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Introduction: While the fact that visual stimuli synthesized by Artificial Neural

Networks (ANN) may evoke emotional reactions is documented, the precise

mechanisms that connect the strength and type of such reactions with

the ways of how ANNs are used to synthesize visual stimuli are yet to be

discovered. Understanding these mechanisms allows for designing methods

that synthesize images attenuating or enhancing selected emotional states,

which may provide unobtrusive and widely-applicable treatment of mental

dysfunctions and disorders.

Methods: The Convolutional Neural Network (CNN), a type of ANN used in

computer vision tasks which models the ways humans solve visual tasks, was

applied to synthesize (“dream” or “hallucinate”) images with no semantic content

to maximize activations of neurons in precisely-selected layers in the CNN.

The evoked emotions of 150 human subjects observing these images were

self-reported on a two-dimensional scale (arousal and valence) utilizing self-

assessment manikin (SAM) figures. Correlations between arousal and valence

values and image visual properties (e.g., color, brightness, clutter feature

congestion, and clutter sub-band entropy) as well as the position of the CNN’s

layers stimulated to obtain a given image were calculated.

Results: Synthesized images that maximized activations of some of the CNN

layers led to significantly higher or lower arousal and valence levels compared

to average subject’s reactions. Multiple linear regression analysis found that a

small set of selected image global visual features (hue, feature congestion, and

sub-band entropy) are significant predictors of the measured arousal, however

no statistically significant dependencies were found between image global visual

features and the measured valence.

Conclusion: This study demonstrates that the specific method of synthesizing

images by maximizing small and precisely-selected parts of the CNN used in this

work may lead to synthesis of visual stimuli that enhance or attenuate emotional

reactions. This method paves the way for developing tools that stimulate, in a

non-invasive way, to support wellbeing (manage stress, enhance mood) and

to assist patients with certain mental conditions by complementing traditional

methods of therapeutic interventions.

KEYWORDS

emotional reactions, visual stimuli, deep learning, artificial neural networks, visual

stimuli synthesis
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1 Introduction

Approximately half of our brain tissue receives visual

information (Sells and Fixott, 1957), andmore neurons in our brain

deal with visual tasks than with the other four senses combined.

Hence, humans are fundamentally visual creatures, and many

aspects of our behaviour are determined by how visual information

is processed by the brain, either consciously or unconsciously.

Stimulation of emotions is one of the research areas studied

intensively, and various visual tools have been proposed to date

to aid psychologists in affective research by inducing emotional

states through the presentation of images (Marchewka et al., 2014;

Dan-Glauser and Scherer, 2011; Kurdi et al., 2017; Lang P. J. et al.,

2008).With the recent explosion of deep learning-oriented research

(LeCun et al., 2015), in particular involving convolutional neural

networks (LeCun and Bengio, 1998) (CNN), which are currently

used to build modern generative models (Goodfellow et al., 2014),

research questions arise around functional similarities between

modern CNNs and a human brain (especially the ventral stream).

If such similarities exist, do they allow the construction of visual

stimuli-based mechanisms for precise stimulation of emotions,

with an overarching goal to apply them in mental health healing

processes? The study presented in this paper contributes to a wider

family of studies that attempt to answer this question.

In 2015, Google researchers demonstrated a visualization

method that gave insights into what each section (e.g., a single

neuron, a layer of neurons, or an arbitrary set of neurons) of a

trained CNN is “interested in” when solving a visual classification

task (Mordvintsev et al., 2015b; Szegedy et al., 2015). The

method was based on iterative modification of an input to boost

activations of these selected neurons. The resulting pictures (see

an example in Figure 1) allowed researchers to visualize how the

CNN “understands” the general notion of visual objects, thus this

mechanism later received significant attention among researchers

working on explainable artificial intelligence. Due to unnatural,

dream-like patterns present in these samples, the “deep dream”

term was coined for these visual stimuli (Mordvintsev et al., 2015a).

This paper, to our knowledge for the first time, presents

quantitative results of how humans react to pictures synthesized by

a CNN, which “dream” or “hallucinate” visual inputs to maximize

activations of neurons located in a given portion of the CNNmodel,

as shown in Figure 2. This work was initially inspired by a positive

feedback received from users of the LockLuck tool (described

in Section 2.4), which incorporated “deep dream” pictures into

psychological coaching processes, and—after presenting these

unusual visuals to the coaching clients—reported an increased

efficiency of the coaching sessions. In the current study, which was

carried out with 150 subjects that viewed “deep dream” images

carefully synthesized to boost activations of the CNN layers (one

by one), we found that there is a dependency between the location

of the portion of the CNN being activated and the strength of

emotions self-reported by humans viewing these images.

These results are obtained on a relatively small sample of

subjects, and thus should be taken with care. However, this study

suggests that it is possible to use modern artificial neural networks

to influence the human emotional system in a controlled way

by presenting synthetically-generated rather than natural visual

inputs which, in turn, could have a tremendous impact on creating

effective and affordable mental health healing tools. The approach

proposed in this paper is different from those using natural images,

or recently popular creations generated by text-to-image Artificial

Intelligence tools. The main difference comes from the fact of a

precise control over which parts of the CNN are boosted by feeding

the network with the synthesized stimuli. This approach offers an

increased interpretability of the observed results and potential of

mapping the CNN areas with functional regions of the brain.

2 Related work

2.1 Response to emotional visual stimuli

The emotional response to affective pictures is a complex and

multidimensional phenomenon, influenced by both the content

and physical properties of the stimuli. Valence and arousal

are two critical dimensions used in all common emotional

stimuli databases to measure these responses. Valence reflects

the subjective conscious experience of feeling pleasantness or

unpleasantness, while arousal relates to feelings of calmness or

excitation (Barrett, 1998). These dimensions are pancultural and

observable even in children as young as four to five years old

(Russell and Bullock, 1985). We selected to use valence and arousal

in measuring emotions in this study.

Among the most known resources providing visual stimuli are

the International Affective Pictures System (IAPS) (Lang P. et al.,

2008), the Nencki Affective Picture System (NAPS) (Marchewka

et al., 2014), the Geneva Affective Picture Database (GAPD) (Dan-

Glauser and Scherer, 2011), the Open Affective Standardized Image

System (OASIS) (Kurdi et al., 2017), and EmoMadrid (Carretié

et al., 2019). These databases categorize images with ratings of

“low” and “high” to estimate arousal, and “positive,” “neutral,” and

“negative” to estimate valence. More specifically, GAPD and NAPS

are two databases that have been developed to provide a wide range

of high-quality, realistic pictures for affective research. EmoMadrid

further enhances the understanding of emotional responses by

including low-order visual parameters such as spatial frequency,

luminosity, and chromatic complexity. Researchers widely use and

validate the IAPS as a tool for eliciting emotional responses across

different cultures and age groups (Branco et al., 2023). It has

proven particularly useful in studying mental disorders, including

borderline personality disorder, where it has helped define specific

emotional responses. The versatility and applicability of IAPS have

also shown in studies addressing affective dysregulation in various

mental disorders (Jayaro et al., 2008).

In the context of the above mentioned databases, it is

important to consider how different types of visual stimuli, such

as figurative versus abstract art, may invoke distinct emotional

reactions. The semantic content or top-down information present

in figurative art leads to an interpretation of what is depicted,

facilitating a more direct connection with familiar experiences and

emotions. Conversely, in abstract art, the information conveyed

is predominantly bottom-up or low-level, i.e., it is free from the

common restrictions that the visual system is used to, which might

evoke a different set of emotional responses due to its open-ended
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FIGURE 1

(A) An example of the “deep-dreamed” image, starting from a white noise image illustrated on the left. This particular image evoked the highest, on

average, arousal and valence among the subjects participating in the experiment. (B) Four other images “deep dreamed” for that same layer, starting

with di�erent noise images. Such images were generated for all 144 layers of the Inception CNN model and utilized in this study.

FIGURE 2

Overview of the experiment carried out in this study. The visual stimuli were synthesized in a way to activate selected sections (e.g., layers) of an

Artificial Neural Network (ANN). Such stimuli, when presented to a subject, evoked reactions that were self-reported by selecting the levels of arousal

and valence experienced during the experiment. The colors matching various sections of the ANN and the brain illustrate the hypothesis that visual

signals synthesized that way may stimulate di�erent functional brain areas, resulting in di�erent emotional reactions.

nature and reliance on primary visual elements. NAPS and GAPD

have also been used to stimulate and estimate emotions (Horvat,

2017). These databases have been instrumental in understanding

the processing of affective pictures, with arousal consistently

modulating event-related potential (ERP) component amplitude

(Olofsson et al., 2008). The influence of the emotional content and

physical characteristics of affective stimuli on emotional responses

has been demonstrated with the emotional content being more

important than the formal properties of the stimuli in evoking the

emotional response (Sánchez-Navarro et al., 2006).

2.2 Abstract art as emotional visual stimuli

Abstract art, in contrast to figurative art (landscapes, portraits,

and still lifes) frees itself from realistic representations of objects
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or scenes found in movements like Cubism (e.g., George Braque

and Pablo Picasso) and Surrealism (e.g., Salvador Dali and Juan

Miro). Painters from the New York School, such as Wassily

Kandinsky, Piet Mondrian, Willem de Kooning, Jackson Pollock,

and Mark Rothko, embraced an even more reductionist approach,

emphasizing form, line, color, and light. This innovative approach

elicits a range of raw emotional responses, liberating viewers’ minds

from conventional associations with color and form while fostering

new connections and reactions (Kandel, 2016).

Both realistic and abstract art engage the same visual system

and structures. However, the activation in case of abstract art is less

specific than in case of figurative art (Kawabata and Zeki, 2004).

Since abstract art doesn’t represent well-defined objects—instead it

is a composition of lines, spots of color, patches or simple geometric

figures—it activates additional brain regions as well (Vartanian and

Goel, 2004; Kawabata and Zeki, 2004). Abstract art also activates

early visual processes (specialized in the perception of dots, lines,

and simple objects) that are otherwise harder to access when a

whole “gestalt” of a figurative image is analyzed.

Abstract art enhances the reflection of the inner stage rather

than being susceptible to external visual stimuli. The individual

inner state at the very specific moment of observing abstract art

seems to be crucial for the insights of the viewer. As shown by Cela-

Conde et al. (2013), the default mode network is activated during

the later phase of aesthetic appreciation; it may be stimulated by

abstract art as well.

Zhang et al. (2011) and Sartori (2014) both explored the

use of low-level image features in predicting emotional responses

to abstract art. Zhang’s work demonstrates that these features

can be used to distinguish “exciting” vs. “boring” emotions

with 65% accuracy, and “relaxing” vs “irritating” emotions

with 70% accuracy. Sartori’s computational model can predict

emotional responses as well as generate abstract paintings to elicit

specific emotions. Van Paasschen et al. (2014) further support

these findings, showing that observers consistently interpret the

emotional content of abstract art based on its visual characteristics.

In the experiment by Bashivan et al. (2019), a macaque’s brain

activation in the V4 area was analyzed after presenting figurative

and neural network-generated pictures. The authors found that

the exposition on artificial neural network-generated pictures

provoked higher activation of the V4 area than figurative pictures.

For this experiment, the authors used pictures generated by

boosting activations of the first layers (close to the network’s

input) that represent simpler shapes such as curves, lines or blobs.

These studies collectively highlight the potential for using low-level

image features to understand and predict emotional responses to

abstract art.

2.3 Deep neural networks

2.3.1 Connections between biological and
artificial neural networks

Artificial neural networks (ANN) are synthetic models of the

brain’s activity. In conception, they are meant to be biologically-

inspired methods that leverage what we know of the brain

in order to improve feature learning within machine learning.

From a mathematical point of view, an ANN is a technique

for function approximation. Such a function can, for example,

define how to distinguish various objects from one another—

dogs from cars, individual human faces or words in handwriting

by different people. Since their rise in popularity, ANNs have

significantly grown in scale and complexity. Our understanding

of the brain has also improved. For example, the use of advanced

imaging techniques such as functional magnetic resonance imaging

(fMRI) and positron emission tomography (PET) has allowed

us to visualize and study the brain’s activity in real-time

(Bandettini, 2009) and learn that, for instance, visual cortex is

more active during emotions-evoking visual stimuli compared to

its activity when neutral visual stimuli are presented (Gerdes,

2010).

Additionally, researchers have made great strides in mapping

the brain’s structure and connectivity through techniques like

diffusion tensor imaging and functional connectivity analysis

(Raichle, 2003).Moving forward, researchers use knowledge related

to brain functions and combine machine learning with high-

throughput behavioral optogenetics to stimulate very precise

brain areas. They have found that the nature and magnitude

of hallucinations experienced by macaques highly depend on

concurrent visual input, the location of brain stimulation, and the

intensity of the stimulation (Shahbazi et al., 2024).

Some would argue that current neural network architectures

and their connection to the human brain are fleeting given that

understanding of the dynamic processes in the brain has changed

and the artificial intelligence community has understandably

prioritized complex optimization-based architectures over

relations to the brain (Jiang et al., 2017). On the contrary, there is

much work connecting newer deep neural network architectures

to a modern understanding of the brain (Marblestone et al.,

2016; Richards et al., 2019). More specifically, CNNs, which are

dominant and the most successful ANN models in contemporary

computer vision, have their roots in the Neocognitron proposed

by Fukushima (1980). CNNs are inspired by our understanding

of the visual pathway in the brain. This pathway starts as early

as in the retina, which already does a lot of visual information

pre-processing (via its ganglion cells, which obtain signals from

photoreceptors, as well as bipolar and amacrine cells). The

information then travels through the optic nerves and chiasm

(where some of the nerve fibers cross) and Lateral Geniculate

Nucleus (LGN) to the ventral stream: primary visual cortex V1,

visual area V2, visual area V4, and inferior temporal (IT) cortex.

There are several analogies between the notion of visual cortex and

CNNs, which are important from the point of view of this study:

• the layered feed-forward architectures of CNNs are inspired by

a laminar organization of V1, with six identified distinct layers

(Callaway, 1998; Douglas and Martin, 2004),

• the use of convolution operations in CNNs is a consequence of

our notion of how simple cells in V1 perform linear filtering,

by “calculating” the weighted sum of their inputs, with weights

defined by the receptive field profiles (Hubel andWiesel, 1959,

1962),

• filtering kernels in CNNs’ early layers often converge (during

CNN’s training) to Gabor wavelets (Gabor, 1946), which were
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found as goodmodels (in a least squares sense) of the receptive

field profiles in simple cells in visual cortex (Daugman, 1985),

• small effective receptive fields of neurons used in early CNN

layers, expanding when we move toward deeper layers, are

analogous to observing the smallest receptive fields in V1

neurons (Wu et al., 2023) and extending to almost entire visual

field for inferior temporal (IT) cortex neurons (Rolls et al.,

2003),

• specialization of ANN neurons depends on their distance

from the input image (large activations of early-layer neurons

are observed for simple shapes, while deeper-layer neurons

are activated more frequently for more complex objects)

corresponds to a similar mechanism, neuronal tuning (Sakai

and Miyashita, 1994), observed in the brain,

• heterogeneous architectures and functions of layers in ANNs

(including CNNs) have their analogy in heterogeneity of

anatomical properties of V1 layers; for instance in brains of

primates layer 1 of V1 is almost aneuronal, while layer 4 of V1

is divided into sub-layers 4A, 4B, 4Cα, and 4Cβ (Schmolesky,

2007),

• shift property of convolution operations reasonably-well

models the retinotopic mapping in V1 (and possibly in other

visual cortex areas), e.g., blind spots of the retina are precisely

mapped into V1, or a large portion of V1 mapped to the fovea

centralis (known as cortical magnification) (Wandell et al.,

2007).

The above list of analogies is certainly not exhaustive. They,

however, support the hypothesis that CNN-based manipulations

of visual inputs may offer a reasonable control of the evoked

reactions in human’s brain, and perhaps better-localized than the

one evoked by images selected from a larger pool of naturalistic

photographs or synthesized by most recent and popular generative

AI language-prompted models.

For a given input image, areas or features which give the

model stimulus can also be calculated. Using this information,

architectures can be built to represent how visual cortices

process stimuli and the signals that cause neurons to fire.

Much like neural networks, our brain depends on nonlinear

transformations and pooling of signals in order to perform complex

tasks, such as recognition. Yamins et al. (2014) demonstrate

how CNNs can be optimized to perform object recognition

tasks like humans, by building layers that represent visual

cortices in sequences that mimic the interconnected regions of

our brain.

2.3.2 “Dreamception”
Originally built in 2014 to beat the state-of-the-art classification

performance on the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC14), the Inception network is a deep (originally

22-layer) CNN that processes images differently than previously-

proposed CNNs (Szegedy et al., 2015). The Inception model

introduced two custom modules called inception modules, which

combine several convolution layers and a pooling layer with a filter

concatenation for the purpose of processing visual information at

multiple scales during feature extraction. By stacking convolution

layers with different sized kernels, the model can decompose

spatial features and create more abstract representations

of the data, which improved upon the best classification

scores in the ILSVRC14 as a result. Supplementary Section 1

contains a visualization of a more recent Inception network

(composed of 144 layers) and its inception module used in

this work.

In 2015, Google researchers demonstrated that the same

classification tool could be used in a feedback loop to emphasize

what the network believes it is currently seeing (Mordvintsev

et al., 2015b). As a result, “Inceptionism,” which allows for a

qualitative assessment of what the neural network is “seeing” at

each respective layer, was created. The Inception model, starting

from any image (e.g., a white noise), was used in an optimization

loop, in which activations of selected ANN’s section were boosted

by iterative alterations of the input. This procedure creates vivid,

hallucinogenic images allowing researchers to see what features in

the input images the network is sensitive to, for either each single

neuron, separate feature maps, entire layers or arbitrary sets of

neurons.

2.3.3 Deep learning-based generative models
The quest for building models that “understand” visual inputs

has existed since the birth of artificial intelligence in the 1960’s.

In principle, generative models first learn the distribution of the

training data representing a given domain, and then are able to

sample from that distribution and generate new domain-specific

exemplars.

Modern deep learning-based generative models create

representations in their latent spaces, which then are used to

revert the encoding process and generate new samples, hopefully

following the distribution of the original training data, although

not simply duplicating the training data. The structure of the latent

space is the biggest mystery of such models, and may be shaped

only partially. For example, Variational Autoencoders (Kingma

and Welling, 2019), Adversarial Autoencoders (Makhzani et al.,

2016) or StyleGAN (Karras et al., 2020b,a, 2021) models implement

mechanisms to organize latent space representations of input data

samples in a way to disentangle various factors of data variation,

give them semantic meaning and make these factors—to the

maximum extent possible—statistically independent. Sampling in

the latent space can be also controlled by additional information

such as encoded language prompts. These hybrid text-to-image

generative models, if trained collectively in an end-to-end manner,

are hoped to learn semantically-valid connections between

language descriptions and visual outputs (images and videos). And

while this hope is partially satisfied, such that these models are

able to generate images that exhibit some semantic structure, the

accuracy of the alignment of the generated samples with actual

human perception is unknown, and when examined on a case-by-

case basis, it is often disappointing. Figures 3, 4 show examples of

synthetic images generated by several state-of-the-art text-to-image

generative models, for two prompts: “A picture that makes me

happy” and “A picture that makes me sad,” respectively. The first

observation is that these models “understand” the prompts on a

higher semantic level, offering people and texts combined with

colorful or gray-toned objects as the results, as those exemplars

probably prevailed in training datasets. The second observation
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FIGURE 3

Sample images generated by a few examples of modern text-to-image generative models for the text prompt “A picture that makes me happy”:

Stable Di�usion v1.4 (A), Stable Di�usion v1.5 (B), Stable Di�usion v2.1-base (C), Stable Di�usion v2.1 (D), DreamStudio AI (E), Adobe FireFly (F), and

Wombo (G).

FIGURE 4

Sample images generated by a few examples of modern text-to-image generative models for the text prompt “A picture that makes me sad”: Stable

Di�usion v1.4 (A), Stable Di�usion v1.5 (B), Stable Di�usion v2.1-base (C), Stable Di�usion v2.1 (D), DreamStudio AI (E), Adobe FireFly (F), and Wombo

(G).
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is that human perception of these image generations would be

widely different than the prompts would suggest. For example, we

can look at deformed bodies and faces, even in samples that are

supposed to make us happy, which de facto actually evoke disgust

or fear. So while the existence of such models is noted, and hopes

related to correct generations are present, they are not yet at a

development stage which would allow their immediate application

for controlled stimulation of emotions.

Our work differs from the past works mentioned above in

that we examine a different generative framework that synthesizes

visual stimuli at a lower semantic level. The motivation, and our

hypothesis, is that stimuli that are semantically less complex yet

carefully synthesized, result in images affecting brain functional

regions that are possible to be identified with a greater precision

compared to localizing areas storing and processing semantically-

meaningful information (Binder et al., 2009). If that hypothesis is

true, we would be able to build more accurate models of emotional

reactions and thus create affordable and widely-accessible tools that

could help people control their emotions.

2.4 The LockLuck tool

LockLuck–More than CardsTM is a tool created in 2015 to

increase self-esteem, self-value and self-confidence in life and

business coaching1. The goal for this tool was to facilitate as

well as to encourage a deep coaching conversation. The tool is

composed of three decks of cards (30 questions, 84 graphics, and

56 quotes), instructions and a guide. The questions guide the client

in approaching, recognizing, dominating, and negotiating with the

inner judgmental voice.

After answering a question, the cards with graphics and quotes

play their role as linguistic and visual metaphors. In particular, the

“multidimensional” nature of the graphics (e.g., natural pictures

transformed by neural networks to overlay the “deep dream” layer,

as illustrated in Figure 5) helps in building metaphors used to

express what the clients experience right now. That is, when the

client talks about the picture, it makes it easier to reach the hidden

information (to “unlock” it) that was not immediately available after

asking the question. The quote cards inspire, break an impasse,

deliver additional information, or deepen the insights that flow

from the graphics cards. The quotes and questions are not used

in the research presented in this report. The LockLuck–More than

CardsTM tool is, to our knowledge, the first tool using neural

network-transformed pictures applied to coaching processes.

3 Materials and methods

3.1 Synthetic image generation

Synthetic images used in this study were generated by first

constructing a uniform gray 800 × 800 pixel base image. Then

Gaussian noise (with a mean value 0 and a standard deviation

12.75) was generated from a fixed random seed and added to the

image. Subsequently, the image was updated in an iterative manner

1 https://www.lockluck.eu

in order to maximize the activations of a given layer or sub-layer.

In each iteration of the process, the image would be passed to the

Inception model as input, and the activations of the target layer

would be recorded. Then, by calculating the gradients of (the sum

of) the activations with respect to the input image and applying

them to the image, gradient ascent was used to update the image in a

manner that maximally increased the total of the given activations.

During this step (i.e., gradient ascent), updates were applied with

a fixed step size of two. Following this, pixels within the updated

image were restricted to be integers within the range of [0,255]

(e.g., valid pixel values) using clipping and rounding. Finally, the

updated image would then be fed back to the model and used as

the starting point in the next loop. This process was repeated until

the image no longer changed between loops as this indicated that

the generated image maximized the target activations in an (at least

locally) optimal manner.

Following this protocol, images were generated for all 144

layer and sub-layer within an Inception model that had been

trained on ImageNet. In order to ensure that the experiments

measured the characteristics of each layer/sub-layer rather than

the characteristics of individual ideal images, multiple images were

generated and evaluated for every layer/sub-layer. Following the

observation that every image generated from a given layer/sub-

layer ended up being highly visually similar to the other images

generated from the same layer/sub-layer, it was determined that

five images per layer/sub-layer would be enough to assess the

characteristics of each layer/sub-layer. This led to the generation

of a total of 720 images that were used in the experiment reported

in this study.

3.2 Scales

Participants viewed the synthesized images (as described in

Section 3.1) and responded to them using sliders to rate them on

two scales: valence and arousal. The sliders output values were in

the range of 0 to 100. The scales were visually represented using

five self-assessment manikin figures (SAM) (Bradley and Lang,

1994), each accompanied by labels for the endpoints, as shown

in Figure 2. For valence, the scale ranged from a sad face to a

smiling face, labeled “unhappy” and “happy,” respectively. Arousal

was depicted using figures ranging from calm and relaxed to

excited and interested, with endpoints labeled “calm” and “excited,”

respectively. This method of ratings along these dimensional scales

is very common among emotion-eliciting images such as for the

ISEE (Kim et al., 2018) and IAPS (Lang et al., 2005).

3.3 Participants

The initial sample included 153 participants, however, 3 of the

participants did not complete the study and their data was removed.

Thus, our analysis was based on 150 participants (98 female)

with mean age = 26.16 years, S.D. = 9.137. The participants for

this paper were recruited on-line using Prolific2. Each participant

2 www.prolific.com
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FIGURE 5

An example of the “deep-dreamed” image synthesized for the LockLuck–More than Cards tool. Instead of a noise, the starting point was a natural image

of a mountain trail.

was compensated monetarily for their time. The experimental

procedure received approval from the Institutional Review Board

(IRB) at the University of Notre Dame, IN, USA. The experiment

was conducted strictly in accordance with the approved guidelines

of the committee.

3.4 Acquisition protocol

Participants completed a Qualtrics survey (Qualtrics, 2024)

consisting of a consent form, several demographic items, mood and

self-esteem items, and then the items to rate the synthetic images on

scales of arousal and valence as described in Section 3.2. In order to

reduce fatigue, all participants were not exposed to all 720 generated

images. Rather, the 144 layers were divided into three groups of 48

layers each. Participants were randomly assigned to one of these

groups of layers. For each of these 48 layers, a participant rated

one of the 5 generated images for that layer, chosen randomly.

Thus, each participant rated a different set of 48 images in random

order. Once the 48 images were rated, the participants were thanked

and given a survey code to receive their Prolific credit. Participants

were instructed during consent to withdraw at any time by closing

their browser should they no longer wish to continue with the

experiment.

4 Results

4.1 Image visual properties

Each layer in the model was applied to one of five randomly

generated Gaussian noise images to yield five stimulus images per

layer. Participants were presented with a random sample of one

of these five images. Supplementary Tables S1–S3 present the mean

arousal and valence rating across participants for each of the model

layers as well as six image metrics: Hue, Saturation, Brightness,

JPEG compression percentage, and two measures of visual clutter:

Feature Congestion and Sub-band Entropy (Rosenholtz et al.,

2007).

Hue, Saturation, and Brightness were computed by

utilizing the cvtColor method of the Python OpenCV

library (Bradski, 2000) to convert the image to the HSV

(Hue, Saturation, and Value) colorspace (where Value is

semantically the same as Brightness) and then calculating the

mean of each attribute rounded to three decimal places. It is

important to note, however, that we did not have a control

over individual monitor settings and the assumption about

uniform color and contrast settings across subjects is made in

this case.

The JPEG compression percentage was calculated by a custom

Python program that computed the percentage of jpeg compression

with quality set to 80 as compared to the original idealized file

size (800 × 800 × 3 bytes) using the Pillow image processing

python library (Clark, 2015) for jpeg compression and the Python

os library to obtain the reduced file size. Feature Congestion and

Sub-band Entropy were computed using the Matlab library offered

by Rosenholtz et al. (2007).

Figure 6 shows the distribution of variances of the

six image properties described above. The variances of

all six properties are low, what suggests that images

generated for each layer, and originating from different

noise seeds, are characterized by very similar global

image properties.
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FIGURE 6

Distribution of variances of the six selected image properties of the “deep dreamed” images used in this study. Median values are marked as red

middle bars, height of each boxes corresponds to an inter-quartile range (IQR) spanning from the first (Q1) to the third (Q3) quartile, whiskers

(marked by short black horizontal bars) span from Q1–1.5*IQR to Q3+1.5*IQR, outliers are shown as black circles, and longer horizontal blue bars

denote minimum and maximum values. Notches in the boxplots represent 95% confidence intervals of the median. The violin plots are overlaid to

provide a better visualization of the actual distribution shapes.

4.2 Correlation with a�ective judgments
and image visual properties

Figure 7 shows scatter plots and best-fit lines for arousal

and valence judgments as compared with the 6 image properties

described in Section 4.1.

Multiple linear regressions were performed using IBM SPSS

Statistics software (IBM, 2023) to predict arousal and valence

judgments from the image characteristics (Hue, Saturation,

Brightness, JPEG Percent Compression (JPEG), Clutter Feature

Congestion (CFC) and Clutter Sub-band Entropy (CSE)). These

two multiple linear regressions resulted in a statistically significant

model for arousal, F(6,137) = 13.393, p <0.001, R2 = 0.370. Thus,

the arousal model explains or predicts 37% of the relationship

between the dependent and independent variables. The individual

predictors for arousal were examined further and indicated that

Hue (t = –2.562, p <0.05), CFC (t = 2.608, p <0.01), and CSE (t

= –3.946, p <0.001) were significant predictors but saturation (t

= –0.587, p = 0.558), brightness (t = 1.769, p = 0.079), and JPEG

compression (t = –0.755, p = 0.451) were not. Themodel for valence

was not statistically significant, F(6,137) = 1.814, p = 0.101, R2 =

0.033. Thus, the valence model only explains or predicts 3.3% of

the relationship between the dependent and independent variables.

The individual predictors for valence were examined further and

indicated that none were statistically significant predictors: Hue (t

= 1.044, p = 0.298), Saturation (t = 0.741, p = 0.298), Brightness

(t = –1.172, p = 0.243), JPEG compression (t =-1.304, p = 0.195),

CFC (t = –0.129, p = 0.897), and CSE (t = –0.281, p = 0.779).

These results are consistent with previous studies that have shown

an arousal-complexity bias (Madan et al., 2018) where arousal

was affected by image complexity as measured by Clutter Feature

Congestion and Clutter Sub-band Entropy. Madan et al. (2018) also

found that JPEG Compression did not affect arousal or valence

measures which we also demonstrated. Thus, these analyses are

complementary to the main experiment to show that basic image

properties are not significant predictors of arousal and valence with

the exception of image complexity and hue (Kuzinas et al., 2016),

which aligns with previous observations reported in the literature.

Pearson correlations from the multiple linear regression

analyses are presented in Table 1.

4.3 Association of a�ective judgments with
mood

Two items were presented in the pre-questionnaire regarding

the participant’s mood on the day of their participation. The

participant was prompted to rate their attitude with the item,

“My attitude today is ...” with the following three mutually-

exclusive responses provided: “Positive,” “Neutral,” or “Negative.”

Participants were also asked a question about their self-esteem

with the prompt, “I have high self-esteem” and then given five

mutually-exclusive responses to choose from: “Definitely true,”

“Probably true,” “Neither true nor false,” “Probably false,” and

“Definitely false.” The responses to these items were compared with

a participants’ mean arousal and mean valence scores computed

across all images that the participant was presented in order to

determine if attitude or self-esteem affected their overall arousal

and valence judgments with significance judged as p <0.05. A one-

way ANOVA revealed that there was not a statistically significant
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FIGURE 7

Correlations of a�ective judgments with visual properties of images. The two most obvious outliers in each of the distributions are for the same

layers, namely. convd0 and maxpool0. The layer, cond0_pre_relu was also an outlier for Hue, Saturation, and Brightness.
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TABLE 1 Pearson correlations of arousal and valence judgments with independent variables of image characteristics.

Arousal Valence Hue Saturation Brightness JPEG CFC

Hue 0.120 0.080

Saturation 0.187∗ 0.060 0.990∗∗∗

Brightness 0.204∗∗ 0.050 0.986∗∗∗ 0.999∗∗∗

JPEG 0.215∗∗ –0.053 0.807∗∗∗ 0.805∗∗∗ 0.808∗∗∗

CFC 0.343∗∗∗ –0.056 0.814∗∗∗ 0.848∗∗∗ 0.858∗∗∗ 0.874∗∗∗

CSE –0.216∗∗ 0.023 0.364∗∗∗ 0.343∗∗∗ 0.344∗∗∗ 0.236∗∗ 0.340∗∗∗

(Significance levels: ∗ p <0.05, ∗∗ p <0.01, ∗∗∗ p <0.001).

difference in mean valence for attitude ratings [F(2,147) = 2.44, p

= 0.091]. Similarly, a one-way ANOVA revealed that there was

not a statistically significant difference in mean arousal for attitude

ratings [F(2,147) = 2.41, p = 0.786]. Self-esteem ratings also did

not appear to show any association with valence and arousal

judgments. A one-way ANOVA revealed that there was not a

statistically significant difference in mean valence for self-esteem

ratings [F(4,145) = 1.45, p= 0.221]. Also, a one-wayANOVA revealed

that there was not a statistically significant difference in mean

arousal for self-esteem ratings [F(4,145) = 1.58, p = 0.183].

Figure 8 shows violin plots and overlaid box plots for arousal

and valence judgments as compared with participants’ attitude.

Figure 9 shows violin plots and overlaid box plots for arousal

and valence judgments as compared with participants’ ratings of

high self-esteem.

4.4 Self-reported arousal and valence
analysis

As illustrated in Section 3.1, the synthesized images that

increase averaged activations of all neurons located in single layers

have visually different appearance depending on that layer. This

Section presents an analysis in which we verify the hypothesis that

such images evoke different reactions (measured as self-reported

arousal and valence) depending on the CNN layer selected to boost

that layer’s neuron activations through input image perturbations.

4.4.1 Independent analysis of valence and
arousal scores

Figure 10 shows boxplots summarizing the valence and arousal,

respectively, self-reported by participants looking at images that

maximize neuron activations of a single layer shown on the X

axis. Since the sliders output values of the response items were

in the range of 0 to 100, the value 50 is considered as a neutral

reaction, values closer to 100 indicate high arousal/valence reaction,

and values close to 0 correspond to low arousal/valence reaction.

The plots are sorted by the position of the layer in the CNN:

from the first convolutional layer (conv2d0_pre_relu; see

Supplementary Figure S1 for the full topology of the Inception-V3

neural network used in this study) looking at the image, until the

last convolutional layer (mixed5b) feeding the fully-connected

output (performing linear classification) layer. There are a few

interesting observations (O1-O3) we can make:

O1: There are layers for which images maximizing their

activations also evoke non-neutral reactions of participants

looking at these images.

For instance, statistically significant higher/lower

than neutral arousal can be noticed for

conv2d0/mixed3d_5x5_pre_relu, and statistically

significant higher/lower than neutral valence can be observed for

mixed4d_pool_reduce_pre_relu/mixed5a layers.

O2: There are layers for which images maximizing their

activations do not translate to non-neutral arousal or valence

reactions.

For instance, localresponsenorm0 and

mixed3b_3x3_bottleneck_pre_relu are distributed

around the neutral score (50) of the self-reported valence and

arousal, respectively. It is also interesting to see that such neutral

responses can be observed for images boosting activations of layers

located in various places in the network, which is a segue to our

last observation:

O3: The self-reported average valence and arousal

values do not seem to depend (e.g., monotonically) on

the layer’s position within the network. Indeed, there

are types of layers, whose outputs—when boosted—create

images that result in statistically significant differences in

participants’ self-reported reactions, both related to valence

and arousal.

Indeed, Figure 10 does not reveal clear linear trends in average

valence and arousal as a function of the layer’s depth. However,

when arousal and valence responses are grouped by choosing

a layer type (e.g., direct outputs of the inception modules),

we see statistically significant differences in average valence

and arousal responses aggregated over the selected layers. In

particular, as shown in Figure 11 on the left two plots, grouping

images boosting activations of layers mixed{N}{m}_pool

(N ∈ {3, 4, 5} and m ∈ {a, b, c, d, e}) result collectively in

statistically significantly higher arousal scores than for images

obtained for layers mixed{N}{m}_{K}x{K}_pre_relu

(K ∈ {3, 5}). Similarly, as see in Figure 11 on the right

two plots, grouping images boosting activations of layers

conv2d{L} result collectively in statistically significantly

higher valence scores than for images obtained for layers

mixed{N}{m}.

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1509392
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Marczak-Czajka et al. 10.3389/fpsyg.2024.1509392

FIGURE 8

Distributions of arousal and valence scores as function of the a�ective judgments of images and attitude of participants. The formatting of boxplots

and violin plots is the same as in Figure 6.

FIGURE 9

Distributions of arousal and valence scores as functions of the a�ective judgments of images and high self-esteem rating of participants. The

formatting of boxplots and violin plots is the same as in Figure 6.

4.4.2 Analysis of joint distributions of valence and
arousal scores

In the previous section we made the observation that both

valence and arousal are individually dependent on the image type.

In this section we analyze both responses jointly.

For each synthetically-generated image, boosting a single CNN

layer, we can calculate and visualize a joint probability distribution

of valence and arousal self-reported by the participants. These

distributions reveal often complicated relations between both

reactions, namely:
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FIGURE 10

Boxplots illustrating the valence (top plot) and arousal (bottom plot) scores sorted by the median values obtained for images boosting activations in

layers listed on the horizontal axis. The formatting of boxplots is the same as in Figure 6, except for the color coding: boxplots representing results

obtained from deeper layers are light-shaded, while those representing results obtained from the layers closer to the input are darker. The versions of

these plots for scores sorted by the layer’s position in the Inception network are provided in Supplementary Figure S13.

(a) There are layers which are boosted by images causing non-

neutral and very repeatable reactions across all participants.

Such layers can be identified by picking the joint probability

density plot with the minimum entropy (across all joint

distributions), as shown in Figure 12-1. The entropy-based

measure applied in this case is Shannon’s entropy calculated

for values of the joint probability density plots (represented

by pixel intensities in Figure 12), as proposed by Crum et al.

(2024) to measure the entropy of CNN models’ saliency maps.

(b) There are layers for which generated images do not evoke

strong reactions, as shown in Figure 12-2.

(c) Opposite to (a), there are layers for which generated images

evoke highly diverse reactions, as shown in Figure 12-3. Such

layers can be identified by searching for maximum Shannon’s

entropy of the joint distribution plots.

(d) A few layers end up with synthetic images that result in

a bimodal distribution for only one type of the responses,

while producing very diverse responses in the other type. One

example is shown in Figure 12-4, which demonstrate how

images boosting mixed3a_1x1_pre_relu layer ended

up with a bimodal distribution of the valence scores,

while generating more uniform responses along the arousal

dimension. Figure 12-5 shows an opposite case, when arousal

scores are more polarized than the valence scores.

(e) Finally, very interestingly, there are layers, which—when

boosted–synthesize images that generate responses polarized

in both dimensions, as shown in Figure 12-6: there are

apparently two clear groups of participants who either self-

reported low arousal along with high valence, or high arousal

along with low valence.

Additionally, Figure 13 illustrates example layers, for which

median arousal and valence scores were closest to (a) one of

the four corners of the arousal-valence plane (minimum arousal

and maximum valence simultaneously, or the opposite: maximum

arousal and minimum valence simultaneously, or both arousal and

valence either minimum or maximum at the same time), or (b) one

of the sides of the arousal-valence plane (meaning that only one

response type was strong, while the second was neutral).

The main conclusion from the above observations, presented

in both subsections, is that a simple mechanism of iterative

image perturbation, with a goal to increase average activation of

artificial neurons located in a single layer of the CNN, allows to

synthesize images that evoke non-neutral reactions measured by

arousal and valence. Some of these images evoke reactions that are

highly repeatable across participants, and some other images evoke

polarized reactions. These results support the assumption that

images that are stimulating artificial neural structures resembling

functions of the visual cortex, yet doing this at a lower, in a sense,

semantic content level, may serve as a mechanism of evoking

reactions similar to visual stimuli that are interpretable to humans,

such as those presented in Section 2.3.3.
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FIGURE 11

Arousal and valence scores aggregated over example types of layers resulting in statistically significantly di�erent responses between such types.

Numbers and letters defining the groupings are: N ∈ {3, 4, 5}, K ∈ {3, 5}, L ∈ {0, 1, 2}, and m ∈ {a,b, c,d, e}. The formatting of boxplots and violin plots

is the same as in Figure 6.

FIGURE 12

Top row shows joint distributions of valence (vertical axis) and arousal (horizontal axis) responses from all participants (smoothed to create heat maps

for better visibility) to the corresponding pictures invoking these distributions shown in bottom row. Six interesting cases are visualized, from left to

right: (1) the lowest Shanon’s entropy of the valence/arousal joint score distribution, (2) the mean of entropy, as in (1), and the distance of the average

point from the neutral arousal and valence (50,50), (3) opposite to (1): the largest Shanon’s entropy of the valence/arousal joint score distribution, (4)

the case in which the arousal score is spread across participants, but the valence has a bimodal distribution, (5) opposite to (4): the valence score is

spread across participants, but the arousal has a bimodal distribution, and (6) a bimodal distribution of scores with one mode centered in low arousal

and high valence, and the second mode centered around high arousal and low valence. White cross and red circle markers represent the mean and

median values of all responses, respectively. Joint distributions corresponding to all 144 Inception v3 layers are shown in

Supplementary Figures S2–S4. Additionally, pictures generated for Inception v3 layers which obtained various combinations of extreme median

arousal and valence values are shown in Supplementary Figures S5–S12.

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1509392
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Marczak-Czajka et al. 10.3389/fpsyg.2024.1509392

FIGURE 13

Joint distributions of valence/arousal scores, as in Figure 12 for another eight interesting cases (columns), in which the average arousal/valence

scores obtained from the participants when looking at pictures (shown in the bottom row) were the closest to the eight selected combinations of the

arousal and valence scores (marked by the red rectangles). From left to right: (1) negative arousal and valence, (2) negative arousal and neutral

valence, (3) negative arousal and positive valence, (4) neutral arousal and positive valence, (5) positive arousal and valence, (6) positive arousal and

neutral valence, (7) positive arousal and negative valence, and (8) neutral arousal and negative valence. The center (50,50) of each plot corresponds to

neutral arousal and valence reactions. White cross and red circle markers represent the mean and median values of all responses, respectively. Joint

distributions corresponding to all 144 Inception v3 layers are shown in Supplementary Figures S2–S4. Additionally, pictures generated for Inception

v3 layers which obtained various combinations of extreme median arousal and valence values are shown in Supplementary Figures S5–S12.

5 Discussion

Our analysis of images synthesized to maximize neuron

activations in different CNN layers revealed varying self-reported

arousal and valence responses from subjects. Certain layers,

such as conv2d0 and mixed3d_5x5_pre_relu, produced

images that led to significantly higher or lower arousal levels,

while layers like mixed4d_pool_reduce_pre_relu

and mixed5a evoked strong valence reactions. Interestingly,

some layers, including localresponsenorm0 and

mixed3b_3x3_bottleneck_pre_relu, resulted in

neutral responses, highlighting that not all activations translate to

significant emotional reactions.

The lack of a clear monotonic relationship between the depth of

the layer and the emotional response underscores the complexity of

neural representations in influencing affective judgments. Notably,

when responses are grouped by layer types, such as inception

module outputs, statistically significant differences in arousal and

valence are observed, indicating that the type of layer, rather than

its position, plays a crucial role in shaping emotional responses.

Additionally, the examples of bimodal distributions of scores, with

one mode centered in low arousal and high valence, and the second

mode centered around high arousal and low valence, suggest

that individual differences in creating judgments and affecting

emotional reactions may play a role.

Our study offers several key insights into the relationship

between visual stimuli characteristics, initial mood states, and

the resulting affective judgments of arousal and valence. The

regression analysis identified hue, feature congestion, and sub-band

entropy as significant predictors of arousal, explaining 37 percent

of the variance. This finding supports the arousal-complexity bias

observed in prior research, indicating that more complex visual

stimuli tend to elicit higher arousal levels. Conversely, the valence

model did not yield significant predictors and explained only

3.3 percent of the variance, suggesting that the pleasantness or

unpleasantness of an image is not significantly influenced by the

examined image global characteristics. These results emphasize the

complexity of emotional responses to visual stimuli and suggest

that different underlying mechanisms may govern arousal and

valence.

Our findings align with existing research showing that color

attributes significantly influence arousal. For example, Weijs et al.

(2023) demonstrated that red environments increase physiological

arousal compared to blue ones, with darker environments leading

to higher arousal, indicated by increased heart rate and decreased

heart rate variability. Similarly, Zieliński (2016) found that higher

color saturation leads to stronger skin conductance responses.

Duan et al. (2018) showed that yellow backgrounds are associated

with low arousal states, while red backgrounds correspond to high

arousal states, and orange backgrounds result in high impulsivity.

This corroborates our identification of hue as a significant predictor

of arousal. Additionally, research by Hooke et al. (1975) and Valdez

and Mehrabian (1994) has explored the emotional effects of color,

with Valdez and Mehrabian finding that saturation and brightness

strongly affect emotions. They identified green-yellow, blue-green,

and green as the most arousing colors, aligning with our findings

on the influence of color attributes on arousal. However, our study

did not find significant predictors for valence, suggesting that

factors beyond the examined image characteristics may influence

the pleasantness or unpleasantness of visual stimuli.

Research on color-emotion associations reveals that hues and

chroma can influence emotional perceptions and preferences. For

example, Moller et al. (2009) found that red is associated with

failure and negative words, while green is linked to success.

Increased chroma in images enhances perceptions of happiness,

arousal, and positive valence. Natural content elicits more positive

emotions than urban scenes, and green hues are less arousing

than red ones. Color preferences may serve an adaptive function,

with people tending to like colors associated with objects they find

appealing. This ecological valence theory explains 80 percent of

the variance in color preference ratings. Gender, expertise, culture,

and perceptual experience also influence hue preferences. These
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findings illustrate the complex interplay between color dimensions,

image content, and emotional responses, suggesting that color

carries psychologically relevant meaning beyond mere aesthetics.

Studies by Suk and Irtel (2009) investigated how color

attributes influence emotional dimensions of valence, arousal,

and dominance using the Self-Assessment Manikin (SAM). They

found that all three color attributes (hue, chroma, and luminance)

affected emotional responses, with chroma consistently showing

positive correlations with emotional dimensions. Suk (2006)

expanded on this research, conducting four experiments to analyze

color-emotion relationships. Both studies revealed that emotional

responses to color vary more strongly with tone than hue

categories.While Suk and Irtel (2009) compared responses between

paper and CRT monitor presentations, Suk (2006) also examined

color emotions in the context of other visual stimuli like pictures

and film clips. These findings contribute to understanding how

color influences emotion across different media and contexts, with

potential applications in marketing and design.

Feature congestion has been identified as a measure of visual

clutter in several studies by Rosenholtz et al. (2005, 2007). This

measure is based on the concept that amore cluttered displaymakes

it harder to add a new item that would draw attention. The feature

congestion measure considers factors such as color, luminance

contrast, and orientation. It has been shown to correlate well with

subjective assessments of visual clutter and search performance

in complex imagery. The researchers have explored its use as

a substitute for set size in visual search models, demonstrating

its applicability to various types of displays, including search-

in-clutter tasks. Other measures of visual clutter, such as sub-

band entropy and edge density, have also been investigated,

but feature congestion appears to account for additional factors

like color variability. Our identification of feature congestion

as a significant predictor of arousal aligns with these findings,

emphasizing the role of visual complexity in emotional responses.

Our investigation into the relationship between participants’ mood

and their affective judgments of arousal and valence revealed no

significant associations. Participants’ mood and self-esteem were

measured initially through self-reported attitudes and self-esteem

levels. Analysis showed that neither participants’ self-reported

attitudes nor their self-esteem levels had a statistically significant

impact on their mean arousal or valence scores. Specifically, one-

way ANOVA tests indicated no significant differences in mean

valence or arousal based on attitude or self-esteem ratings. These

findings suggest that the emotional responses elicited by the

visual stimuli were not significantly influenced by the participants’

initial mood states. This indicates that the affective judgments of

the images were robust across different initial mood conditions,

underscoring the complexity of emotional processing and its

relative independence from transient mood variations. Further

research could explore additional factors that might moderate the

relationship between mood and affective judgments.

We should expect to see various emotional reactions to images

having semantic meaning. However, the way how such semantics-

rich visual samples interact with our brain, and ultimately evoke

reactions, is not fully understood. Therefore, in this study we used

a generative mechanism that is more interpretable due to closer

analogies between the generative process based on maximizing

specific sections of Convolutional Neural Networks and the visual

cortex of the brain. This has been demonstrated earlier in the case

of monkeys (Bashivan et al., 2019) but, to our knowledge, has never

been researched with human subjects. Moreover, these semantics-

free “deep dream” images should limit a bias that could be observed

in the responses due to subjects’ experience and memories related

to naturalistic images.

Overall, the findings offered in this study may have significant

implications for the design of visual stimuli in various fields such

as marketing, virtual reality, and human-computer interaction.

Understanding which image characteristics influence arousal can

help in creating more engaging content that captures attention

and elicits desired emotional responses. Additionally, this research

paves the way for developing tools aimed at brain stimulation and

supporting wellbeing. By identifying specific visual features that

influence emotional arousal, we can create applications designed

to improve mental health and assist patients with certain mental

conditions. These tools could use tailored visual stimuli to manage

stress, enhance mood, and support therapeutic interventions.

5.1 Limitations and future research

This study is the first, known to us, that measures emotional

reactions evoked by images synthesized by deep learning-based

models and reports on correlations between these reactions and

areas (layers) of a neural network mimicking the way the human

visual system works. However, this study has, of course, a few

limitations, which provide a good set of ideas for immediate future

work discussed in this closing section.

One limitation of this study is the reliance on self-reported data,

which serves as a proxy for a true brain reaction and thus may

be subject to biases. Another limitation is the sample size, both

related to the number of subjects and to the number of random

noise seeds used to synthesize samples for each layer (five in this

study). Subjects’ diversity may limit the generalization of findings,

and stochasticity of the synthesis process may result in generated

samples that are outliers, which in consequence may reduce the

replicability of this study. Finally, this study is limited to visual

stimuli, but analogous reactions may be evoked when presenting

synthesized audio or haptic stimuli to bring more senses into play.

Future research should consider using more objective measures

of arousal and valence. These measures can include basic

physiological responses (blood pressure, blood volume changes,

respiration, perspiration/skin conductance, pupil dynamics, or face

micro- and macro-movements) or—if possible—involve direct

measurements of brain activity via functional magnetic resonance

imaging (fMRI). In addition, extending these studies with a

more diverse and larger participant pool would enable more

authoritative conclusions on possible connections between artificial

neural network-based models and processes governing human

emotional reactions. Furthermore, our immediate research plans

include immersing the participants into a Virtual Reality world

with synthesized visual stimuli (via a Virtual Reality headset)

which would allow the participants to walk closer to and further

from images and thus change the scale and homomorphic

transformations of pictures, which in consequence may stimulate
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the brain in various ways. This paradigm will address the effect

of feature scale on activations of visual neurons, and will replace

the now-arbitrary scale used in this current and many other

studies. Finally, we also aim to explore the combination of multi-

modal stimuli (visual, audio, and haptic) and their combined

effects on mood and self-esteem, measured both before and after

exposure to such stimuli. This study would provide insights into

the design of an effective and affordable tool to evoke changes

in emotional states resulting from interaction with precisely

synthesized multi-modal stimuli.
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