 23.78, SD = 2.60; range = 19–25

Feedback FRN

P300

Loss > Win

High Behavioral Activating System (BAS): no diff between loss & win

Loss > Win

High BAS: less of a diff between loss & win

Mapelli et al. (2014) Parkinson’s n = 30 (11 M);

Control = 15;

(M = 60.7, SD = 9.8, range = 43–77)

Parkinson’s = 15; (M = 61.4, SD = 9.6, 

range = 41–73)

Feedback P200

FRN

P300

Control: no diff win vs. loss

Parkinson’s: no diff for win vs. loss

Control: Win > Loss

Parkinson’s: no diff for win vs. loss

Control: Win > Loss

Parkinson’s: no diff for win vs. loss

Tamburin et al. 

(2014)

Chronic Back pain n = 48;

Control = 24 (14 female)

(M = 46.1, SD = 17.5, range = 23–71)

Chronic Back Pain = 24 (9 female), 

(M = 47.7, SD = 9.1, range = 35–69)

Feedback FRN

P300

Control: n.s. Win > Loss

Chronic back pain: Win < Loss

Control: Win > Loss

Chronic back pain: no diff between win & loss

Schuermann et al. 

(2011)

Borderline Personality Disorder 

(BPD)

n = 36;

Control = 18 (16 female);

(M = 27.28, SD = 6.61);

BPD = 18 (16 female), (M = 29.11, 

SD = 8.06)

Feedback FRN

P300

Control: Loss > Win

BPD: no diff between loss & win; smaller FRN compared to control

Control: no diff win vs. loss

BPD: Loss > Win

This list is a sample of all the studies that ERP studies that have used the IGT. Please see Xu and Huang, 2020 and Chandrakumar et al., 2018 for a more complete list of publications.
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choices across trials, with low levels of choice sensitivity indicating 
random or exploratory behavior (Busemeyer and Stout, 2002). The 
greater these parameters “fit” the data, the more variance in IGT 
decision-making can be explained. This allows for differences evident 
in IGT play style to be directly partitioned and associated with relevant 
behavioral or emotional characteristics. For example, EVL research 
has shown that participants who had higher sensitivity to reward in 
their IGT choices had greater attrition rates in a weight management 
program. This result is thought to imply that these populations may 
have their eating tendencies increased by underlying reward driven 
processes, potentially making it more difficult to adhere to a treatment 
intervention (Koritzky et al., 2014).

However, modelling approaches that formalize choices across the 
entire gameplay may overly assume that advantageous decision-
making in the IGT is a consequence of continuous learning of deck 
probabilities. Trial-level strategies, which are sensitive only to the 
outcome of the previous choice, may be a factor in the IGT (Cassotti 
et al., 2011; Worthy et al., 2013). The Win Play Lose Shift (WPLS) 
model captures participants’ tendency to play on decks which they had 
won in the most recent trial, but shift away once they have lost. When 
directly compared, this model provided a better relative fit to IGT data 
than the EVL model and performed similarly to another reinforcement 
model where the expectancies of all decks decay, or are discounted 
over time (PVL; Prospect Valence Learning model; Worthy et al., 
2013). Furthermore, the onset and duration of these variations in play 
styles may be associated with their own individual differences. For 
example, research exploring strategic adjustment in the task by 
computing the frequency of response-switching following gains and 
losses found that adults tended to stay on the same deck after wins 
more frequently than children and adolescents. Conversely, children 
switched more after losses and gains relative to adults and only for 
losses relative to adolescents, who tended to display a less extreme 
tendency towards staying with wins and shifting with losses (Cassotti 
et al., 2011). At the end of the trial period, adults were observed to 
increase the number of advantageous deck selections across the task, 
whereas children and adolescents did not show this trend (Cassotti 
et al., 2011). Therefore, a large proportion of participant behavior can 
be  explained by this relatively simple, more reflexive model that 
highlights strategic style rather than an elaborate cognitive assessment. 
More significantly, participants may be employing both strategic play 
styles and learned associations in the IGT. Relatively more flexible 
models have been developed to emulate this type of human 
performance. For instance, Iglesias et  al. (2012) developed a 
knowledge-based model that integrates participants trial over trial 
experiences, overall deck contingencies, and how both may interact 
across gameplay. In this approach, it may be possible to model every 
possible decision outcome in a given task similar to the connectionist 
neural network approach of representing knowledge. Thus, in 
principle, models such as MAIDEN-IGT may offer the flexibility to 
capture changing playstyles while characterizing individual 
differences. However, neural networks risk overfitting data (Bejani and 
Ghatee, 2021), which can limit generalization of their outcomes to 
cognitive function.

Furthermore, outcome based performance indicators alone may 
not be enough to understand cognitive mechanisms at play in the 
IGT. Investigating process-based indicators might provide further 
insight into the patterns underlying individuals’ choices, which might 
be  obscured when solely focusing on net score. Switching rates 

highlight differences in performance while serving as a more 
consistent measure of decision-making across tasks than deck choices 
(Yechiam, 2020). Zeif et al. (2023) found that people with autism 
spectrum disorder show a 13.5% increase in switching behavior but 
demonstrate a similar rate of disadvantageous card selections when 
compared to the control group. Their results suggested that this 
difference in behavior was more likely due to exploration than loss 
sensitivity or implicit learning deficits. An additional indicator to 
investigate individual differences is the rate of selection from decks 
differing in loss frequency, which might clarify how sensitivity to 
losses drives choice selection. Women are more likely to choose risky 
deck B over advantageous deck C because of a lower frequency of 
losses (Garon and Longard, 2015). In fact, a literature review by 
Steingroever et al. (2013) found that 13 of 17 studies indicated that 
participants chose risky deck B as much as advantageous deck D, 
indicating that loss frequency might be  a more common factor 
influencing decision making than previously thought. As a result, 
switching and response to loss frequency uncovers additional 
individual differences trends, which is data that can improve upon 
current computational models. Computational approaches such as the 
EVL and PVL do not accurately predict these aspects of the 
participant’s behavior, underscoring the need for more comprehensive 
models (Steingroever et al., 2013). Interestingly, a model based on 
switching was found to be more accurate in predicting choices than 
the EVL and Bayesian models (Zhao and Costello, 2007), highlighting 
the potential benefit of integrating these metrics to further explore the 
nature of performance in the task. Moreover, more work is needed to 
determine how these processes relate to explicit awareness of the 
reward contingencies on the IGT (Zeif et al., 2023) and how well they 
map on to neural correlates in the brain.

1.2 Neurological basis of the IGT based on 
lesion and fMRI studies

Neuroimaging and brain lesion studies assessing performance 
demonstrate that multiple brain regions work in concert during the 
IGT, suggesting that multiple cognitive processes contribute to 
performance. These regions involve those associated with reward and 
emotional processing, and executive function (Li et al., 2010; see Lin 
et al., 2008 for a review). fMRI studies have shown enhanced activity 
in reward-processing areas such as the striatum of the basal ganglia, 
cerebellum, and thalamus (Lawrence et al., 2009). Areas governing 
emotional responses to stimuli, such as the amygdala, are also active 
(Li et al., 2010; Ernst and Paulus, 2005; Lawrence et al., 2009; Lin et al., 
2008). Critically, lesions to the amygdala result in no SCRs to either 
wins or losses, resulting in poor performance (Bechara et al., 1999). 
Meanwhile, damage to the vmPFC, which is involved in emotional 
processing, results in an inability to generate SCRs to anticipate bad 
decks (Bechara et al., 1999; Bechara et al., 1998). Areas involved in 
executive function areas are also active (Li et al., 2010). However, 
lesion studies have shown mixed results for the degree of involvement 
of the dlPFC, which has roles in decision-making and goal-oriented 
behavior (Fellows and Farah, 2005; Manes et al., 2002; Bechara et al., 
1998). Lastly, the supplementary motor area (SMA), which contributes 
to planning behavioral responses is also active during the task (Li 
et al., 2010; Ernst and Paulus, 2005). Therefore, performance on the 
IGT appears to involve a network of emotional/reward processing and 
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executive function pathways. However, there remain inconsistent 
findings regarding the structural regions implicated in performance.

1.3 Limitations of current research

In light of the limitations of computational modelling and mixed 
neurophysiological findings, recent research has aimed to describe the 
decision-making process within the IGT more precisely. Largely, these 
lines of research have focused on variations in design of the task and 
exploring individual difference factors.

1.3.1 Methodology
Although the original task has been successfully used to 

characterize performance across several clinical groups, one limitation 
of many current IGT study designs is the tendency to favor overall 
game performance as the sole means of analysis, which may limit a 
detailed exploration of the processes involved. In this regard, a 
modified version was developed, where the participant would pass or 
play on a preselected deck (Cauffman et al., 2010; Peters and Slovic, 
2000). In this design, participants cannot simply avoid selecting a 
deck, and instead are forced to choose whether to play a presented 
deck or pass on it. This allows for further analysis by isolating the 
response to each specific deck (Peters and Slovic, 2000).While it is 
unclear if this version utilizes differing cognitive processes from the 
original IGT format, it has been suggested that this design permits for 
the examination of different stages of the decision-making process, 
particularly when using ERPs (Cui et  al., 2013). Cui et  al. (2013) 
highlight that the decision-making process requires at least three 
stages; evaluating the nature of each deck, deciding on a response, and 
then processing the consequences. Thus, in the standard IGT, a 
participant’s choice of a deck reflects the contribution of multiple 
processes that may not be clearly captured by measuring performance 
of feedback alone. While measuring overall game performance can 
provide an estimate of learning in the task, it may limit the 
examination of the information processing styles that may underlie 
that variability in behavior observed across studies.

In contrast with ERPs, measures such as fMRI and SCR may 
be limited in their ability to measure these stages because of their poor 
temporal resolution (Menon and Crottaz-Herbette, 2005; Dunn et al., 
2006). Therefore, it has been argued that ERP’s may additionally 
provide a useful measure to explore the decision-making process in 
the IGT (Cui et al., 2013). In general, ERPs are derived from EEG 
signals, the recording of voltage on the scalp, which in turn is 
generated from neuronal activity (Marino and Mantini, 2024). Unlike 
fMRI and SCR, EEG is temporally sensitive, allowing the recording of 
the brain’s physiological response during each decision-making stage 
(Michel and Murray, 2012; Menon and Crottaz-Herbette, 2005; Dunn 
et al., 2006). It is also relatively cheap and non-invasive compared to 
other imaging techniques.

A commonly mentioned disadvantage of EEG is low spatial 
resolution (Marino and Mantini, 2024). As the voltage produced 
from neural generators disperses throughout the cortex, it 
becomes increasingly difficult to pinpoint the location of these 
neural generators (Burle et al., 2015). Moreover, several neuronal 
generators produce similar spatial polarities on the scalp (Marino 
and Mantini, 2024). However with the advent of high density 

EEG systems and more sophisticated head mapping and source 
localization algorithms, potential neural generators can be found 
(Marino and Mantini, 2024; Michel and Brunet, 2019). The caveat 
of this approach is the lack of certainty for these neural generators 
(Woodman, 2010); however this approach combines the benefit 
of using the temporal sensitivity of EEG with identifying possible 
sources of these cognitive processes. Overall, incorporating EEG 
with the modified IGT would allow for the investigation of 
cognitive processes in each decision making stage while further 
providing some insight into the active brain regions involved 
(Cui et al., 2013; Michel and Brunet, 2019).

1.3.2 Individual difference effects on task 
performance

Current research has largely ignored how individual differences 
may adversely affect performance on the task (Chandrakumar et al., 
2018). There is evidence that some control groups favor risky decks 
on the IGT (Bechara and Damasio, 2002; Steingroever et al., 2013; 
Ma et al., 2015; Lin et al., 2008). Several factors could explain this 
result such as sensitivity to loss frequency as mentioned above 
(Garon and Longard, 2015; Steingroever et al., 2013), high reward 
responsiveness and sensation-seeking behavior (Buelow and Suhr, 
2013) as well as negative affect (Suhr and Tsanadis, 2007; Buelow 
and Suhr, 2013). Some studies have demonstrated that individuals 
who are impulsive choose more risky deck selections (Franken 
et al., 2008; Buelow and Suhr, 2013; Sweitzer et al., 2008), while 
others have found no such relationship (Upton et al., 2011). So, 
despite the widespread literature on clinical groups’ performance in 
the IGT, more work is needed to explore the contribution of 
individual differences affecting learning on the task (Buelow and 
Cayton, 2020).

For instance, symptom-based covariates appear to contribute to 
decision-making in clinical populations. Although, it is argued that 
depression affects reward processing (Admon and Pizzagalli, 2015) 
the performance deficits in the IGT are largely mixed. While some 
studies show that depressed individuals select more disadvantageous 
decks than controls (Must et al., 2006; Cella et al., 2010; Moniz 
et al., 2016), other studies have shown those with MDD select more 
advantageous decks (Smoski et al., 2008) or equal rates of selections 
compared to controls (McGovern et al., 2014; Gorlyn et al., 2013). 
Lack of evidence for consistent deficits may speak to the 
heterogeneity of the disorder, such as differences in levels of apathy, 
anhedonia, or information-processing styles (Must et  al., 2013; 
McGovern et al., 2014). For example, McGovern et al. (2014) have 
shown that MDD participants with high levels of apathy were 
associated with an increased selection of advantageous decks 
compared to controls. It was argued that insensitivity to rewards or 
a lack of motivation to seek rewards led to a more conservative 
playing style.

As highlighted previously, computational modelling 
approaches have shown promise for exploring the characteristics 
of different populations, however more work needs to be done to 
determine the appropriate models as well as their parameters. 
Incorporating ERPs into the study design first may allow for a 
more detailed exploration of information processing styles, 
motivational factors, and how they interact throughout the 
decision-making process, allowing for better mechanistic clarity 
to inform modeling assumptions.
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1.4 Focus of this review

Altogether there is a need to clarify the decision-making process 
within the IGT. As EEG can provide an in-the-moment measurement 
of cognitive processing, the next part of the review will highlight 
studies that have used ERPs in the IGT. First, a review of the studies 
that have used the standard IGT will be conducted. Next, studies using 
a modified version of the task (Cauffman et  al., 2010; Peters and 
Slovic, 2000) that represents an information approach will 
be  conducted. As mentioned above, this adaptation allows the 
characterization of each decision-making stage and the recording of 
the behavioral and electrophysiological response for each deck 
(Cauffman et al., 2010; Cui et al., 2013; Peters and Slovic, 2000). In 
addition, this version ensures all participants use a similar search 
strategy, as opposed to the original IGT where participants can select 
all the cards from one deck (Cauffman et al., 2010; Peters and Slovic, 
2000). In this way, the modified version may allow for the 
determination of the underlying processes contributing to individual 
differences in task performance. Furthermore, this review will discuss 
moderators of ERP amplitudes and examine the utility of the modified 
IGT for understanding the nature of decision-making difficulties in 
clinical populations, using depression as an example.

1.5 Event-related potentials included in the 
review

This review will focus on summarizing the few studies that have 
used ERPs to parse out the cognitive processes in the different 
decision-making stages of the IGT. ERPs are neural responses specific 
to an event of interest (Woodman, 2010). They are derived from 
averaging multiple EEG signals, which isolates the cognitive processes 
during the event. The first few peaks of the resulting waveform are 
normally considered to be sensory and perceptual processes while 
mid-range and later stage potentials reflect more internal cognitive 
functions such as information processing (Sur and Sinha 2009).

There are several common ERPs used across the IGT studies: the 
feedback-related negativity (FRN), P300, and the Decision Preceding 
Negativity (DPN). First, the FRN is a negative peak between 230 to 
330 ms after performance feedback (Gehring and Willoughby, 2002; 
Miltner et al., 1997; Badgaiyan and Posner, 1998), reflecting the early 
evaluation of outcomes that are worse than expected (Cui et al., 2013; 
Wu and Zhou, 2009). It is distributed in the medial-frontal and central 
regions and is thought to originate from the Anterior Cingulate 
Cortex(ACC), a structure involved in error processing (Gehring and 
Willoughby, 2002; Miltner et al., 1997; Badgaiyan and Posner, 1998). 
Next, the P300 is a positive component elicited between 200 ms and 
500 ms after stimulus onset or feedback (Martínez-Selva et al., 2019). 
It is generated from orienting attention to novel stimuli (Squires et al., 
1975) and updating working memory from task relevant stimuli 
(Conroy and Polich, 2007; Squires et al., 1975; Donchin, 1981). It can 
either have a frontal-central or parietal distribution depending on the 
context (Polich, 2007). The frontal-central distribution is thought to 
arise from the prefrontal cortex allocating attention to novel stimuli 
(Knight, 1984; Polich, 2007; Knight, 1984), while the parietal 
distribution is seen during the updating of working memory (Polich, 
2007) and has been shown to involve the tempo-parietal junction/TPJ 
(Knight et al., 1989). Finally, the DPN, is a slow negative cortical wave 

occurring before settling on a choice, represents the anticipation of 
risky decisions (Bianchin and Angrilli, 2011; Dong et al., 2016).

Less frequently researched are the early negative wave, the P200, 
and late potentials. The early negative wave is a frontal to central 
negative peak appearing between 80 to 180 ms after feedback, thought 
to reflect the early processing of positive or negative feedback 
(Martínez-Selva et al., 2019). The P200 is a positive peak at frontal 
electrodes between 180 and 280 ms, representing the first processing 
distinction between good and bad outcomes. The late potentials—a 
positive potential in the central to parietal area after 300 ms, and 
negative potential that is frontally distributed between 450 and 800 ms 
after feedback—reflect the emotional processing of significant 
outcomes (Hajcak and Foti, 2020; Martínez-Selva et  al., 2019). 
Altogether, these components reflect neural activity that are sensitive 
to attention, working memory and emotional factors. Thus, ERPs may 
provide an objective way to explore the cognitive processes relevant to 
decision-making. Next, we provide a review of ERP findings in the 
standard version of the IGT and afterward findings from the 
modified IGT.

2 Method

Google Scholar and Proquest databases were searched for relevant 
articles using the phrase (“Iowa Gambling” OR IGT) AND (ERP or 
“event related”), which was last searched on August 2nd, 2024. Studies 
were included if they met the following criteria: (I) examined the 
performance of clinical or control populations on the Standard IGT 
or the Modified version (Cauffman et al., 2010; Peters and Slovic, 
2000) and (II) recorded EEG during the IGT and then analyzed the 
data collected to identify specific event-related potentials (ERPs). The 
authors excluded studies containing versions of the IGT with two fixed 
amounts visible to participants. In this gambling paradigm, only the 
probability of loss is varied and as such, distinguishing the more 
advantageous option might be easier on these modifications compared 
to the standard IGT. Relevant articles were identified through 
screening titles and abstracts, and only those with available full texts 
in English were selected to be included in this review. The authors 
extracted the following information from the articles: participant 
characteristics including age, gender and clinical diagnosis, sample 
size, ERPs observed and major findings.

3 Results

From our search, 15 studies were found using the standard version 
of the IGT while three studies used the modified version with EEG 
(Cauffman et al., 2010; Peters and Slovic, 2000).

3.1 Standard IGT

The prominent decision-making stage investigated in the standard 
IGT is feedback processing. Specifically, most of the research focuses 
on FRN and P300. Few studies have investigated ERPs in the choice 
evaluation and response selection stages, possibly because these stages 
are confounded in the standard task. This version does not separate 
temporally the responses associated with surveying all potential decks 
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in the choice evaluation stage and finalizing a choice in the response 
selection phase (Cui et al., 2013). As a result of this limitation, this 
review will combine these two decision-making stages under 
this version.

3.1.1 Choice evaluation/response selection

3.1.1.1 DPN
Two studies have measured the amplitude of the DPN before 

participants’ responses using the standard IGT (Giustiniani et al., 
2015; Bianchin and Angrilli, 2011). Disadvantageous decks evoke 
more negative DPN response in the right prefrontal area, inferred to 
result from greater attentional allocation to bad decks (Bianchin and 
Angrilli, 2011; Giustiniani et  al., 2015). Furthermore, these decks 
evoke a less negative peak in the left central pre-motor area, thought 
to reflect the inhibition of planned motor responses for bad decks 
(Bianchin and Angrilli, 2011). The DPN is not related to performance 
as good and bad performers show similar DPN responses on the 
standard IGT (Giustiniani et al., 2015).

3.1.2 Feedback processing

3.1.2.1 FRN
The FRN is the first component depicting a consistent and marked 

difference between the processing of rewards and punishments 
(Miltner et al., 1997; Yeung and Sanfey, 2004; Holroyd et al., 2006). 
Correspondingly, the standard IGT has shown that FRN amplitude is 
generally increased in response to losses than wins (Garrido-Chaves 
et al., 2021; Garrido-Chaves et al., 2020; Martínez-Selva et al., 2019; 
Di Rosa et al., 2017; Ba et al., 2016; Balconi et al., 2015; Bianchin and 
Angrilli, 2011; Schuermann et  al., 2011; Azcárraga-Guirola et  al., 
2017). However, some studies have also found the opposite effect 
(Zhang et al., 2024; Liu et al., 2022; Mapelli et al., 2014; Tamburin 
et al., 2014). It has been proposed that the FRN functions partly to 
reconcile discrepancies between predictions and novel outcomes, 
where unexpected occurrences elicit larger FRN amplitudes and signal 
a need to update models required for learning (Wu and Zhou, 2009; 
Oliveira et al., 2007; Holroyd and Coles, 2002). Indeed, individuals 
who displayed larger FRN magnitudes selected more advantageous 
choices in the IGT across trials (Schuermann et al., 2011; Martínez-
Selva et al., 2019). A potential limitation of these findings is that the 
size of the loss might be accounting for the observed result instead of 
its valence. Future studies should disentangle the effects of magnitude 
on FRN amplitude separate from valence while using the standard IGT.

3.1.2.2 P300
P300 is normally observed following the FRN and is thought to 

signify attention and later-stage processing such as the updating of 
working memory (Polich, 2007; Donchin, 1981). Similar to the 
FRN, the standard IGT shows a valence-type relationship for P300, 
where losses evoke higher P300 magnitudes than wins (Cui et al., 
2013; Liu et al., 2022; Garrido-Chaves et al., 2020; Martínez-Selva 
et al., 2019; Balconi et al., 2015; Giustiniani et al., 2015). However, 
a few studies depict wins eliciting higher P300 amplitudes (Ba et al., 
2016; Guo et al., 2019; Mapelli et al., 2014; Tamburin et al., 2014) 
or equal responses to gains and losses (Schuermann et al., 2011). 
Interestingly, in a modification of the task where participants 

choose between two cards, participants had higher responses when 
given nothing versus a loss (Azcárraga-Guirola et  al., 2017). 
Heightened P300 amplitudes in response to losses might occur 
because of their unexpected and motivationally relevant nature 
(Balconi et al., 2015; Martínez-Selva et al., 2019), which in turn, 
would necessitate greater resource allocation for encoding (Polich, 
2007). Differences in P300 amplitudes can further be used to predict 
performance. Giustiniani et al. (2015) showed that those who chose 
more advantageously distinguished between losses and wins in their 
P300 amplitude. This result contrasts with those of Martínez-Selva 
et al. (2019), who showed that P300 is unrelated to the performance 
on the IGT.

Since P300 is often sensitive to novelty (Squires et al., 1975) task 
factors such as magnitude or frequency of loss may be expected to 
modulate its amplitude. However, there is some evidence that losses 
still evoke greater P300 responses than wins when controlling for the 
magnitude of the outcome (Giustiniani et al., 2015). Notably, no study 
to date has accounted for the effects of frequency on P300 amplitude 
differences separate from valence.

3.1.2.3 Other components
To the best of our knowledge, only a few studies have focused 

on early and late processing ERP components using the standard 
IGT. One study has highlighted the presence of the early negative 
wave (ENW), which is thought to reflect early stage processing of 
outcomes (Martínez-Selva et  al., 2019). Losses evoked similar 
amplitudes to wins at frontal and central electrodes, but higher 
than wins at parietal electrodes. In addition, the amplitude of 
ENWs elicited from losses and wins was positively related to the 
number of advantageous card selections. The author suggests this 
evaluation might be  more general as both losses and wins 
predict behavior.

The P200 is observed after the ENW and represents the early 
processing of feedback based on expectancy and valence (Polezzi 
et al., 2008, Schuermann et al., 2012). While some studies show that 
rewards and punishments elicit equal P200 magnitudes (Mapelli et al., 
2014; Giustiniani et  al., 2015), Martínez-Selva et  al. (2019) 
demonstrated a higher P200 amplitude to losses than wins. Differences 
in how each study illustrated wins and losses might explain some 
discrepancies. Like the FRN, P300, and ENW, the P200 can be linked 
to behavioral outcomes on the IGT. Giustiniani et al. (2015) showed 
that people who played advantageously had higher P200 responses for 
both wins and losses than those who had played disadvantageously. 
This result contrasts with those from Martínez-Selva et al. (2019), who 
showed that the higher the P200 response to loss, the greater number 
of choices from disadvantageous decks.

Two studies have characterized late latency potentials on the 
standard IGT (Martínez-Selva et al., 2019; Liu et al., 2022). Late 
potentials index the extent of emotional reactivity to feedback 
(Martínez-Selva et  al., 2019; for a review see Hajcak and Foti, 
2020). For the late positive potential (LPP), Liu et al. (2022) found 
that reactions to losses produced a higher LPP than wins. 
Martínez-Selva et al. (2019) focused on the late negative potential 
(LNP), which was more negative for losses than wins at frontal 
and central electrodes. Furthermore, late potentials can predict 
behavior as LNP amplitudes from gains at parietal areas were 
positively associated with the number of choices from 
advantageous decks.
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3.1.3 Moderators of ERPs

3.1.3.1 Individual difference factors
Four studies have examined how individual differences are 

associated with neural responses on the standard IGT. The factors 
studied include individual differences in behavior activation (Balconi 
et al., 2015), gender (Garrido-Chaves et al., 2020), and age (Garrido-
Chaves et al., 2021; Di Rosa et al., 2017).

Behavior activation(BAS) is an individual’s tendency to 
experience positive emotions upon receiving rewards and readily 
seek them out (Carver and White, 1994). Individuals high in BAS 
actively approach rewards in the environment and have high drives 
to accomplish goals. Balconi et al. (2015) showed that the high BAS 
group did not distinguish between wins and losses, while the low 
BAS group had higher FRN responses to losses than wins. Moreover, 
the high BAS group had smaller P300 amplitudes for losses when 
compared to the low BAS group. These results suggest that those 
high in BAS inadequately processed feedback, leading to 
poor performance.

Demographic factors may also affect feedback processing. Even 
though both genders perform equally well on the IGT, men there is 
some  evidence that men do not distinguish between wins and losses 
while women are more responsive to losses than gains in their FRN 
(Garrido-Chaves et al., 2020). Results are mixed regarding the effect 
of age on FRN and P300 amplitude (Garrido-Chaves et al., 2021; Di 
Rosa et al., 2017).

3.1.3.2 Clinical groups
Furthermore, standard IGT results indicate consistent 

performance deficits and ERP modulations across a multitude of 
clinical populations including those with Parkinson’s, Multiple 
Sclerosis (MS), and Borderline Personality Disorder or BPD (Mapelli 
et al., 2014; Azcárraga-Guirola et al., 2017; Schuermann et al., 2011) 
These populations were observed to have non-significant differences 
in their FRN response between losses and gains during outcome 
evaluation. Given the FRN’s potential role in reinforcement learning, 
an inability to distinguish between positive prediction errors (PPE) 
and negative prediction errors (NPE) through the FRN could explain 
some of the performance deficits (Pfabigan et  al., 2011). Similar 
findings have been observed for the P300, which were also not 
significantly different between losses and gains in the MS and 
Parkinson’s populations (Mapelli et  al., 2014; Azcárraga-Guirola 
et al., 2017), perhaps suggesting downstream effects from the faulty 
initial processing of feedback. Altogether, differences in reward 
processing may lead to a failure in these populations to encode 
separate deck evaluations across the task, despite distinct 
punishment schedules.

3.2 Modified IGT

The modified IGT reviewed is the version by Peters and Slovic 
(2000), which allows individuals to pass or play on a highlighted deck. 
This version allows for the complete characterization and separation 
of ERPs observed in three decision-making stages: choice evaluation, 
response selection, and feedback processing (Cui et al., 2013). In this 
version the following findings have been observed.

3.2.1 Choice evaluation

3.2.1.1 P300
Three studies have used the modified version of the IGT to 

investigate P300 in the choice evaluation stage (Guo et al., 2019; 
Cui et al., 2013; Dong et al., 2016). Disadvantageous decks evoked 
larger P300 responses than advantageous decks, reflecting more 
attention and working memory processes given to bad decks 
(Guo et  al., 2019; Dong et  al., 2016; for a review Conroy and 
Polich, 2007). The modified version further allows for a more 
accurate investigation of how attentional processes during the 
choice evaluation stage could influence subsequent behavioral 
responses (Cui et  al., 2013). The larger the choice evaluation 
P300, the more the participants decided to pass than play, 
specifically for disadvantageous decks.

3.2.2 Response selection

3.2.2.1 DPN
Two studies have used the modified version to assess the DPN (Cui 

et al., 2013; Dong et al., 2016). Because of its design, participants either 
pass or play on a single deck, allowing the characterization of the 
specific behavioral and neural response for each deck (Cauffman et al., 
2010; Peters and Slovic, 2000). In the modified version, the DPN is 
thought to represent the anticipation associated with making a decision 
(Cui et al., 2013; Dong et al., 2016). Higher DPNs were associated with 
passes than for plays, specifically when it came to passing on 
disadvantageous decks (Cui et al., 2013). This outcome might result 
from the DPN influencing subsequent behavior in keeping with the 
somatic marker hypothesis (Cui et al., 2013; Dong et al., 2016; Bechara 
and Damasio, 2005).

3.2.3 Feedback processing

3.2.3.1 FRN and P300
In relation to feedback processing, the modified version has 

shown similar results to those of the standard IGT. Losses evoke 
greater FRN and P300 amplitudes than wins (Dong et al., 2016; Cui 
et al., 2013). This finding suggests that losses elicit more later-stage 
processing of feedback than wins. Furthermore, P300 could also serve 
to provide additional information not yet accounted for by the FRN 
in the initial valence classification. Larger losses elicit greater P300 
responses than smaller losses, indicating that P300 might allow the 
updating of models based on the size of the outcome (Cui et al., 2013). 
More studies should incorporate and test whether this observed result 
is consistent across studies.

The observed difference between wins and losses further cannot 
be attributed to the fact that losses occur less frequently than wins on 
the IGT. By comparing decks with similar loss frequency, Cui et al. 
(2013) found that losses still elicit greater FRN and P300 amplitudes 
than wins, suggesting that the intrinsic nature of losses contributes to 
this increased processing instead of frequency.

3.2.3.2 Other components
To our knowledge, no study has used the modified version to 

investigate early and late-stage feedback processing on the IGT. Similar 
to the standard version, the ENW, P200, and late potentials may 
be expected to reflect individual differences in performance.
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3.2.4 Moderators

3.2.4.1 Individual differences
To date, one study has used the modified version to examine the 

effect of individual differences on IGT performance. Dong et  al. 
(2016) showed that cognitive flexibility predicted performance on the 
task. Cognitive flexibility was determined by the WCST, a standard 
measure of task switching and implicit learning (Gamboz et al., 2009; 
Dong et al., 2016). Those low in cognitive flexibility had similar P300 
amplitudes when observing good and bad decks, suggesting an 
inability to distinguish between decks (Dong et  al., 2016). 
Furthermore, they showed opposite DPN responses to the cognitive 
flexible group when selecting a response in the latter trials of the 
IGT. Those low in cognitive flexibility showed greater negativity 
towards playing than passing. This result might suggest a delay in 
learning in those low in cognitive flexibility. When responding to 
feedback, those low in cognitive flexibility had higher FRN responses 
for wins than losses while the cognitive flexible group had the opposite 
effect. The authors show that a higher FRN response in this group was 
related to a smaller P300 amplitude in the choice evaluation stage, 
suggesting that their abnormal processing of wins was related to an 
inability to distinguish between good and bad decks.

3.2.4.2 Clinical groups
At the time of writing this review, no study has used the modified 

version to explore decision making in clinical groups.

3.3 Summary modified vs. standard IGT

The 15 studies included in this review have explored ERPs 
associated with the standard version of the IGT while three studies 
have used the modified version (Cauffman et al., 2010; Peters and 
Slovic, 2000). Most standard versions of the task have solely focused on 
the ERPs evoked by the feedback stage, specifically the FRN and P300. 
These studies have shown that losses evoke higher FRN and P300 
amplitudes, indicating a greater need to process information from 
losses than wins (Liu et al., 2022; Garrido-Chaves et al., 2021; Garrido-
Chaves et al., 2020; Martínez-Selva et al., 2019; Di Rosa et al., 2017; Ba 
et al., 2016; Balconi et al., 2015; Giustiniani et al., 2015; Bianchin and 
Angrilli, 2011; Schuermann et al., 2011; Azcárraga-Guirola et al., 2017). 
In addition, evidence supports the idea that FRN and P300 amplitudes 
are related to behavioral outcomes on the IGT (Schuermann et al., 
2011; Martínez-Selva et al., 2019; Giustiniani et al., 2015). On the other 
hand, ERPs occurring in early—and late-stage processing such as the 
ENW, P200, and late potentials are largely understudied (Liu et al., 
2022; Martínez-Selva et al., 2019; Mapelli et al., 2014; Giustiniani et al., 
2015). These ERP components are key facets in uncovering the full 
extent of perceptual and emotional processing in decision-making 
(Bourisly and Shuaib, 2018; Hajcak and Foti, 2020), particularly in 
situations where the decision-making process goes awry such as in 
clinical populations. Research on the standard IGT incorporating ERPs 
has illustrated that several clinical populations such as those with 
Parkinson’s, MS, and BPD fail to distinguish between losses and wins 
in their FRN and at times in their P300 amplitudes (Mapelli et al., 2014; 
Azcárraga-Guirola et al., 2017; Schuermann et al., 2011). Studying late-
stage potentials would highlight how emotional dysregulation could 
interfere with the decision-making process in clinical populations.

Less studied is the modified version (Cauffman et al., 2010; Peters and 
Slovic, 2000), which allows an individual to pass or play on a highlighted 
deck. This version allows for the characterization of ERPs in each 
decision-making stage and the isolation of behavioral and neural 
responses for each deck (Cui et al., 2013; Cauffman et al., 2010; Peters and 
Slovic, 2000). Consistent with the standard IGT, these studies have shown 
that losses elicit higher FRN and P300 amplitudes than wins, indicating 
more processing of losses (Dong et al., 2016; Cui et al., 2013). In addition, 
research using this version has characterized the P300  in the choice 
evaluation stage and the DPN in the response selection stage, allowing the 
role of attentional and anticipatory processes, respectively, to be studied 
on the IGT (Guo et al., 2019; Cui et al., 2013; Dong et al., 2016). However, 
more work is needed on the individual factors and clinical groups that 
moderate the decision making process in the modified version.

4 Discussion

The standard IGT remains a clinically relevant tool for exploring 
the decision-making process. Evidence suggests that ERPs elicited 
from feedback are associated with task performance (Schuermann 
et al., 2011; Martínez-Selva et al., 2019; Giustiniani et al., 2015). Larger 
FRN amplitudes and therefore greater early stage processing of 
feedback was linked to more successful outcomes on the IGT 
(Schuermann et al., 2011; Martínez-Selva et al., 2019). Additionally, 
greater P300 amplitude differences between losses and wins have been 
associated with better performance on the IGT (Giustiniani et al., 
2015), suggesting that that level of attention allocation may play a role 
in learning in the task. As a result, ERPs have provided some evidence 
linking online neural processes to feedback response, learning and 
decision-making on the IGT. However, few studies have sought to 
clarify the role of sensory/perceptual and emotional processing as 
evidenced by a lack of focus on early and late components (Liu et al., 
2022; Martínez-Selva et al., 2019; Mapelli et al., 2014; Giustiniani et al., 
2015). A greater focus on emotion processing may also help to explore 
the nature of decision-making deficits in mood disorders. 
Furthermore, if emotion plays a prominent role in the decision-
making process, it may be expected to influence performance and 
corresponding ERP components on the IGT across clinical 
populations and non-clinical populations (c.f. Bechara et al., 2000a).

The current review highlights the potential for implementing an 
information processing approach to explore the processes involved during 
learning. Using the modified IGT, recent research has isolated ERP 
components for choice evaluation, response selection in addition to 
feedback processing within the task (Cui et al., 2013). As a consequence, 
the effect of reduced attention to specific stimuli as observed by the choice 
evaluation P300 amplitudes and the role of anticipation in building 
associations to good and bad decks as observed in the DPN can 
be investigated (Dong et al., 2016). This approach may help meaningfully 
extend decision-making research using the IGT, particularly in the 
exploration of individual factors and covariates that have been argued to 
impact performance (Chandrakumar et  al., 2018). However, to our 
knowledge, only one study has utilized this novel modified approach, 
showing cognitive flexibility to be a key process predicting overall task 
performance and moderating specific neural correlates occurring across 
each stage (Dong et al., 2016). Therefore, more research is needed to 
integrate the information processing approach developed by Peters and 
Slovic (2000) and extended by Cui et al. (2013) using ERPs.
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To demonstrate how individual differences may be understood 
using an information processing approach in the IGT, we  next 
describe a potential application using depression research as an 
example. Depression exhibits some of the key issues that may arise 
from third factors and methodology often described in the literature. 
As highlighted previously, the effect of depression on performance in 
the IGT has been mixed. This effort is likely constrained by 
heterogeneity in symptoms and their effects on reward processing, 
which may result in subtle differences in decision-making that are 
hard to capture in behavioral versions of the standard IGT in 
particular. For example, people characterized by apathetic depression 
performed better than the control group possibly because their reward 
insensitivity contributed to a focus on long term gain instead of 
immediate reward (McGovern et al., 2014). Meanwhile those who 
suffered from anhedonia were observed to have worse performance 
than the control group on another reward learning task (Vrieze et al., 
2013). This difficulty in reward learning is thought to arise from an 
inability to update reward learning contingencies on the IGT (Must 
et  al., 2013). Therefore, exploring the manner that perseverative 
behavior influences performance and moderates ERP amplitudes may 
hep to clarify the effect of depression on learning in the task.

For instance, individual differences in depression severity and risk is 
frequently associated with an increased tendency towards rumination. 
Rumination is defined as a repetitive, and often uncontrolled response 
style that is characterized by a narrowed attentional focus on the negative 
consequences of their depressive symptoms (Whitmer and Gotlib, 2013; 
Davis and Nolen-Hoeksema, 2000). Although the nature of the process of 
rumination is still being studied, it affects core components of decision-
making, with high levels of rumination associated with attention and 
updating deficits (Whitmer and Gotlib, 2013), as well as cognitive 
inflexibility as measured by the WCST (Davis and Nolen-Hoeksema, 
2000). Consistent with the information processing view of IGT 
performance, it is argued that rumination’s impact on cognition plays a key 
role in the development of poor learning and reward processing in 
depression (Rutherford et  al., 2023). Thus, it would be  expected that 
rumination would adversely affect the underlying mechanisms of decision-
making and how choice evaluation, response selection and feedback 
processing are applied in the task. As highlighted in the review, measuring 
these processing through ERPs affords an opportunity to explore how the 
application of these processes unfold in real-time. Additionally, it is 
through rumination’s effects on learning and reward that additional risk 
factors such as anhedonia are thought to arise (Rutherford et al., 2023). 
Therefore, how rumination impacts later components associated with 
emotion processing, such as the LPP, may also be important to measure. If 
rumination is differentially associated with biased attention to negative 
compared positive feedback, it may then interact with the evaluation of 
each deck and anticipatory processing during response selection across 
early and into late phases of the IGT where learning is often argued to 
occur (cf. Bechara et al., 2000a). Overall, these examples highlight how the 
modified IGT has the potential to examine key factors related to 
information processing in decision making and clarify mixed findings in 
depression research and clinical research more broadly.

4.1 Additional avenues for future research

The modified IGT has shown promise to provide a more 
detailed exploration of decision-making within the task. 

However, it is unknown to what degree the standard and modified 
IGT utilize similar mechanisms. As reviewed previously, similar 
ERP components are elicited across both versions of the tasks. In 
addition, there is evidence that behavioral performance on the 
modified IGT is similar to that of the standard version. In the 
modified IGT, high conceptual knowledge has been associated 
with increased net-scores across blocks compared to participants 
with low conceptual knowledge (Dong et  al., 2016). These 
findings suggest that there may be  significant overlap in 
mechanisms, however, more research is needed to clarify the 
potential cognitive impact of experimentally controlling deck 
selection opposed to free choice. Beyond this, future research will 
be  needed to determine how well other measures, such as 
switching rates and rate of selection of decks differing in loss 
frequency, are similar across tasks. Furthermore, the review 
highlighted the benefits and potential limitations of 
computational modeling IGT data to identify individual 
differences in performance. Future research that integrates ERP 
components within model comparisons may offer a way to help 
generalize models and facilitate model selection beyond fit 
indices. This reflects a computational cognitive neuroscience 
approach, which has been argued to benefit the computational 
field by ensuring selected models accurately reflect 
neurobiological function (Ashby and Helie, 2011; Hawkins 
et al., 2024).

5 Conclusion

The IGT is a sophisticated and sensitive task design that has provided 
consistent research over two decades demonstrating its utility in 
measuring risk-taking in both clinical and typical populations. Through 
variation in design and analysis technique, the nature of learning in the 
task, and its link to underlying neural and physiological mechanisms can 
be made. Thus, the research using the IGT seems aligned to build on 
findings of the past and contribute to a greater understanding of the 
nature of information processing in decision-making.
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