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Single-item assessments have recently become popular in various fields, and 
researchers have developed methods for estimating the reliability of single-item 
assessments, some based on factor analysis and correction for attenuation, 
and others using the double monotonicity model, Guttman’s λ6, or the latent 
class model. However, no empirical study has investigated which method best 
estimates the reliability of single-item assessments. This study investigated this 
question using a simulation study. To represent assessments as they are found 
in practice, the simulation study varied several aspects: the item discrimination 
parameter, the test length of the multi-item assessment of the same construct, 
the sample size, and the correlation between the single-item assessment and the 
multi-item assessment of the same construct. The results suggest that by using 
the method based on the double monotonicity model and the method based 
on correction for attenuation simultaneously, researchers can obtain the most 
precise estimate of the range of reliability of a single-item assessment in 94.44% 
of cases. The test length of a multi-item assessment of the same construct, the 
item discrimination parameter, the sample size, and the correlation between the 
single-item assessment and the multi-item assessment of the same construct 
did not influence the choice of method choice.
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1 Introduction

Reliability of assessment refers to the degree to which an assessment produces stable 
and consistent results. Three classic methods of estimating reliability are test–retest 
reliability, parallel-forms reliability, and internal consistency; in practice, internal 
consistency is most commonly used. Internal consistency assesses the correlation between 
multiple items in an assessment that are intended to measure the same construct; it is 
positively affected by increasing test length (Christmann and Aelst, 2006; Tang et al., 
2014), so there has often been a drive to develop longer assessments. Despite the positive 
relationship between internal consistency and test length, short versions of assessments, 
as well as the extreme single-item assessment, have recently become increasingly popular. 
Single-item assessments contain only one item to measure a construct. Single-item 
assessments are sometimes used in educational psychology to assess, for example, STEM 
identity (McDonald et al., 2019) and subjective academic achievement (Leung and Xu, 
2013). They are also found in organizational psychology for selection and assessment of 
job satisfaction (Robertson and Kee, 2017) and burnout level (Dolan et  al., 2015). 
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Furthermore, single-item assessments are used in clinical research 
to measure depression (Netemyer et  al., 2002), life satisfaction 
(Jovanovic, 2016), happiness (Lukoševičiūtė et al., 2022), and side 
effects of cancer therapy (Pearman et  al., 2018). Single-item 
assessments can also be found in marketing research in advertising 
and brand attitude studies (Bergkvist and Rossiter, 2007; 
Moussa, 2021).

Previous studies have not reached a consensus on whether a 
single-item assessment is as reliable as the corresponding multi-
item assessment. Most researchers agreed that longer assessments 
are more reliable than shorter assessments; in particular, single-
item assessments are considered to be  extremely unreliable 
(Nunnally and Bernstein, 1994; Spector, 1992). Researchers have 
suggested that with multiple items, random error is more likely to 
be canceled out by the summation of the item scores into a total 
score, whereas single-item assessments are more susceptible to 
random error because the random error of a single item cannot 
be smoothed out (Mackenzie, 2001; Ryan et al., 1995). On the other 
hand, Drolet and Morrison (2001) and Dujardin et  al. (2021) 
argued that long tests do not outperform their corresponding 
shortened (or single-item) versions in terms of reliability. Drolet 
and Morrison (2001) found evidence that while additional items 
can significantly increase the correlation of the error term, the 
incremental information provided by each additional test item is 
extremely small. In particular, when items are semantically similar, 
subjects tend to assume that the items are almost the same without 
reading them carefully so that subjects would make inferences 
from the content of one item to the remaining items in the test 
(Allen et al., 2022). Podsakoff et al. (2003) argued that subjects who 
are exposed to more items tend to discriminate less between them, 
with earlier items having a strong influence on later items, more 
items can lead to mindless response behavior, and this mindless 
response behavior makes long tests even less reliable than their 
corresponding single-item assessments.

As noted above, there is no consensus on whether a single-item 
assessment is as reliable as its corresponding multi-item 
assessment. To investigate whether single-item assessments are 
reliable, it is necessary to estimate the reliability of single-item 
assessments. Of the three classic methods for estimating reliability, 
internal consistency is inappropriate for estimating the reliability 
of single-item assessments because there is only one item. Test–
retest reliability is also inappropriate for single-item assessments 
measuring transient constructs such as emotions or attitudes, and 
test–retest reliability is not a perfect choice even for single-item 
assessments measuring stable constructs because of the practice 
effect, which may be more severe than for multi-item assessments 
(Tehan and Tolan, 2007). Only parallel-form reliability is suitable 
for estimating the reliability of single-item assessments. Based on 
parallel-form reliability, researchers have proposed five methods 
for estimating the reliability of single-item assessments: a method 
based on correction for attenuation (CA), a method that uses 
factor analysis (FA), a method based on double monotonicity 
modeling (DMM), a method based on Guttman’s λ6, and a method 
that uses latent class modeling (LCM). These methods use different 
approximations of the joint cumulative probability. However, no 
empirical study has investigated which method estimates the 
reliability of single-item assessment most precisely. Therefore this 
study uses a simulation study to compare the five methods.

2 Methods for estimating the reliability 
of a single-item assessment

2.1 Method CA—correction for attenuation

Method CA is based on the CA formula (Equation 1) from 
classical test theory (Nunnally, 1967):

 

xy
xy

xx yy

r
r r

ρ =
⋅  

(1)

where xyρ  is the true correlation between the constructs x and y, 
xyr  is the observed correlation between the two measures, and xxr  and 
yyr  are the reliabilities of the two measures. This formula can be used 

to relate two measures of the same construct, rather than different 
constructs (Wanous et al., 1997). If two instruments measure the same 
construct, then the true correlation should be 1.0; replacing xyρ  with 
1, using the observed correlation between the single-item assessment 
and a multi-item assessment of the same construct ( xyr ), and the 
reliability of the multi-item assessment, it is possible to solve for the 
reliability of the single-item assessment.

Method CA is the most commonly used method for estimating 
the reliability of single-item assessments (Zijlmans et  al., 2018). 
However, in practice, the true correlation between a single-item 
assessment and a multi-item assessment of the same construct ( xyρ ) 
is usually less than 1.0, which may lead to an underestimation of the 
reliability of the single-item assessment (Christmann and Aelst, 2006).

2.2 Method FA—factor analysis

Method FA is based on the context of FA where the variance of an 
item is equal to its communality, specificity, and unreliability, and the 
reliability of an item is the sum of its communality and specificity 
(Bailey and Guertin, 1970; Harman, 1976). By conservatively 
assuming that specificity is zero, the minimum reliability of a single 
item can thus be estimated by its communality (Ginns and Barrie, 
2004). Principal axis factoring is performed on the set of items 
including those from the multi-item assessment and the single-item 
assessment of the same construct. Using this technique to estimate 
reliability for single-item assessments results in underestimation 
(Arvey et al., 1992; Ginns and Barrie, 2004; Wanous and Hudy, 2001).

2.3 Method DMM—double monotonicity 
model

Method DMM is based on the DMM of Molenaar and Sijtsma 
(1988). Let us assume that a scale has N items (N > 1), where i and j 
denote items in the scale. Let us further assume that each of these N 
items has m + 1 item scores, e.g., if these N items are dichotomous, the 
item scores can be 0 and 1 (m = 1); if these N items use a 5-point Likert 
scale, the item scores can be 0, 1, 2, 3, and 4 (m = 4). The notation x 
denotes the item i’s score, and y denotes the item j’s score (x = 0, …, m; 
y = 0, …, m). πx(i) = P(Xi ≥ x) denotes the marginal cumulative 
probability of getting at least x on item i, πy(j) = P(Xj ≥ y) denotes the 
marginal cumulative probability of getting at least y on item j. 
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Obviously, π0(i) = 1 and π0(j) = 1. πx(i)y(j) = P(Xi ≥ x, Xj ≥ y) denotes the 
joint cumulative probability of obtaining at least x on item i and at 
least y on item j.

If we  test item i twice independently in the same group of 
subjects, denoted by i and i’, then πx(i)y(i’) represents the joint 
cumulative probability of getting at least x on the first test and at 
least y on the second test. In practice, however, we cannot test an 
item twice independently in the same group of subjects because 
of the practice effect, so we  have to estimate πx(i)y(i’) from a 
single test.

Reliability is defined as Equation 2
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Molenaar and Sijtsma (1988) proved that the true score variance 
(σ2

T) can be expressed as the sum of the differences between the joint 
cumulative probability and the product of the marginal cumulative 
probabilities (Equation 3):
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Then reliability can be expressed as
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Equation 4 can be further decomposed into two parts, in one part, 
i ≠ j, in another part, i = j (i.e., j = i’):
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(5)

Equation 5 can be adapted to estimate the reliability of a single 
item in a multi-item assessment (Zijlmans et al., 2018), where the first 
ratio and the first summation sign in the second ratio disappear, the 
reliability of an item is:
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(6)

In Equation 6, in addition to πx(i)y(i’), other terms can be observed 
or calculated from a single test.

Molenaar and Sijtsma (1988) developed method DMM for 
estimating πx(i)y(i’) in Equation 6, which they described using an 
artificial 4-item assessment, where each item has three ordered 
categories (i.e., item scores can be 0, 1, 2). Table 1 shows the marginal 
cumulative probabilities for 4 items.

We rank all the marginal cumulative probabilities in Table 1 from 
small to large:

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 4 2 3 2 2 2 1 1 4 1 3 1 2 1 1 .π < π < π < π < π < π < π < π

Then construct a matrix (Table 2) of joint cumulative probabilities 
in which the rows and columns are ordered by the size of the 
corresponding marginal cumulative probabilities, where NA indicates 
that a joint cumulative probability is unobservable and must 
be  estimated. For convenience, πx(1)y(i’) is in the cell or row r and 
column c; πx(1)y(i’) is denoted Pr,c, and the corresponding marginal 
cumulative probabilities are Pr and Pc, respectively.

To calculate NA in Table 2, we define four types of joint cumulative 
probabilities: (1) the lower neighboring joint cumulative probability: 
Plo = Pr + 1, c; (2) the right neighboring joint cumulative probability: Pri = Pr,c+; 
(3) the upper neighboring joint cumulative probability: Pup = Pr-1,c; and (4) 
the left neighboring joint cumulative probability: Ple = Pr, c-1. Not all 
four neighboring joint cumulative probabilities exist for each NA, e.g., for 
P1,5, Pup does not exist, Plo = 0.3, Ple = 0.2, and Pri = 0.2.

Molenaar and Sijtsma (1988) estimate πx(i)y(i’) (i.e., Pr,c) eight times 
using the following eight different equations:
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TABLE 1 Marginal cumulative probabilities for 4 items.

i  =  1 i  =  2 i  =  3 i  =  4

π0(i) 1 1 1 1

π1(i) 0.9 0.8 0.7 0.6

π2(i) 0.5 0.4 0.3 0.2
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Pr,c is estimated as the mean of eight estimates in Equations 7–14. 
For example, using Equations 7–14 to estimate π2(4)1(4′) (i.e., P1,5) in 
Table 2, π2(4)1(4′) = 0.21. However, Molenaar and Sijtsma (1988) pointed 
out that Pr,c should be in the interval (PrPc, min(Pr, Pc)); for π2(4)1(4′), the 
lower bound is 0.2 × 0.6 = 0.12 and the upper bound is 0.2, so 
π2(4)1(4′) = 0.2.

Now that πx(i)y(i’) can be  estimated, we  can use Equation 6 to 
estimate the reliability of an item in a multi-item scale. To estimate the 
reliability of a single-item assessment, researchers combine a single-
item assessment and a multi-item assessment of the same construct 
into one scale.

Method DMM is based on the double monotonicity model. This 
model has two assumptions, first, that the multi-item scale is 
unidimensional; and second, that there is no intersection of the 
response functions between different items (Sijtsma and Molenaar, 
2002). Therefore, to use method DMM to estimate the reliability of a 
single-item assessment, the corresponding multi-item assessment 
should be  unidimensional and have non-intersecting item 
response functions.

2.4 Method λ6

Method λ6 is based on Guttman’s λ6 (Guttman, 1945) to estimate 
πx(i)y(i’) in Equation 6. Let us assume that one scale has N items (N > 1). 
We ran a regression to predict the item score Xi with the remaining 
N-1 item scores (i = 1, …, N), where ε2

i denotes the variance of the 
residual error of the regression. Guttman (1945) defined λ6 as the 
lower limit of the reliability of a multi-item scale:

 

2
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26 1
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ii
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σ
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(15)

To calculate ε2
i, let us use Σii to represent the (N-1) × (N-1) 

variance–covariance matrix for N-1 items other than item i. σi denotes 
the (N-1) × 1 vector containing the covariances of item i with the other 
N-1 items. Jackson and Agunwamba (1977) verified that ε2

i can 
be expressed as:

 ( ) 12 2 ’
i Xi i ii i– −ε = σ σ Σ σ

 (16)

To estimate the reliability of an item in a multi-item scale, 
we insert Equation 16 into Equation 15:
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Since λ6 is the lower limit of reliability, Equation 17 can 
be approximated to Equation 18 by Equation 6 (Zijlmans et al., 2018):
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πx(i)y(i’) can be expressed as:

 
( ) ( ) ( ) ( ) ( )

1
’

2i y i i ii ii ix x y
m

σ σ
π π π

−′ Σ
= +

 
(19)

By inserting Equation 19 into Equation 6, we can calculate the 
reliability of an item in a multi-item scale. To estimate the reliability 
of a single-item assessment, we  again combine a single-item 
assessment and a multi-item assessment of the same construct into 
one scale.

Since λ6 is the lower limit of reliability, method λ6 will 
underestimate the reliability of single-item assessments in most cases.

2.5 Method LCM—latent class modeling

Method LCM uses the latent class model to estimate πx(i)y(i’) in 
Equation 6 (McCutcheon, 1987; McCutcheon et al., 2002). Let us 
assume that a group of subjects take an N-item survey, each of these 
N items having m + 1 item scores. Suppose further that there is a latent 
categorical variable ξ that accounts for the relationship between the N 
items, the latent variable ξ has Q latent classes. McCutcheon et al. 
(2002) defined the latent class model as:

 
( ) ( ) ( )

1 1
1 1, , N N |

Q N
i i

q N
P X x X x P q P X x qξ ξ

= =
= … = = = = =∑ ∏

 
(20)

where P(X1 = x1, …, XN = xN) is the joint probability 
distribution of the N items, P(ξ = q) is the probability that a 
randomly selected subject is in latent class q of latent variable ξ, 
P(Xi = xi| ξ = q) is the conditional probability of a particular item 
score given class q.

The latent class model in Equation 20 asserts that items are 
conditionally independent given a particular class in ξ 
(Goodman, 2002). Conditional independence means that when 
the latent variable ξ that influences subjects’ responses to items 

TABLE 2 Joint cumulative probabilities, πx(i)y(j).

π2(4) π2(3) π2(2) π2(1) π1(4) π1(3) π1(2) π1(1)

π2(4) NA −0.2 0.2 0.2 NA 0.2 0.2 0.2

π2(3) 0.2 NA 0.3 0.3 0.3 NA 0.3 0.3

π2(2) 0.2 0.3 NA 0.4 0.4 0.4 NA 0.4

π2(1) 0.2 0.3 0.4 NA 0.5 0.5 0.5 NA

π1(4) NA 0.3 0.4 0.5 NA 0.6 0.6 0.6

π1(3) 0.2 NA 0.4 0.5 0.6 NA 0.7 0.7

π1(2) 0.2 0.3 NA 0.5 0.6 0.7 NA 0.8

π1(1) 0.2 0.3 0.4 NA 0.6 0.7 0.8 NA
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is held constant, subjects’ responses to any two items 
are independent.

Zijlmans et al. (2018) restricted Equation 20 to only one item in a 
multi-item scale to estimate πx(i)y(i’):

 

( ) ( ) ( ) ( ) ( )’

1

i y i | |
Qm m

i i
u xv yq

x P q P X u q P X v qπ ξ ξ ξ
= = =

= = = = = =∑∑∑
 
(21)

Method LCM inserts Equation 21 into Equation 6 to estimate 
the reliability of an item in a multi-item scale. To estimate the 
reliability of a single-item assessment, we combine a single-item 
assessment and a multi-item assessment of the same construct into 
one scale.

Method LCM will accurately estimate the reliability of single-
item assessments only if Q latent classes are accurately selected 
and P(ξ = q), P(Xi = u|ξ = q), P(Xi = v|ξ = q) in Equation 21 are 
equal to the population parameter (McCutcheon et al., 2002). 
These two assumptions are difficult to meet in reality, so method 
LCM may often misestimate the reliability of single-
item assessments.

2.6 Purpose of this study

Of the five methods for estimating the reliability of single-
item assessment, researchers do not know which is the best. The 
most commonly used method is method CA, which assumes that 
the true correlation between single-item assessments and their 
corresponding multi-item test is 1. In practice, the true 
correlation is unlikely to be 1, so method CA often underestimates 
the reliability of single-item assessments (Krieglstein et al., 2022). 
Method FA uses the communality of a single item as a 
conservative estimate of the reliability of single-item assessments, 
while many studies of single-item assessments have shown that 
the results via method FA are not much lower than those via 
method CA (Buchner et al., 2024; Dolan et al., 2015; Leung and 
Xu, 2013; McDonald et  al., 2019). Given that λ6 is the lower 
bound of reliability, method λ6 will underestimate the reliability 
of single-item assessments in most cases. Method DMM and 
method LCM are based on assumptions that are often violated.

This study plans to conduct a simulation study to investigate 
which method most accurately estimates the reliability of single-
item assessment. The simulation study will generate scores from 
single-item assessments and item scores from multi-item scales. As 
Likert scales are the most popular format used in scale design 
(Foddy, 1994), all simulated items will be polytomous. Given that 
single-item assessments are typically designed to estimate 
unidimensional constructs, the multi-item scale in this study will 
be unidimensional. To fully represent different types of multi-item 
scales in reality, the multi-item scales in this study will vary in two 
aspects, test length and discrimination parameters. For the 
simulated datasets in each condition, this study will compare the 
median bias, IQR, RMSE, and percentage of outliers (Zijlmans 
et al., 2018) produced by method CA, method FA, method DMM, 
method λ6, and method LCM for the single-item assessments.

3 Method

3.1 Data-generating model

Simulation and statistical analyses were performed using R, 
version 4.3.2, graphs were generated using the package “ggplot2,” and 
scripts were uploaded as Supplementary material. Method CA, 
method FA, method DMM, method λ6, and method LCM all use a 
single-item assessment and a multi-item assessment of the same 
construct to estimate the reliability of the single-item assessment, so 
in the simulation study, the last item of each simulation dataset is the 
single-item assessment, other items construct the multi-item 
assessment of the same construct. For example, a simulation dataset 
contains scores for 7 items, the first 6 items are items from the multi-
item assessment, and the last item is a single-item assessment.

Because single-item assessments are designed to measure 
unidimensional or global constructs, researchers usually use multiple 
single-item assessments to measure multidimensional constructs (one 
item for one dimension), so unidimensional multi-item assessments 
were used in this simulation study. After reviewing approximately 100 
articles on single-item assessments, it was found that all single-item 
assessments measuring psychological constructs were polytomous, 
most of which used a 5-point Likert scale. Joshi et al. (2015) found that 
the 5-point Likert scale was the most commonly used and that 7-point 
or 10-point Likert scales did not outperform the 5-point Likert scale 
in terms of psychometric properties (Colvin et al., 2020; Jebb et al., 
2021). Therefore, all single-item assessments and multi-item 
assessments of the same construct in this simulation study would use 
a 5-point Likert scale.

All polytomous item scores were generated using the 
multidimensional graded response model (Penfield, 2014):
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where θ = (θ1, …, θQ) represents the Q-dimensional latent variable 
vector which has a Q-variate standard normal distribution, P(Xi ≥ x|θ) 
denotes the probability that the item score is greater than or equal to 
x for a given value of θ for item i, aiq is the discrimination parameter 
of item i, relative to the latent variable q, bix is the difficulty parameter 
for categorical x (x = 1, 2, 3, 4) of item i.

3.2 Simulation design

3.2.1 Design of multi-item assessments of the 
same construct

The reliability of a single-item assessment is related to the 
reliability of the multi-item assessment of the same construct, the 
more reliable the multi-item test, the more reliable the single-item 
assessment (Wanous and Hudy, 2001). The reliability of the multi-item 
test is related to the length of the test, so the simulation study would 
examine the influence of the length of the multi-item scale on the 
estimate of the reliability of the single-item assessment. By reviewing 
meta-analyses that examined the correlation between single-item 
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assessments and multi-item assessments of the same construct 
(Ruekert and Churchill, 1984; Wanous et al., 1997; Wanous and Hudy, 
2001), as well as by reviewing approximately 40 articles that examined 
new single-item assessments via multi-item assessments of the same 
construct, we found that the test length of multi-item assessments of 
the same construct ranged from 6 items to 16 items. This simulation 
study therefore simulated three different lengths of the multi-item 
assessment: short (6 items), medium (12 items), and long (18 items).

In practice, if a category, x, in Equation 22 represents a wide range 
of θ (e.g., θ ranges from 0 to 8), the difficulty parameter (bix) should 
advance by less than 5 (i.e., bi(x + 1)  - bix < 5) because the category 
boundaries are far apart and the middle part of this category loses 
measurement accuracy. On the other hand, to avoid two adjacent 
categories representing the same range of θ, bix should advance by at 
least 1.4 (i.e., bi(x + 1)–bix ≥ 1.4) (Linacre, 1999). If badv is (bi(x + 1)–bix), then 
following Linacre (1999) bavd should be a random value between 1.4 
and 5. However, large bavd values are rare in practice; moreover, most 
items are good at detecting a small range of θ in practice, for example, 
most items detect θ from −4 to 4  in practice. Very few items are 
designed to detect extreme θ values (such as 8 or −9) (Chen et al., 
2012). To better replicate what happens in reality, the simulation study 
defined bi1 as a random value from the interval [−4.2, 0], bi2 as bi1 + bavd, 
bi3 as bi2 + bavd, bi4 as bi3 + bavd, where bavd is a random value from the 
interval [1.4, 2.5].

According to the item selection study by Chen et al. (2012) and the 
questionnaire development study by Edelen and Reeve (2007), the range 
of discrimination parameters for about 560 items is from 0.45 to 2.75. 
Therefore, in the simulation study, the discrimination parameter, a, was 
defined as a random value chosen from the interval [0.4, 2.8].

Although equally discriminating multi-item assessments, such as 
those using the Rasch model, have been heavily criticized for reducing 
the reliability of multi-item scale in most cases (Lord, 1977), in 
practice both equally and unequally discriminating multi-item 
assessments are used. Thus, in the simulation study, multi-item 
assessments differed in the discriminating condition: equally 
discriminating vs. unequally discriminating. In equally discriminating 
multi-item assessments, the multidimensional partial credit model is 
most commonly used to develop equally discriminating polytomous 
assessments (Masters, 2016; Yao and Schwarz, 2006), while the 
multidimensional partial credit model is a special case of the 
multidimensional graded response model in which the discrimination 
parameters are set to 1, the simulation study defined all item 
discrimination parameters as 1 for equally discriminating multi-item 
assessments. In unequally discriminating multi-item assessments, 
each item’s discrimination parameter is a random value chosen from 
the interval [0.4, 2.8], the discrimination of one item is not related to 
the discrimination of other items (Edelen and Reeve, 2007).

In total, there were six types of multi-item assessments of the same 
construct: short equally discriminating multi-item assessment, short 
unequally discriminating multi-item assessment, medium equally 
discriminating multi-item assessment, medium unequally 
discriminating multi-item assessment, long equally discriminating 
multi-item assessment, and long unequally discriminating multi-
item assessment.

3.2.2 Design of single-item assessments
For single-item assessment, the simulation study defined the 

discrimination parameter, a, as a random value chosen from the 

interval [0.4, 2.8]; we further defined the first difficulty parameters (b1) 
as a random value from the interval [−4.2, 0], bi2 as bi1 + bavd, bi3 as 
bi2 + bavd, bi4 as bi3 + bavd, where bavd was a random value from the 
interval [1.4, 2.5].

3.2.3 Correlation between single-item 
assessment and multi-item assessment

Although the single-item assessment and its corresponding multi-
item assessment measure the same construct, the correlation between 
these two assessments is unlikely to be 1.0 in reality (i.e., Q = 2 in 
Equation 22). The meta-analysis by Wanous et al. (1997) reported a 
mean correlation between single-item assessments and their 
corresponding multi-item assessments of 0.67 in the context of job 
satisfaction; another meta-analysis of teaching effectiveness reported 
mean correlations of 0.84 (Wanous and Hudy, 2001). In this 
simulation study, three correlations were defined between single-item 
assessments and their corresponding multi-item assessments: 0.65, 
0.75, and 0.85.

3.2.4 Other properties of simulation data
Cho (2024) and Van der Ark et al. (2011) verified that sample size 

did not affect the difference between estimated reliability and true 
reliability for multi-item tests through a simulation study, but it is 
unclear whether sample size affects the difference between estimated 
and true reliability for single-item assessments. Furthermore, based 
on Charter’s (1999) study, the width of the confidence interval for 
estimated reliability is a function of sample size (N), with a minimum 
of 400 subjects recommended for reliability studies. For this 
simulation study, two sample sizes would be simulated: small (N = 400) 
and large (N = 1,000).

In total, there are 36 simulation conditions in this study, as listed 
in Table 3.

Now that the properties of the simulation data are defined, we can 
generate data sets. For each replication, N latent variable vectors, θ1, 
θ2, …, θN, were randomly drawn from the θ standard normal 
distribution. For each set of latent variable scores, four cumulative 
response probabilities were generated for each item using Equation 22, 
and then item scores were drawn from the multinomial distribution 
using these four cumulative response probabilities. In each condition, 
1,000 data sets were drawn. The studies by Liu et  al. (2022) and 
Trizano-Hermosilla et  al. (2021) were referenced in the data 
generation process.

3.3 Statistical analyses

To examine the precision of the five methods for estimating the 
reliability of single-item assessments, we first need to know the 
true reliability of single-item assessments (ρii). For single-item 
assessments, the simulation study generated one million sets of 
item scores and then we  used the variance based on the latent 
variable vectors (θs) of the 1 million sets of item scores to divide 
by the variance of the single-item score to obtain the true single-
item assessment’s reliability (Feinberg and Rubright, 2016; 
Zijlmans et  al., 2018). As shown in Table  3, some simulation 
conditions differ only in sample size (e.g., condition 1 and 
condition 19, condition 2 and condition 20); the true single-item 
assessments’ reliabilities in these conditions are the same given the 
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calculation process. Second, we estimated the reliability of single-
item assessments (rii) using method CA, method FA, method 
DMM, method λ6, and method LCM. In each simulation condition, 
given that 1,000 datasets were drawn, 1,000 estimates of the 
reliability of single-item assessments were obtained using each 
method. Given that there are different conditions in the simulation 
study, a method may be the most precise in one condition, while it 
may not be the best choice in other conditions. Therefore, in each 
simulation condition, we  used four criteria to examine the 
precision of the five methods. The first three criteria are based on 
bias, (rii–ρii), and relative bias, ii

ii
( iir − ρ

ρ
):

 (1) Median of bias and relative bias
 (2) IQR of bias and relative bias
 (3) Percentage of outliers of bias and relative bias (they are actually 

the same), we defined outliers as data less than Q1-1.5 × IQR or 
greater than Q3 + 1.5 × IQR (Q1 is the first quartile, Q3 is the 
third quartile; Dawson, 2011).

The final criterion is the root mean square error (RMSE). Root 
mean square error is the standard deviation of the prediction errors, 
where the prediction errors are a measure of the difference between 
the predicted value and the true value (Chai and Draxler, 2014). In this 
simulation study, prediction errors are the absolute value of (rii–ρii)s, 
and RMSE is the standard deviation of |rii–ρii|s.

4 Results

4.1 Five methods’ performance in four 
criteria

For method CA, method FA, method DMM, method λ6, and 
method LCM, the median and IQR of bias, the median and IQR of 
relative bias, the percentage of outliers of bias (i.e., the percentage of 
outliers of relative bias), and the RMSE (the standard deviation of|rii–
ρii|s) are presented in Tables 4–7.

Looking at the percentage of outliers (see Table 6), method λ6 
produced 6.4% of outliers in simulation condition 17 and 5.5% of 
outliers in simulation condition 35, and method LCM produced 
5.7% of outliers in simulation condition 17. Apart from these 
exceptions, all other percentages of outliers were less than 5%. 
Method CA, method FA, method DMM, method λ6, and method 
LCM generated a small percentage of outliers in most 
simulation conditions.

When considering bias, method LCM produced an IQR of 
0.073 in simulation condition 10 and an IQR of 0.090 in simulation 
condition 7, apart from these two IQRs, other IQRs were not 
greater than 0.070 (see Table 4). All RMSEs were less than 0.044 
(see Table 7). Based on the percentage of outliers of bias, the IQR 
of bias and the RMSE, method CA, method FA, method DMM, 
method λ6, and method LCM produced acceptable deviation values 
for estimating the reliability of single-item assessments in most 
simulation conditions.

Looking at the median of bias, only 13.89% of the medians were 
positive (see Table  4). Method CA, method FA, method DMM, 
method λ6, and method LCM underestimated the reliability of single-
item assessments in most simulation conditions.

4.2 Selection of the most precise reliability 
estimation method

In each simulation condition, we first focused on the percentage 
of outliers, if the percentage of outliers for a method is greater than 
5%, then that method is discarded, as we are not 95% confident that 
this method can precisely estimate the reliability of single-item 
assessments. Among the remaining methods for estimating the 
reliability of single-item assessments, if one method has the smallest 
absolute value of the median, IQR, RMSE, and the percentage of 
outliers compared to other methods, then that method is the most 
precise. If a method has the smallest absolute value of the median 
while having a comparable deviation (IQR, RMSE, percentage of 
outliers) to other methods, then this method will be the most precise 
method for estimating the reliability of single-item assessments. If two 
methods are indistinguished in the above four dimensions (e.g., two 
methods are almost identical in the above four dimensions; one 
method has a smaller absolute value of the median while another has 
a smaller deviation), we will choose the easier method to estimate the 
reliability of single-item assessments, e.g., if method CA and method 
LCM are almost identical in the above four dimensions, we  will 
choose method CA to estimate the reliability of single-item 
assessments because method CA is much easier to perform than 
method LCM. Following the above criteria, the most precise method 
in each simulation condition is shown in Table 8.

The conclusions about precision (Table 8) were based on an initial 
review of the median and IQR of bias, the median and IQR of relative 
bias, the percentage of outliers of bias, and the RMSE, but in some 
simulation conditions it was difficult to determine the most precise 
method based on such an initial review. For example, in simulation 
condition 30, method FA and method DMM are comparable in terms 
of deviation (IQR, RMSE, and percentage of outliers), we  chose 
method DMM because the absolute value of the median of bias for 
method DMM (0.10) was smaller than that for method FA (0.11), 
while the difference was very small (0.01); could we conclude that 
method DMM is the most precise method based on such a small 
difference between two absolute values of the median of bias? To 
address this issue, we  used Kruskal–Wallis tests to examine the 
difference between group medians in each simulation condition. The 
Kruskal–Wallis test is a non-parametric equivalent of a one-way 
ANOVA test, testing whether there is a significant difference between 
three or more group medians. When a Kruskal–Wallis test shows that 
there is a significant difference between medians, researchers perform 
Kruskal–Wallis multiple comparisons to compare the medians of each 
pair of groups (Rayner and Best, 1997). After running Kruskal–Wallis 
tests and Kruskal–Wallis multiple comparisons in each simulation 
condition, the results in Table 8 remained almost the same except for 
two simulation conditions, condition 14 and condition 30. In 
simulation condition 14, the Kruskal–Wallis test was significant 
(H(4) = 12.06, p < 0.05), but there was no significant difference in the 
median of bias between method CA and method FA (p = 0.62); given 
that method CA and method FA had comparable deviation, method 
CA and method FA were both the most precise methods for estimating 
the reliability of single-item assessments in simulation condition 14. 
In simulation condition 30, the Kruskal–Wallis test was significant 
(H(4) = 8.73, p < 0.05), but there was no significant difference in the 
median of bias between method FA and method DMM (p = 0.17); 
given that method DMM and method FA were comparable in 
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deviation, method DMM and method FA were both the most precise 
methods to estimate the reliability of single-item assessments in 
simulation condition 30. Based on the results in Table 8 and the results 
of the Kruskal–Wallis test in each simulation condition, the most 
precise method in each simulation condition is shown in Table 9.

As shown in Table 9, method DMM is the most precise method 
for estimating the reliability of single-item assessments in 30 
simulation conditions, method LCM is the most precise method in 
simulation condition 8, method CA is the most precise method in 

simulation conditions 10 and 32, and method λ6 is the most precise 
method in simulation condition 26. In simulation condition 14, both 
method CA and method FA are the most precise methods. In 
simulation condition 30, both method FA and method DMM are the 
most precise methods.

Out of 36 simulation conditions, method DMM is the most 
precise method for estimating the reliability of single-item 
assessments in 31 simulation conditions (in condition 30, both 
method DMM and method FA are the best methods), method CA 

TABLE 3 Definition of 36 simulation conditions.

Condition 
number

Length of multi-item 
assessment

Discrimination of multi-item 
assessment

Correlation Sample size

1 short equally 0.65 400

2 medium equally 0.65 400

3 long equally 0.65 400

4 short unequally 0.65 400

5 medium unequally 0.65 400

6 long unequally 0.65 400

7 short equally 0.75 400

8 medium equally 0.75 400

9 long equally 0.75 400

10 short unequally 0.75 400

11 medium unequally 0.75 400

12 long unequally 0.75 400

13 short equally 0.85 400

14 medium equally 0.85 400

15 long equally 0.85 400

16 short unequally 0.85 400

17 medium unequally 0.85 400

18 long unequally 0.85 400

19 short equally 0.65 1,000

20 medium equally 0.65 1,000

21 long equally 0.65 1,000

22 short unequally 0.65 1,000

23 medium unequally 0.65 1,000

24 long unequally 0.65 1,000

25 short equally 0.75 1,000

26 medium equally 0.75 1,000

27 long equally 0.75 1,000

28 short unequally 0.75 1,000

29 medium unequally 0.75 1,000

30 long unequally 0.75 1,000

31 short equally 0.85 1,000

32 medium equally 0.85 1,000

33 long equally 0.85 1,000

34 short unequally 0.85 1,000

35 medium unequally 0.85 1,000

36 long unequally 0.85 1,000
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is the most precise method in 3 simulation conditions (in condition 
14, both method CA and method FA are the most precise). All 
simulation conditions may occur in real practice, it is a tedious task 
for researchers to examine the multi-item assessment and the 
correlation between single-item assessment and multi-item 
assessment and then decide which method should be  adopted. 
Given that we  are 94.44% confident in precisely estimating the 

reliability of single-item assessments using method DMM and 
method CA, if researchers want to estimate the reliability of single-
item assessment, they should use both method DMM and method 
CA regardless of test length, discrimination, correlation and sample 
size; these two reliability estimates should be  provided 
simultaneously to show the range of reliability of single-
item assessments.

TABLE 4 Median and IQR (presented in parentheses) of the bias using method CA, method FA, method DMM, method λ6, and method LCM in simulation 
conditions 1–36.

Condition number Method CA Method FA Method DMM Method λ6 Method LCM

1 −0.11 (0.05) −0.11 (0.05) −0.04 (0.06) −0.12 (0.04) −0.10 (0.05)

2 −0.10 (0.06) −0.10 (0.06) −0.07 (0.05) −0.11 (0.060) −0.11 (0.07)

3 −0.04 (0.06) −0.04 (0.06) −0.01 (0.05) −0.03 (0.05) −0.04 (0.06)

4 −0.07 (0.05) −0.06 (0.05) 0.02 (0.06) −0.09 (0.04) −0.06 (0.06)

5 −0.11 (0.05) −0.11 (0.05) 0.02 (0.06) −0.10 (0.04) −0.10 (0.05)

6 −0.11 (0.03) −0.11 (0.03) −0.01 (0.04) −0.07 (0.05) −0.11 (0.04)

7 −0.08 (0.07) −0.08 (0.07) −0.05 (0.05) −0.13 (0.05) −0.08 (0.09)

8 0.01 (0.06) 0.01 (0.06) 0.02 (0.06) −0.01 (0.05) 0.004 (0.06)

9 −0.11 (0.05) −0.11 (0.05) −0.07 (0.05) −0.10 (0.05) −0.11 (0.05)

10 0.01 (0.06) 0.02 (0.07) 0.07 (0.06) −0.02 (0.05) 0.02 (0.07)

11 −0.03 (0.05) −0.03 (0.05) −0.01 (0.05) −0.04 (0.04) −0.04 (0.06)

12 −0.13 (0.07) −0.13 (0.07) −0.11 (0.07) −0.13 (0.07) −0.13 (0.06)

13 −0.06 (0.06) −0.06 (0.06) −0.01 (0.05) −0.10 (0.04) −0.06 (0.07)

14 −0.06 (0.06) −0.07 (0.06) −0.11 (0.05) −0.11 (0.06) −0.08 (0.07)

15 0.02 (0.06) 0.02 (0.06) 0 (0.05) −0.01 (0.04) 0.02 (0.06)

16 −0.03 (0.05) −0.03 (0.05) 0.01 (0.05) −0.04 (0.05) 0.11 (0.06)

17 −0.13 (0.03) −0.13 (0.03) −0.03 (0.05) −0.11 (0.03) −0.13 (0.04)

18 −0.09 (0.04) −0.09 (0.04) 0.02 (0.04) −0.07 (0.05) −0.09 (0.05)

19 −0.09 (0.03) −0.09 (0.03) −0.01 (0.03) −0.11 (0.02) −0.08 (0.03)

20 −0.10 (0.03) −0.10 (0.04) −0.07 (0.03) −0.13 (0.03) −0.10 (0.04)

21 −0.04 (0.03) −0.04 (0.04) −0.01 (0.02) −0.05 (0.04) −0.04 (0.04)

22 −0.16 (0.03) −0.16 (0.03) −0.07 (0.03) −0.17 (0.03) −0.15 (0.03)

23 −0.04 (0.05) −0.04 (0.05) 0.02 (0.06) −0.04 (0.04) −0.06 (0.05)

24 −0.16 (0.03) −0.16 (0.03) −0.04 (0.06) −0.10 (0.05) −0.15 (0.04)

25 −0.09 (0.07) −0.09 (0.07) −0.06 (0.05) −0.14 (0.05) −0.10 (0.09)

26 0.03 (0.04) 0.03 (0.04) 0.03 (0.03) −0.01 (0.03) 0.03 (0.04)

27 −0.06 (0.05) −0.06 (0.05) −0.02 (0.05) −0.05 (0.05) −0.07 (0.05)

28 −0.08 (0.04) −0.08 (0.04) −0.05 (0.04) −0.13 (0.03) −0.08 (0.04)

29 −0.03 (0.05) −0.03 (0.05) −0.01 (0.06) −0.05 (0.04) −0.04 (0.06)

30 −0.12 (0.07) −0.11 (0.07) −0.10 (0.07) −0.12 (0.07) −0.12 (0.06)

31 −0.07 (0.06) −0.07 (0.06) −0.01 (0.05) −0.11 (0.04) −0.07 (0.07)

32 −0.04 (0.04) −0.06 (0.04) −0.11 (0.03) −0.11 (0.03) −0.07 (0.04)

33 0.03 (0.06) 0.03 (0.06) 0 (0.05) −0.03 (0.04) 0.03 (0.06)

34 −0.03 (0.05) −0.03 (0.05) −0.01 (0.05) −0.05 (0.05) 0.12 (0.06)

35 −0.12 (0.03) −0.12 (0.03) −0.02 (0.04) −0.10 (0.03) −0.12 (0.040)

36 −0.08 (0.04) −0.08 (0.04) 0.01 (0.04) −0.07 (0.05) −0.08 (0.05)
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5 Discussion

The present study compared five reliability estimation methods 
for single-item assessment using a simulation approach. The results 
imply that reliability estimation by method DMM and method CA 
should be  performed simultaneously to ensure the precision of 
reliability estimation. However, as shown in Tables 4, 5, out of 36 
simulation conditions, only in simulation conditions 15 and 33 did 

the most precise method, method DMM, produce a median bias of 0 
(i.e., method DMM produced an unbiased estimate of the reliability 
of single-item assessment in these two simulation conditions), in 
other 34 simulation conditions, even the most precise method did not 
have a median bias of 0. Simulation conditions 15 and 33 are “ideal” 
conditions to estimate the reliability of single-item assessments. In 
simulation conditions 15 and 33, the length of the multi-item 
assessment is long (18 items), the items in the multi-item assessment 

TABLE 5 Median and IQR (presented in parentheses) of the relative bias of method CA, method FA, method DMM, method λ6, and method LCM in 
simulation conditions 1–36.

Condition number Method CA Method FA Method DMM Method λ6 Method LCM

1 −0.22 (0.10) −0.22 (0.11) −0.07 (0.11) −0.25 (0.07) −0.21 (0.11)

2 −0.20 (0.13) −0.20 (0.13) −0.14 (0.10) −0.22 (0.11) −0.21 (0.13)

3 −0.08 (0.12) −0.08 (0.12) −0.02 (0.10) −0.06 (−0.10) −0.09 (0.11)

4 −0.12 (0.09) −0.12 (0.09) 0.04 (0.10) −0.16 (0.07) −0.10 (0.10)

5 −0.19 (0.09) −0.19 (0.09) 0.03 (0.10) −0.17 (0.08) −0.18 (0.09)

6 −0.21 (0.06) −0.21 (0.06) −0.01 (0.07) −0.13 (0.09) −0.21 (0.07)

7 −0.17 (0.13) −0.17 (0.14) −0.10 (0.10) −0.27 (0.10) −0.17 (0.19)

8 0.04 (0.21) 0.04 (0.21) 0.07 (0.20) −0.04 (0.18) 0.02 (0.22)

9 −0.31 (0.16) −0.32 (0.16) −0.20 (0.16) −0.30 (0.15) −0.32 (0.16)

10 0.05 (0.23) 0.06 (0.25) 0.28 (0.23) −0.09 (0.18) 0.08 (0.28)

11 −0.06 (0.11) −0.07 (0.12) −0.01 (0.12) −0.10 (0.09) −0.09 (0.13)

12 −0.34 (0.18) −0.34 (0.18) −0.28 (0.19) −0.34 (0.18) −0.35 (0.15)

13 −0.12 (0.11) −0.12 (0.11) −0.01 (0.09) −0.19 (0.08) −0.11 (0.14)

14 −0.14 (0.14) −0.15 (0.14) −0.24 (0.10) −0.23 (0.13) −0.18 (0.14)

15 0.05 (0.12) 0.05 (0.120) 0 (0.11) −0.03 (0.09) 0.03 (0.14)

16 −0.04 (0.10) −0.04 (0.10) −0.01 (0.10) −0.07 (0.09) 0.21 (0.11)

17 −0.26 (0.06) −0.26 (0.06) −0.05 (0.09) −0.22 (0.05) −0.24 (0.07)

18 −0.31 (0.13) −0.31 (0.13) 0.07 (0.14) −0.24 (0.16) −0.29 (0.16)

19 −0.18 (0.06) −0.18 (0.06) −0.02 (0.07) −0.23 (0.04) −0.17 (0.06)

20 −0.20 (0.07) −0.20 (0.07) −0.13 (0.06) −0.25 (0.06) −0.20 (0.08)

21 −0.09 (0.07) −0.09 (0.07) −0.03 (0.05) −0.11 (0.07) −0.08 (0.08)

22 −0.30 (0.05) −0.30 (0.05) −0.12 (0.06) −0.31 (0.05) −0.28 (0.06)

23 −0.20 (0.09) −0.20 (0.09) 0.04 (0.10) −0.19 (0.08) −0.21 (0.09)

24 −0.20 (0.06) −0.20 (0.06) −0.01 (0.11) −0.12 (0.09) −0.20 (0.07)

25 −0.17 (0.13) 0.17 (0.14) −0.09 (0.10) −0.25 (0.10) −0.13 (0.19)

26 0.12 (0.13) 0.12 (0.13) 0.11 (0.11) −0.02 (0.11) 0.10 (0.12)

27 −0.32 (0.16) −0.32 (0.16) −0.15 (0.16) −0.29 (0.15) −0.32 (0.16)

28 −0.32 (0.17) −0.32 (0.17) −0.20 (0.15) −0.51 (0.12) −0.31 (0.14)

29 −0.08 (0.11) −0.08 (0.12) −0.02 (0.14) −0.09 (0.09) −0.09 (0.13)

30 −0.32 (0.18) −0.30 (0.18) −0.28 (0.19) −0.33 (0.18) −0.32 (0.15)

31 −0.10 (0.11) −0.10 (0.11) −0.01 (0.09) −0.19 (0.08) −0.12 (0.14)

32 −0.10 (0.14) −0.14 (0.14) −0.24 (0.10) −0.22 (0.13) −0.16 (0.14)

33 0.04 (0.12) 0.04 (0.12) 0 (0.10) −0.02 (0.09) 0.04 (0.14)

34 −0.02 (0.100) −0.02 (0.100) −0.01 (0.10) −0.06 (0.09) 0.22 (0.11)

35 −0.23 (0.06) −0.23 (0.06) −0.04 (0.04) −0.20 (0.05) −0.23 (0.07)

36 −0.30 (0.12) −0.31 (0.13) 0.08 (0.12) −0.23 (0.16) −0.27 (0.15)

https://doi.org/10.3389/fpsyg.2024.1482016
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zhang and Colvin 10.3389/fpsyg.2024.1482016

Frontiers in Psychology 11 frontiersin.org

are equally discriminating, and the correlation between the single-
item assessment and its corresponding multi-item assessment is 0.85. 
This finding seems to imply that, in order to estimate the reliability of 
a single-item assessment, researchers should choose a longer multi-
item assessment with equally discriminating items that are also 
expected to correlate highly with the single-item assessment. 
However, equally discriminating multi-item assessments do not exist 
for many constructs, and the correlations between the single-item 
assessment and existing corresponding multi-item assessments may 

not be  as high as 0.85. Ideal conditions, such as simulated in 
conditions 15 and 33, are usually not achievable in practice. Should 
researchers spend a lot of time selecting a corresponding multi-item 
assessment to estimate the reliability of single-item assessment 
in practice?

We investigated the above question using generalized linear 
models. In generalized linear models, bias is the dependent variable, 
simulation conditions (test length, discriminating condition, correlation 
between single-item assessment and multi-item assessment of the same 

TABLE 6 Percentage of outliers of bias/relative bias by method CA, method FA, method DMM, method λ6, and method LCM in simulation conditions 
1–36.

Condition number Method CA Method FA Method DMM Method λ6 Method LCM

1 1.5% 1.3% 1.6% 1.1% 2.9%

2 1.3% 1.7% 1.8% 1.2% 2.0%

3 2.7% 2.4% 2.6% 1.8% 3.2%

4 2.6% 1.8% 2.2% 1.4% 3.3%

5 0.9% 1.0% 1.1% 1.1% 1.2%

6 2.4% 1.9% 1.3% 3.1% 2.7%

7 1.6% 1.2% 1.7% 2.7% 1.4%

8 0.5% 0.6% 0.7% 0.9% 0.4%

9 1.3% 1.4% 1.6% 1.1% 3.2%

10 0.2% 1.7% 0.3% 2.6% 3.1%

11 2.2% 1.8% 0.4% 7.8% 1.6%

12 1.1% 0.7% 0.4% 0.6% 2.2%

13 0.9% 0.7% 1.1% 0.9% 2.2%

14 0.4% 1.2% 0.6% 0.5% 0.9%

15 1.0% 1.3% 0.7% 3.7% 1.4%

16 1.6% 2.0% 1.5% 1.3% 3.7%

17 2.1% 1.7% 1.8% 6.4% 5.7%

18 2.9% 2.3% 1.8% 1.6% 2.7%

19 1.3% 1.4% 0.3% 0.9% 5.5%

20 0.9% 1.4% 1.1% 0.8% 2.0%

21 2.1% 2.9% 1.6% 1.3% 1.5%

22 1.4% 1.1% 1.2% 1.2% 2.3%

23 0.2% 1.2% 1.1% 1.9% 1.7%

24 2.9% 1.7% 1.0% 1.1% 1.7%

25 1.5% 1.4% 2.3% 3.2% 1.8%

26 1.5% 1.7% 1.2% 1.4% 2.1%

27 1.2% 1.5% 2.1% 0.9% 2.2%

28 0.7% 1.3% 0.8% 1.9% 2.7%

29 2.1% 1.6% 0.7% 2.2% 1.4%

30 1.0% 0.3% 0.2% 0.9% 1.4%

31 0.9% 0.8% 1.0% 2.4% 1.7%

32 0.8% 2.4% 0.8% 1.6% 3.2%

33 1.3% 1.1% 0.9% 2.2% 3.1%

34 1.5% 2.7% 1.4% 1.3% 4.1%

35 2.1% 1.6% 0.7% 5.5% 3.6%

36 2.2% 1.7% 1.4% 1.2% 3.1%
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construct, and sample size), choice of method, and interactions of 
simulation conditions were chosen as predictors. We transformed these 
predictors into dummy variables, and chose method CA, short multi-
item assessment, equally discriminating multi-item assessment, 
correlation 0.65, small sample size, correlation 0.65*short multi-item 
assessment, equally discriminating multi-item assessment*correlation 
0.65, and short multi-item assessment*equally discriminating multi-
item assessment as reference groups. In model 1, we chose all simulation 
conditions, method choice, and the interaction of test length and 
correlation as predictors; in model 2, all simulation conditions, method 

choice and the interaction of discriminating condition and correlation 
were predictors; in model 3, all simulation conditions, method choice, 
the interaction of test length, and discriminating condition were 
predictors. The results of three generalized linear models are shown in 
Table 10. In models 1–3, method FA, method LCM, and method λ6 
produce identical biases as method CA, while method DMM produces 
significantly smaller biases than method CA, indicating that method 
DMM is the most precise method for estimating the reliability of single-
item assessments; this conclusion is consistent with our previous 
finding that method DMM is the most precise method in 86% of 

TABLE 7 RMSE by method CA, method FA, method DMM, method λ6, and method LCM in simulation conditions 1–36.

Condition number Method CA Method FA Method DMM Method λ6 Method LCM

1 0.03 0.03 0.03 0.03 0.04

2 0.04 0.04 0.04 0.04 0.04

3 0.03 0.03 0.03 0.03 0.03

4 0.04 0.04 0.03 0.03 0.04

5 0.03 0.03 0.03 0.03 0.04

6 0.02 0.02 0.02 0.03 0.02

7 0.04 0.04 0.03 0.04 0.05

8 0.03 0.03 0.03 0.02 0.03

9 0.04 0.04 0.04 0.03 0.04

10 0.03 0.03 0.04 0.02 0.04

11 0.03 0.03 0.03 0.03 0.03

12 0.04 0.04 0.04 0.04 0.04

13 0.04 0.04 0.02 0.03 0.04

14 0.04 0.04 0.04 0.04 0.05

15 0.03 0.03 0.02 0.02 0.02

16 0.02 0.02 0.03 0.03 0.04

17 0.03 0.03 0.03 0.03 0.03

18 0.03 0.03 0.03 0.03 0.03

19 0.02 0.02 0.02 0.02 0.02

20 0.03 0.03 0.02 0.02 0.03

21 0.03 0.03 0.02 0.02 0.03

22 0.02 0.02 0.02 0.02 0.03

23 0.03 0.03 0.03 0.03 0.04

24 0.02 0.02 0.02 0.02 0.02

25 0.04 0.04 0.03 0.03 0.03

26 0.02 0.02 0.02 0.02 0.03

27 0.02 0.02 0.02 0.02 0.03

28 0.03 0.03 0.02 0.02 0.03

29 0.03 0.03 0.02 0.03 0.03

30 0.02 0.02 0.03 0.03 0.03

31 0.03 0.03 0.02 0.03 0.03

32 0.03 0.03 0.02 0.03 0.04

33 0.02 0.02 0.02 0.02 0.02

34 0.04 0.04 0.03 0.03 0.05

35 0.02 0.02 0.02 0.02 0.03

36 0.03 0.02 0.02 0.03 0.03
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simulation conditions. In addition, the simulation conditions and 
interaction predictors in models 1–3 did not affect the bias (these 
predictors were not significant), which means that researchers do not 
need to spend a lot of time selecting a corresponding multi-item 
assessment to estimate the reliability of single-item assessments, 
researchers can obtain the most precise estimate of the range of 
reliability of a single-item assessment in about 95% of cases when the 
length of the multi-item assessment is greater than 6 items, and the 
correlation between the single-item assessment and the corresponding 
multi-item assessment is greater than 0.65.

6 Conclusion

Methods based on correction for attenuation (method CA), 
factor analysis (method FA), double monotonicity (method DMM), 
Guttman’s λ6 (method λ6), and the latent class model (method LCM) 
have been developed to estimate the reliability of single-item 
assessments. In practice, researchers use one or two of these 
methods to estimate the reliability of single-item assessments, but 

TABLE 8 The most precise method for estimating the reliability of single-
item assessment in simulation conditions 1–36.

Condition number The most precise method

1 Method DMM

2 Method DMM

3 Method DMM

4 Method DMM

5 Method DMM

6 Method DMM

7 Method DMM

8 Method LCM

9 Method DMM

10 Method CA

11 Method DMM

12 Method DMM

13 Method DMM

14 Method CA

15 Method DMM

16 Method DMM

17 Method DMM

18 Method DMM

19 Method DMM

20 Method DMM

21 Method DMM

22 Method DMM

23 Method DMM

24 Method DMM

25 Method DMM

26 Method λ6

27 Method DMM

28 Method DMM

29 Method DMM

30 Method DMM

31 Method DMM

32 Method CA

33 Method DMM

34 Method DMM

35 Method DMM

36 Method DMM

TABLE 9 The most precise method for estimating the reliability of single-
item assessment in simulation conditions 1–36 (referenced using 
Kruskal–Wallis tests).

Condition number The most precise method

1 Method DMM

2 Method DMM

3 Method DMM

4 Method DMM

5 Method DMM

6 Method DMM

7 Method DMM

8 Method LCM

9 Method DMM

10 Method CA

11 Method DMM

12 Method DMM

13 Method DMM

14 Method CA and method FA

15 Method DMM

16 Method DMM

17 Method DMM

18 Method DMM

19 Method DMM

20 Method DMM

21 Method DMM

22 Method DMM

23 Method DMM

24 Method DMM

25 Method DMM

26 Method λ6

27 Method DMM

28 Method DMM

29 Method DMM

30 Method DMM and method FA

31 Method DMM

32 Method CA

33 Method DMM

34 Method DMM

35 Method DMM

36 Method DMM
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there has been little research into which method estimates the 
reliability of single-item assessments most precisely. This study 
investigated this question using a simulation study. To represent 
different assessments as comprehensively as possible, this 
simulation study varied several aspects: test length, the item 
discrimination parameter, sample size, and the correlation between 
the single-item assessment and the multi-item assessment of the 
same construct. The current results suggest that by using both 
method DMM and method CA simultaneously, researchers can 
obtain the most precise estimate of the range of reliability of a 
single-item assessment in about 95% of cases when the length of the 
multi-item assessment is greater than 6 items, and the correlation 
between the single-item assessment and the corresponding multi-
item assessment is greater than 0.65, while these two methods 

underestimate the reliability of single-item assessments in the 
majority of cases.

Single-item assessments have been used in many studies in 
different areas of research, and reliability estimation is mandatory for 
any assessment. Because test–retest reliability is sometimes 
inappropriate for single-item assessments measuring transient 
constructs, researchers have developed five methods for estimating the 
reliability of single-item assessments. This study has, for the first time, 
shown the most precise of these five methods for estimating the 
reliability of single-item assessments, and has also provided the R code 
for each method. Our study will encourage and facilitate the use of 
single-item assessments by psychologists (especially organizational 
and clinical psychologists).

The multi-item assessments of the same construct in this 
simulation study were unidimensional, whereas in practice 
multidimensional multi-item assessments were also used to estimate 
the reliability of some single-item assessments, since for some 
constructs, all existing multi-item assessments are multidimensional. 
In addition, all single-item assessments and corresponding multi-item 
assessments in this simulation study used a 5-point Likert scale, but 
in practice, dichotomous single-item assessments were also 
occasionally used. Further research is needed to investigate the effect 
of multi-item dimensionality and scale format on the estimation of the 
reliability of the single-item assessments.
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