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Perception of animate motion in
dogs

Judit Abdai*

Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy

Various motion cues can lead to the perception of animacy, including (1)

simple motion characteristics such as starting to move from rest, (2) motion

patterns of interactions like chasing, or (3) themotion of point-lights representing

the joints of a moving biological agent. Due to the relevance of dogs in

comparative research and considering the large variability within the species,

studying animacy perception in dogs can provide unique information about

how selection for specific traits and individual-level (social) di�erences may

shape social perception. Despite these advantages, only a few studies have

investigated the phenomenon in dogs. In thismini-review, we discuss the current

findings about how specific motion dynamics associated with animacy drive

dogs’ visual attention.
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1 Introduction

Attention to animate agents can facilitate to learn about the differences between
animate and inanimate objects from birth, and later on it can also help to quickly detect
predators, preys or social partners, and predict their future behavior (Scholl and Tremoulet,
2000; Lorenzi and Vallortigara, 2021; Schultz and Frith, 2022). Cues directing attention to
such agents can be fairly simple, for example, two blobs on top and one in the bottom in
the arrangement of eyes and mouth (face perception, for a recent review, see Kobylkov and
Vallortigara, 2024) or the ability to initiate motion without external force (e.g., Premack,
1990; Mascalzoni et al., 2010; Di Giorgio et al., 2017). Some cues are more complex,
either involving multiple objects representing a social interaction (e.g., chasing perception,
Dittrich and Lea, 1994; Gao and Scholl, 2011; Frankenhuis et al., 2013; Meyerhoff et al.,
2014; Atsumi and Nagasaka, 2015; Abdai et al., 2022a) or depicting the motion of a
biological agent by point-lights representing the major joints of the body (biological
motion, Johansson, 1973) (Figure 1). The phenomenon has been found in various species,
including invertebrate species [e.g., human (Di Giorgio et al., 2021); dog (Canis familiaris)
(Abdai et al., 2017b), chick (Gallus gallus) (Mascalzoni et al., 2010), common toad (Bufo
bufo) (Ewert and Burghagen, 1979), zebrafish (Danio rerio) (Nunes et al., 2020), jumping
spiders (Menemerus semilimbatus) (De Agrò et al., 2021)]. However, there are still a
number of open questions about the evolutionary background, whether and how social and
ecological environment influences animacy perception, and regarding potential changes in
the perception (or behavioral response) during development.

Investigating animacy perception in dogs is advantageous because there is large
variability within the species (e.g., selection for specific behavior traits), broad
interindividual differences (e.g., sociability, training for specific tasks), and differences
in social/ecological environment (e.g., pet dogs vs. free-ranging dogs) allowing the
investigation of the influence of wide range of factors. Dogs are considered as an important
model species to understand human social behavior (Miklósi and Topál, 2013). The
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FIGURE 1

Examples of displays applied to investigate the perception of animate motion. (A) Schematic representation of the continuous motion of the dot. On

the top, the onset of the dot’s motion is visible and it moves out of view, disappearing behind the gray screen (self-propelled, animate), whereas on

the right side the onset is ambiguous as the dot appears from behind the gray screen, and it stops when reaching the gray screen on the other side

(ambiguous/inanimate motion). (B) On the left side, one dot is chasing the other, while on the right side they move independently from each other;

gray arrows indicate the motion direction. (C) Point-light display of a laterally moving human figure, in an upright position on the left, and inverted

position on the right side (figure based on Eatherington et al., 2019).

possibility to compare their behavior to that of wolves with
which they share a recent common ancestor but has evolved
in a different environment in the past ca. 16–32,000 years (e.g.,
Kubinyi et al., 2007), or with other pet species (e.g., cats or
miniature pigs; e.g., Marino andColvin, 2015; Pongrácz and Lugosi,
2024) whose evolutionary and ecological histories, as well as the
domestication processes differ, further highlights the relevance of
dogs in comparative research. From amethodological point of view,
it is also important that a wide variety of approaches can be easily
applied for the investigation, which can provide us with a more
complex overview of the phenomenon.

Although there is a significant interest in animacy perception
in humans (Torabian and Grossman, 2023), research in dogs is
scarce despite the advantages mentioned above. In the following,
we will review the current findings of animacy perception in dogs.
As research about static cues of animacy, such as face detection,
role of fur and having filled rather than hollow insides (for a review,
see Lorenzi and Vallortigara, 2021) is limited in dogs, we focus on
dynamic cues, including (1) simple dynamic stimuli, (2) chasing
pattern, and (3) biological motion.

Although animacy and agency are strongly related concepts,
researchers have hypothesized that they are processed differently
and thus should be treated distinctly (e.g., Spelke, 2000; Leslie,
2010). Animacy refers to the presence of some “life-like” features

of the object, such as self-propulsion, whereas agency includes the
agent having (some level of) control over its action, for example,
moving in a goal-directed manner. Thus, in the case of displays
of simple motion cues we refer to the acting object as “object,”
whereas in the case of chasing and biological motion perception
as “object/agent” as it is unclear which aspect of the motion might
influence dogs’ perception.

2 Main methodological approaches

In dogs, the phenomenon has been investigated by either using
the video displays of specific stimuli, or by the live demonstration
of motion patterns performed by artificial agents unfamiliar to dogs
(Unidentified Moving Object, UMO). Applying video displays not
only allows assessing the spontaneous visual interest/preference of
subjects with highly controlled and reproducible stimuli, but by
measuring pupil size changes further information can be obtained
(Völter and Huber, 2022). Pupillometry in humans has been
suggested to be a reliable measurement of arousal, attention and
cognitive load (for a review, see Mathôt, 2018). Studies show that
dogs’ pupil size also increases when presented with angry emotional
expressions (arousal; Somppi et al., 2017; Karl et al., 2020), and in
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the case of expectancy violation (Völter et al., 2023), providing a
promising basis for animacy perception research.

The above methods give an insight about how specific motion
characteristics can drive the attention and trigger the perception of
animacy, but they do not provide information about whether and
how it influences the subsequent behavior of dogs in relation to
the observed object/agent (cf. Don’t-Get-Caught task or wolfpack-
effect in humans, Gao et al., 2009, 2010). Using robots to present
the stimuli facilitates maintaining high control, replicability and
reproducibility, and subjects can engage in physical interaction
with the performing objects. Applying UMOs, that is, artificial
agents capable of self-propelled motion and having an embodiment
not resembling any animal species, allows to separate the influence
of physical characteristics and motion on subjects’ behavior.
Flexible changes in the embodiment and motion features of the
robot further contributes to the presentation of a wide range of
stimuli (Abdai et al., 2018).

3 Perceiving animacy based on
motion

3.1 Simple dynamic stimuli

One of the simplest motion cues that triggers animacy
perception is self-propelledness, that is, the ability of an object
to carry out (changes in) motion without visible external force
(e.g., Premack, 1990; Leslie, 2010; Vallortigara, 2012; Schultz
and Frith, 2022). These simple stimuli can include different
motion characteristics, such as, initiating motion from rest (e.g.,
Mascalzoni et al., 2010; Di Giorgio et al., 2017), changes in speed
(e.g., Rosa-Salva et al., 2016; Di Giorgio et al., 2021), change in the
direction of motion (e.g., Tremoulet and Feldman, 2000), aligning
the main axis of the bilateral body toward the direction of motion
(e.g., Ewert and Burghagen, 1979; Hernik et al., 2014; Rosa-Salva
et al., 2018; but see Rosa-Salva et al., 2023), or moving against
gravity (Szego and Rutherford, 2008; Bliss et al., 2023).

In Völter and Huber (2022), dogs observed videos of events
showing (1) objects being dropped by a human (inanimate) vs.
the same event in reverse order, that is, the object initiating its
own motion (animate); and (2) variability in the speed of an object
(animate) vs. moving with constant speed (inanimate). Although
regarding the looking time toward the events, they only found a
difference between the animate and inanimate conditions in one
instance, in all of the cases dogs’ pupil size changed significantly
during the presentation of the animate, but not the inanimate
motion. Völter and Huber (2022) suggested that changes in pupil
dilation in their study reflected an orienting response, balancing
between visual sensitivity (dilated pupil) and acuity (constricted
pupil) (see also Mathôt, 2018). In another study by Völter and
Huber (2021) focusing on contact causality (Michotte, 1963), they
further found that dogs’ pupil size changed more and was overall
larger when there was no contact between the two objects, that is,
the second (“launched”) object started to move without a visible
external cause. However, dogs looked longer at the “launched”
object in the contact, and the “launching” object in the no-
contact scenario (i.e., not at the object showing self-propulsion).
These findings indicate that although overall looking time may not

indicate preference, pupillometry may reveal sensitivity to animate
motion cues in dogs.

Applying artificial agents (UMOs) (Abdai et al., 2022b), dogs
were presented with the animate motion of a UMO including start-
from-rest, visible acceleration and deceleration, and sharp change
in direction; and with inanimate (ambiguous) motion, having the
same dynamics of motion, but the key elements (e.g., moment of
speed change) being occluded from the dogs. Subjects showedmore
interest toward the UMO that displayed animate motion, regarding
both their looking behavior and physical contact with the UMO.
Thus, it seems that simple visual cues lead dogs’ attention to an
object having animate motion characteristics, and facilitating dogs
to enter into an interaction with these objects/agents.

3.2 Chasing perception

Simple motion dynamics provide a foundation for detecting
animacy, but using more complex patterns may offer additional
insights into the perception of animate entities. Chasing is an
ecologically relevant pattern for many species, either in the context
of predation (for both the predator and prey) or in social interaction
(e.g., play). Several characteristics of the motion pattern can elicit
the perception of the objects as animate, and parameters of the
pattern are easy to manipulate, allowing to investigate the influence
of different characteristics on the perception (e.g., Nahin, 2007;
Scholl and Gao, 2013).

In a series of studies, Abdai and colleagues investigated
chasing perception in dogs, by assessing dogs’ looking duration
toward geometric shapes displaying chasing pattern (dependent
motion) vs. moving independently from each other, presented
simultaneously on two sides of a screen. Both when using dots
(Abdai et al., 2017b) and isosceles triangles (aligning their main
axis with their motion direction) (Abdai et al., 2021) as moving
shapes, dogs turned their visual attention to the independently
moving figures shortly after the presentation started. Similar results
were found in adult humans (Rochat et al., 1997; Abdai et al.,
2017b, 2021) and 5-month-old human infants (Rochat et al., 1997).
Such looking preference was suggested to be the result of the rapid
perception of the chasing motion, which quickly led observers’
attention to the independent motion, that is, the “unrecognized”
pattern (for similar explanations in animacy perception, see Rochat
et al., 1997; Kovács et al., 2016).

One interesting aspect of studying dogs’ behavior lies in the
large variability within the species. Selection for specific traits
resulted in marked differences between breeds, including social
behavior (e.g., Gácsi et al., 2009) and vision (e.g., distribution of
ganglion cells in the retina and the visual field including; Peichl,
1992; McGreevy et al., 2004). When comparing chasing perception
in hunting dogs (selected for chasing vs. retrieving), no overall
difference was found between the two groups of dogs regarding
their looking preference (Abdai and Miklósi, 2022). Thus, the basic
mechanisms of animacy perception seem to be independent of the
changes introduced by artificial selection in dogs.

Dogs were also presented with the live demonstration of
chasing and independent motion patterns using UMOs (Abdai
et al., 2017a). Following the observation of the UMOs’ motion,
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subjects approached sooner the UMO that participated in the
chasing interaction, also touching and grabbing sooner a ball
attached to these UMOs after the demonstration. Thus, it seems
that dogs were more likely to consider the UMOs from the chasing
as potential interactive partners.

Although the above results indicate that dogs discriminate
between a chasing and an independent motion pattern, it is unclear
whether they indeed recognize the motion as chasing or reacted to
another aspect of the motion (e.g., predictability, Lemaire et al.,
2022). Although our findings showed that selection for specific
behavior traits did not influence dogs’ perception of the chasing
motion (Abdai and Miklósi, 2022), between species comparisons
may reveal how evolutionary background of the species or their
socio-ecological environment influences their perception of the
chasing motion. For example, predator and prey species may
react differently or their perception is influenced by different
motion characteristics. Also, within predator species, solitary vs.
group hunting may influence perception of the moving object.
For example, when using the video display of the chasing vs.
independent stimuli, we previously found that although cats
(Felis catus) also discriminate between the two patterns, they
react differently than dogs (Abdai et al., 2022a). However, more
information would be needed to reveal whether different behavior
in cats was driven by differences in the perception of the pattern
or other aspect of the stimuli or the method influenced their
visual preference.

3.3 Biological motion

Applying chasing pattern facilitates the investigation of
perceiving the interaction of multiple objects (dependency in the
motion dynamics of two or more objects), but in animacy research
it is also important whether stylized depiction of an animal’s
body can lead to its perception as biological motion and what
information can be obtained from it. Despite the interest in the
perception of biological motion in humans (for a recent review, see
Troje and Chang, 2023), to date only five studies have investigated
the phenomenon in dogs. In these studies, researchers presented
the point-light displays (Johansson, 1973) of human or dog figures,
that is, their regular social partners.

Eatherington et al. (2019) found that dogs preferentially looked
at the motion of an upright dog figure compared to its inverted
display, regardless of whether the point-lights representing the
joints moved coherently or were scrambled. However, dogs did not
react when the figure was a laterally moving human. The results of
Delanoeije et al. (2020) were similar when presenting lateral motion
of the human point-light figure, but applying a frontal moving
human vs. an inverted-and-scrambled or just scrambled version of
it, dogs preferred to look at the upright, coherent human motion.
Thus, it seems that not only moving in accordance with gravity,
but the global form of the figure is also important. Dogs reacting
to the frontally but not to the laterally moving human figure
indicates that spatial arrangement of the motion may be important
for the perception. However, it cannot be excluded that their
looking preference is not influenced by the (lack of) perception of
the human figure but rather lateral motion is irrelevant from the

viewpoint of interaction, resulting in lower visual interest (see also
Ishikawa et al., 2018; Delanoeije et al., 2020).

Indeed, the results of Ishikawa et al. (2018) show that social
relevance of the moving figure might influence dogs’ perception of
biological motion, or at least the behavioral response to the display.
Frontal motion of a socially relevant agent (dog or human in this
case) can be perceived as an initiation of interaction which can
be positive for a highly sociable dog whereas taken negatively by
a less sociable one. On the other hand, lateral motion can be of
less interest if one seeks for social encounters, but may provide
safer observation for an individual that prefers to avoid social
interactions (Ishikawa et al., 2018). Their results were in line with
this assumption, that is, dogs that scored higher on sociability
toward humans looked less at the laterally moving human figure
than those scoring lower. Dogs rated as highly social with other
dogs also preferred to look at the frontal compared to lateral upright
display of a dog, whereas those scoring low on sociability toward
dogs showed the opposite looking preference (Ishikawa et al., 2018).

Ishikawa et al. (2018) relied on the general sociability of the
dogs to see how it influences their perception of, and reaction
to biological motion. Kovács et al. (2016) applied a different
approach, in which they intranasally administered oxytocin to dogs
(or placebo) that has been shown to increase social behavior toward
other dogs and humans (e.g., Romero et al., 2014; Oliva et al., 2015).
Oxytocin was found to increase sensitivity to biological motion in
adult humans (Kéri and Benedek, 2009), but the results of Kovács
et al. (2016) showed that although after receiving placebo, dogs
looked longer at the biological than at the non-biological (inverted-
and-scrambled) motion, this preference disappeared when they
received oxytocin. Authors proposed that increased oxytocin might
indeed facilitate the recognition of the biological motion in their
subjects, but instead of focusing on this display, they rather directed
their visual attention to the “unrecognized” stimulus (for similar
explanation in chasing perception, see Abdai et al., 2017b).

Humans can obtain many information from point-light
displays of a human figure, such as the gender of the figure
(Mather and Murdoch, 1994), the action it performs (Manera
et al., 2010), or the emotional state (Parkinson et al., 2017).
Although dogs can find a hidden reward based on the pointing
gesture of a human displayed on a screen (Péter et al., 2013;
Eatherington et al., 2021), they did not follow the pointing when
it was performed by a silhouette or a point-light display of a human
(Eatherington et al., 2021).

Eatherington et al. (2021) suggested that dogs may react to
the biological motion itself and do not recognize the displays as
representing a human (or a dog), and based on the current findings,
biological motion perception is not analogous in dogs and humans.
However, aspects of the stimuli presentation beside animatemotion
might influence dogs’ looking behavior (see below).

4 Conclusion and future directions

Although investigating animacy perception relying on looking
preferences is a common approach in dogs (and humans), several
factors other than animacy perception per se may influence dogs’
looking behavior, either leading to the lack of, or opposite as
(generally) expected preference (Kovács et al., 2016; Abdai et al.,
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2017b; Ishikawa et al., 2018). Dogs may be less motivated to watch
two-dimensional displays on a screen as it is an artificial context
for them, and it is also difficult to take into account all aspects
specific to dogs’ vision (e.g., differences in the visual field). As
the results of Abdai and Miklósi (2022) suggests, differences in
looking preference of dogs and humans may be influenced not by
animacy perception, but rather by basic differences in the visual
characteristics of the two species (e.g., dogs having slower and
bigger saccades, and longer fixations than humans; see also Park
et al., 2020). Also, the specific stimuli may be irrelevant for dogs
(e.g., Ishikawa et al., 2018), or interest is influenced by another
feature of the display (e.g., unfamiliarity) (Kovács et al., 2016; Abdai
et al., 2017b). These can result in drawing false conclusions about
the perceptual abilities of dogs. Relying on measurements other
than looking preference, such as, changes in pupil dilation (e.g.,
Völter and Huber, 2021, 2022) can provide important insight about
perception in dogs. Further, showing actions that are relevant for
dogs or potentially leading to an interaction may also facilitate
research on the topic (Abdai et al., 2017a, 2022b; Eatherington et al.,
2021).

Research indicates that (1) simple motion cues associated with
animacy influences dogs’ perception of these objects/agents, (2)
they rely on similar kinematic characteristics as other species, and
(3) perception of an object as animate may provide a basis for dogs
to establish further interaction with the agent. Still, we know little
about, for example, (1) which cuesmay elicit such rich, spontaneous
social perception, (2) how different animate cues may influence
dogs’ behavior toward an object/agent, (3) whether sensitivity to
specific cues changes during development, (4) whether perceiving
an object as animate leads to further expectations about its behavior
(e.g., goal-directed motion; Biro and Leslie, 2007), and (5) about
the neural mechanisms. Recent brain imaging studies in dogs
investigated face- and/or body-sensitive (Bunford et al., 2020; Boch
et al., 2023) brain areas, and neural representation of animate
stimuli (human, dog, and/or cat pictures) vs. inanimate stimuli
(Boch et al., 2023; Farkas et al., 2024); however, there is no
information about the neural mechanisms underlying animacy
perception (e.g., chasing or biological motion perception) in
dogs. Applying neuroimaging and electrophysiological measures
could provide meaningful contribution to comparative research on
perceptual animacy.

Current data suggest that cats show preference to a UMO
previously moving in an animate manner (Abdai et al., 2022b),
they discriminate between chasing and independently moving
motion patterns (although react differently than dogs in the same
context) (Abdai et al., 2022a), and they prefer biological over
non-biological motion (Blake, 1993). However, it is unclear which
motion characteristics influence their perception, and whether and
how different evolutionary and ecological background of cats and

dogs might contribute to differences in their visual preference
(see Abdai et al., 2022a). Comparison of dogs with other species
(e.g., wolves or cats), and taking the large variability within the
species, dogs may become important in testing the effect of a wide
range of factors on animacy perception, including for example,
selection for specific behavior traits (Abdai and Miklósi, 2022),
individual differences (e.g., Ishikawa et al., 2018), or anatomy (see
e.g., McGreevy et al., 2004; Bognár et al., 2018). Testing dogs also
provide a unique opportunity to study how training for specific
behaviors (e.g., hunting or herding), or different environment
(e.g., pet vs. free-ranging dogs) may influence the perception.
Future research in dogs may provide further insight about the
evolutionary background and potential influence of environment
on the perception of animacy or its influence on behavior.
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